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Abstract
A powerful aspect of single-particle cryogenic electron microscopy is its ability to determine high-resolution structures from samples containing
heterogeneous mixtures of the same macromolecule in different conformational or compositional states. Beyond determining structures at
higher resolutions, one outstanding question is if macromolecules with only subtle conformation differences, such as the same protein bound
with different ligands in the same binding pocket, can be separated reliably, and if information concerning binding kinetics can be derived
from the particle distributions of different conformations obtained in classification. In this study, we address these questions by assessing the
classification of synthetic heterogeneous datasets of Transient Receptor Potential Vanilloid 1 generated by combining different homogeneous
experimental datasets. Our results indicate that classification can isolate highly homogeneous subsets of particle for calculating high-resolution
structures containing individual ligands, but with limitations.
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Introduction
As it has been demonstrated repeatedly, single-particle cryo-
genic electron microscopy (cryo-EM) is capable of determin-
ing multiple high-resolution structures from a heterogeneous
population of molecules in mixed conformational and com-
positional states [1,2]. This capability relies on computa-
tional classification to sort images of individual molecules
into different classes that are sufficiently homogeneous for
high-resolution reconstruction [3–6]. The homogeneity and
particle number in a class are two key determinants of
the resolution. Extensive classification is frequently under-
taken in pursuit of higher-resolution reconstructions, through
isolation of increasingly rarefied subsets of homogeneous
particles [4].

Classification can also be focused on a local region of the
particle under study, aiming to separate subtle conformational
or compositional differences [1,2,7]. We ask whether, beyond
increasing nominal resolution, particles of the same pro-
tein bound with different ligands at the same ligand binding
site may be reliably separated by standard 3D classifica-
tion. This is challenging in practice because of the subtle
differences between ligand densities and liganded protein
conformations. A recent study dissecting sub-stoichiometric
ligand binding [2] further promotes the derivation of lig-
and binding kinetics based on the ratios of particle num-
bers assigned to different classes. Assessing the accuracy and
reproducibility of such particle number ratios, is in turn crit-
ical to understanding the accuracy of any derived kinetic
or thermodynamic parameters. These questions can drive

exploration of the capabilities and limitations of standard
3D classification in identifying proteins bound with distinct
ligands.

Here, we use the Transient Receptor Potential Vanilloid 1
(TRPV1) ion channel as a model system to explore the poten-
tial power and limitations of computational classification in
separating particles bound with different ligands in the same
ligand binding site. TRPV1 is a polymodal nociceptor that
can be activated by vanilloid agonists, such as capsaicin and
resiniferatoxin (RTX), or inhibited by antagonists, such as
capsazepine (CPZ) [8]. We have previously determined the
structures of nanodisc-reconstituted TRPV1 in the resting
state, bound with both double knot toxin (DkTx) and RTX,
and bound with antagonist CPZ [9]. The agonist RTX and the
antagonist CPZ bind TRPV1 in the same vanilloid binding
pocket, which in the resting state is occupied by a phos-
phatidylinositol (PI) lipid. DkTx binds distal to the vanilloid
pocket, at the extracellular opening of the ion permeation
pore, and stabilizes the open state of the channel evoked by
RTX.

In this study, we computationally combine particles from
these three different datasets, followed by computational clas-
sification to separate particles into each ligand binding state.
Using our prior knowledge of the origin of each particle,
we quantitatively validated the accuracy of particle classifi-
cation. Our results show that TRPV1 particles bound with
different ligands can be separated out with high confidence.
However, classification accuracy depends on subtle structural
features of each ligand or protein conformation, and errors in
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the estimated particle distributions are too large to provide
reliable quantitative information concerning ligand binding
kinetics.

Methods
Data processing
Using previously collected micrographs for three different
samples (nanodisc-reconstituted TRPV in resting state, bound
with RTX/DkTx, or CPZ [9]), we first reprocessed these
datasets using now-current cryo-EM software [10–13]. We
used the deposited map of resting TRPV1 in a lipid nan-
odisc (EMD-8118), low-pass filtered to 30Å resolution, as
the initial reference. From the final homogeneous classes
of each dataset, we randomly selected 50 000 particles for

further refinement and final reconstruction, yielding resolu-
tions of 3.5Å (resting), 3.6Å (RTX/DkTx) and 3.7Å (CPZ)
by the 0.143 half-map Fourier Shell Correlation criterion
[14]. All micrographs were collected under identical imaging
conditions, and it is straightforward to combine them com-
putationally to mimic heterogeneous datasets obtained from
mixed samples. We combined particles from the DkTx/RTX
and resting datasets (RTX/resting), and the CPZ and resting
datasets (CPZ/resting), to generate two synthetic heteroge-
neous datasets that each contains 100 000 particles. 3D refine-
ment was performed on these combined datasets to generate a
consensus reconstruction from each, with nominal resolution
of 3.3Å and 3.5Å, respectively (Supplementary Fig. S1). A
visual overview of the data processing procedure is presented
in Fig. 1.

Fig. 1. Generation of synthetic heterogeneous dataset. A flowchart showing how heterogeneous datasets were assembled by combining two individual
datasets.
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Fig. 2. Masks used for particle subtraction and focused classification.
Side (left) and top (right) views of masks overlay with ribbon diagrams of
TRPV1 structures with RTX/DkTx (upper row, 5IRX) and with CPZ (lower
row, 5IS0) bound. Masks cover the transmembrane domain of a
monomer subunit. The black mesh shows the extent of the soft edge.
The RTX/resting mask was made to exclude the DkTx by the selectivity
filter. The CPZ/resting mask is the same as the RTX/resting mask but
extended by 10 pixels.

The remaining data processing (classification and recon-
struction) was carried out using RELION 3.1 [15]. Sym-
metry expansion along the C4 axis was accomplished
using the relion_particle_symmetry_expand program. Amask
around the vanilloid binding pocket of a TRPV1 monomer
(‘monomer mask’) was made by segmenting reference den-
sity within 2Å of the transmembrane portion of a monomer,
applying a 5Å low-pass filter and adding a soft edge of width
9.7Å (8 pixels). The shapes of the mask for both datasets
are the same, but the mask size for CPZ/resting dataset is
10 pixels (12.2Å) larger (Fig. 2). The masks include almost
the entire transmembrane domain of monomer, excluding
the soluble domain and the outer pore region where DkTx
binds. These masks were used for particle subtraction on
the symmetry-expanded particles. The resulting symmetry-
expanded/subtracted particles were then subjected to focused
3D classification without image alignments using the same
monomer masks (Supplementary Fig. S2).

The published map of resting TRPV1 (EMD-8118) was
used as the initial reference for focused classifications.

We varied the degree of regularization (parameter 1/T or
‘tau fudge’ of 40 and 80) and the low-pass filter applied
to the reference (12Å or none). Classification appeared to
converge after 50 iterations, and the results are summarized
in Supplementary Table S1. Classes without a well-defined
ligand density (PI lipid, RTX or CPZ) were marked for exclu-
sion. The results of the symmetry-expanded particles in the
remaining classes are summarized in Supplementary Table S2.
To reconstruct the original tetramers from these monomeric
classes, the symmetry-expanded particles from each original
tetrameric particle were labeled with an identification num-
ber (0, 1, 2 or 3) and were re-grouped back to their original
tetrameric particles (Supplementary Fig. S3). Tetramers that
contained any number of subunits marked for exclusion were
excluded. Furthermore, only particles with all four subunits
being classified into same ligand classes were grouped together
for calculating tetrameric reconstruction with C4 symmetry
applied. The results are summarized in Table 1.

As a further validation, we generated a third synthetic
dataset by combining particles from DkTx/RTX and CPZ
datasets (RTX/CPZ), and performed the classification follow-
ing the procedure described above, without optimizing the
parameters. We used the RTX monomer mask to do the par-
ticle subtraction and classification and used a regularization
parameter T of 40 with no low-pass filter on the reference for
the classification. The results from this third synthetic dataset
are included in Table 1 and Supplementary Tables S1 and S2.

Model building
For validation purpose, we also refined the atomic models
against three maps (resting, DkTx/RTX andCPZ) reprocessed
in this study. The PDB (Protein Data Bank) coordinates from
our previous publication (RTX/DkTx: 5IRX; Resting: 5IRZ
and CPZ: 5ISO) [9] were used as the models, and incom-
plete prolines were fixed in ChimeraX 1.1 [16,17]. Molecular
restraints were produced using the eLBOW function in Phenix
1.9.1 [18]. These models along with the restraints were then
fitted into the 3D density maps via the real space refinement in
Phenix using default parameters but ignoring symmetry con-
flicts. The models were validated for Ramachandran outliers,
and none of the models were significantly different from the
starting published PDB files.

Results and discussion
We have previously published the structures of nanodisc-
reconstituted TRPV1 in the resting state, in which a resident

Table 1. Reconstructions of ligand and resting maps from the mixed datasets

RTX/resting RTX sample Resting sample Total particles %RTX %Resting Resolution

RTX class 8660 320 8980 96.4% 3.5% 3.7Å
Resting class 525 4911 5436 9.7% 90.3% 3.9Å

CPZ/resting CPZ sample Resting sample Total particles %CPZ %Resting Resolution

CPZ class 4052 516 4568 88.7% 11.3% 4.2Å
Resting class 2079 6618 8697 23.9% 76.1% 4.0Å

RTX/CPZ RTX sample CPZ sample Total particles %RTX %CPZ Resolution

RTX class 6406 205 6611 97% 3% 3.7Å
CPZ class 268 3132 3400 8% 92% 4.2Å
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Fig. 3. Densities of bound ligand in the vanilloid binding pocket. (a)
Vanilloid binding pocket of one monomer in the resting (light blue ribbon)
and RTX/DkTx (purple ribbon) states. RTX is shown as orange sticks, and
the PI lipid is shown as green sticks. (b) Vanilloid binding pocket of one
monomer in the resting (light blue ribbon) and CPZ (yellow) states. CPZ is
shown as light orange sticks, and the PI lipid is shown as green sticks. (c)
Densities for RTX, PI lipid and CPZ in the vanilloid binding pocket are well
resolved in the 3D reconstructions calculated from the individual
datasets. (d–f) Densities of the mixed ligands (d: RTX and PI lipid; e: CPZ
and PI lipid; f: RTX and CPZ) in the vanilloid binding pocket of the 3D
reconstructions calculated from the combined datasets without
classification. These densities appear as the mixture of the density from
individual ligand.

PI lipid is bound in the vanilloid binding pocket; in the acti-
vated state by agonist RTX and a peptide toxin (DkTx); and
the inhibited state by an antagonist CPZ [9]. In these lig-
anded states, the resident PI lipid is displaced either by the
RTX or CPZ binding to the same pocket. In contrast to a
closed channel in the resting state, the DkTx/RTX bound
channel is in a fully open conformation, and CPZ bound
channel is in a closed conformation that is almost identi-
cal to that of the resting state (Fig. 3a and b) [9]. There is
a conformational change from the resting to the fully open
state, involving a subtle but noticeable near-rigid-body rota-
tion and twist of the voltage-sensing-like domain formed by
Helices S1 to S4. In addition, the density of bound DkTx in
the top of the tetrameric channel constitutes another major
difference among these datasets. However, this region of
the structure was excluded from analysis by masking and
subtraction.

While these datasets were collected several years ago, their
quality is adequate for the purpose of this study. The reso-
lutions of reconstructions determined from 50000 particles
randomly selected from the final particle stack of each dataset
are comparable with each other, 3.5Å, 3.6Å and 3.7Å for
resting, RTX and CPZ, respectively (Fig. S1). Density within
the vanilloid binding pocket of each 3D reconstruction shows
a distinct characteristic shape that matches well with the

known ligand, i.e. PI lipid, RTX and CPZ (Fig. 3c). The
PI density is clearly defined for the phospholipid headgroup,
the shoulders and the two acyl chains. The first acyl chain
has well-resolved density up to about C9 of the tail; the
second acyl chain density resolves up to about C4. RTX is
marked by a vanilloid warhead density that overlaps with
the first acyl chain of the phospholipid, followed by clear
density for the phorbol ring and connected benzyl group.
The CPZ density is rather similar to the first tail of the PI
lipid, although the multi-ring system is wider than a bare acyl
chain.

Combining the particle stacks from two different sam-
ples, we first generated two synthetic heterogeneous datasets
that each contains equal number of particles from two differ-
ent samples: RTX/DkTx with the resting and CPZ with the
resting. Without separating the heterogeneous particles, 3D
reconstruction determined from each heterogeneous dataset
(Fig. S1) shows that density within the vanilloid pocket has
mixed structural features of the two different ligands (Fig. 3d
and e). Note that the density from CPZ/resting mixture has
a shape that resembles the PI lipid, because the CPZ density
overlaps almost completely with the first acyl chain of the PI
lipid.

Using these two combined heterogeneous datasets, we
tested a procedure that combines symmetry expansion and
focused classification to separate particles of different ligand
states. By comparing the classification results with the prior
knowledge of which particles originated from which dataset,
we quantitatively evaluate the feasibility and limitation of the
classification procedure we used. The details of the proce-
dure are described in Methods, and a conceptual description
is shown in Fig. 1.

A key step in this analysis is symmetry expansion [1], which
is critical to derive information concerning sub-stoichiometric
ligand binding. Since the individual liganded samples were
prepared separately, we can assume that the resting sample
does not contain any particles bound with ligand, but the lig-
anded sample may contain particles with sub-stoichiometric
binding. To simplify analysis, we do not pursue sub-
stoichiometric ligand binding in the synthetic datasets. After
symmetry expansion, each tetrameric TRPV1 particle is con-
verted to four sub-particles by assigning each particle four
symmetrically equivalent alignment parameters. This is fol-
lowed by applying a mask that is sufficiently large to cover
the entire vanilloid binding pocket of a single monomer but
small enough to exclude other particle features, particularly
the density of bound DkTx, to avoid potential bias of the clas-
sification results by these distinct densities outside of vanilloid
binding pocket (Fig. 2). In the procedure presented here, we
also subtracted the volume that is outside of the mask. Since
the remaining volume is relatively small, the classification was
performed without image alignment in RELION.

We tested the mask, regularization parameter T, and low-
pass filtering of the reference map (EMD-8118) on the clas-
sification of the symmetry-expanded particles. All classes are
shown in Supplementary Fig. S2. By evaluating the appear-
ance of ligand density in each class, we select classes with clear
densities resembling the known shape of a well-resolved lig-
and or lipid. We then trace each particle to its sample of origin
and determine the percentage of the particles that are correctly
or incorrectly classified, e.g. the proportion of particles in a
class with RTX features that originate in the RTX dataset or
in the resting dataset (Supplementary Tables S1 and S2).
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Once we determined the best conditions for classifi-
cation (resulting in the greatest clarity of ligand densi-
ties), we regrouped the symmetry expanded particles back
to tetrameric particles (see Supplementary Fig. S3 for a
graphical outline of the procedure). For simplicity, we
selected only tetrameric particles with all four subunits con-
taining the same ligand density in the vanilloid binding
pocket to calculate 3D reconstructions with C4 symme-
try applied. The accuracy of separation is then estimated
from the percentage of correct/incorrect particles in the final
classes.

For RTX/resting combined heterogeneous dataset, we were
able to identify two homogeneous subsets of particles, from
which calculated 3D reconstructions show a well-defined
PI lipid or RTX in the vanilloid binding pocket (Fig. 4a).
While each subset contains a small number of particles (8980
and 5436 out of 100 000 particles in the combined dataset),
they produced reconstructions with resolution better than
4Å and features that clearly resembles those obtained with
the original, homogeneous datasets. More importantly, only
a small fraction of tetramer particles is misclassified. In
the RTX class, ∼3.5% of particles are misclassified from
the resting state, whereas 9.6% of particles in the resting
class originate from the DkTx/RTX sample. Notably, the
latter group may not be exclusively misclassified, as some
monomers from the liganded dataset might be ligand free
due to sub-stoichiometric binding. Overall, these results sug-
gest that the classification is largely reliable, in the sense of
leading to unambiguous reconstructions of structures with
alternate ligands. The full classification result is listed in
Table 1.

For the CPZ/resting combined dataset, we were also able to
isolate two homogeneous subsets of particles, with subunits
containing either CPZ or PI lipid exclusively, respectively,
comprising 4568 and 8697 out of 100 000 combined particles
(Fig. 4b). The percentage of misclassified particles is larger
than for RTX/resting, with 11.3% of particles in the CPZ
class actually belonging to the resting sample and 23.9% of
the resting class particles belonging to the CPZ dataset. While
the resting and CPZ-bound structures both represent highly
similar, closed-channel conformations, the higher proportion
of CPZ-bound monomers misclassified as PI-bound suggests
that misclassification is likely caused by the overlap of CPZ
and one acyl chain of the lipid, which is difficult to distin-
guish at this resolution range. In contrast, the presence of the
phosphoinositol headgroup may permit ready differentiation
of PI from CPZ.

We also synthesized a third mixed dataset combining RTX
and CPZ (RTX/CPZ), classified using the same parameters
determined for the CPZ/resting data. Considering the sub-
stantial overlap of the RTX and CPZ ligands, this dataset may
provide a more difficult test (Fig. 3f). We used the RTX-based
VBP mask for particle subtraction and classification. The
classification results are similar to what we achieved using
the RTX/resting datasets, with similar particle distribution
and accuracy (Supplementary Fig. S2g, Supplementary Tables
S1 and S2). The density of bound ligand in RTX and CPZ
classes resembles the correct shapes of these ligands (Fig. 4c,
Table 1).

In the combined datasets, over 80% of total particles
are excluded during the classification, because of the strin-
gent criteria used for particle selecting and exclusion. From

symmetry-expanded particles, we only select particles with all
four subunits being classified in well-defined ligand classes, i.e.
those with unambiguous densities within the vanilloid binding
pocket. We further exclude a large portion of particles whose
four subunits contained mixtures of ligand classes, i.e. some
monomers in ligand classes and the others in lipid classes. The
accuracies of correctly assigned particles are about 95% for
the tetramers and about 60–70% for the monomers, demon-
strating that selecting for homotetramers improves accuracy
(Supplementary Table S1). Therefore, for proteins without
symmetry the expected accuracy of similar classification may
become less. Furthermore, the accuracy for the CPZ/resting
dataset is lower than that for RTX/resting or RTX/CPZ,
due to the amount of CPZ particles assigned to lipid classes
(Supplementary Table S2). Lacking prior information con-
cerning cooperativity of ligand binding in tetrameric channel
precludes quantitative evaluation of the accuracy of sub-
stoichiometric binding. Nonetheless, the procedure described
here is capable of revealing channel conformations upon sub-
stoichiometric ligand binding, as demonstrated recently [2].
Besides the prior knowledge of which particles originated in
which sample, the resolution of final reconstruction calcu-
lated from each class is also a good indication of the relia-
bility of the results. For the final homo-tetrameric subsets,
although each contain a relatively small number of parti-
cles, the resolutions of their final reconstructions are close to
the resolutions of the homogeneous datasets before focused
classification.

In this study, we used RELION to perform focused clas-
sification and we noticed that the results are most influenced
by the design of the mask and the regularization parameter T.
The mask needs to be large enough to include all features of
both ligand and the endogenous PI lipid and enough features
of the protein. This is particularly true for the CPZ/resting
combined dataset, as CPZ has a very similar shape as one tail
of PI lipid. If the mask only covers this part of the particle, par-
ticles bound with CPZ will not be able to be separated from
particles from the resting state. Therefore, the mask needed
for the CPZ/resting classification was slightly larger than the
mask needed for the RTX/resting classification; otherwise,
using the RTX/resting mask on the CPZ/resting data does not
produce satisfactory separation. However, a mask larger than
necessary produces worse classification results, as it intro-
duces larger common features between the liganded and the
resting states. For the regularization parameter T, the results
above were obtained with T=40 for the CPZ/resting classifi-
cation and T=80 for the RTX/resting classification. Smaller
T values produce worse results, with higher percentages of
wrongly classified particles that produced indistinguishable
classes. The focused classification can also be performed using
other programs. Our results highlight that it is necessary to
optimize the parameters so that the most accurate results can
be produced.

Obviously, if ligand binding induces large conformational
changes in the protein, the classification will be easier and
more robust. In this study, the conformational difference
of the transmembrane domain of individual monomer is
very subtle (Fig. 3a and b). The added density of DkTx
is excluded by the mask. To further remove the potential
influence to the classification, we performed background sub-
traction. However, the procedure should work similarly with-
out background subtraction. Furthermore, the open-channel
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Fig. 4. Refined tetramers after focused classification. Refinements of the homotetramers after the focused classification (_R) are compared to their
respective refinements before focused classification (_I). Insets show the vanilloid binding pocket densities for the ligands (colored) and the surround
protein (gray). Maps obtained after the focused classification (_R) contain similar features and similar resolutions to the maps before focused
classification (_I).

conformation of the RTX dataset also likely contributes to
the accuracy of the RTX separation, although these structural
changes are relatively subtle and difficult to weigh against
the ligand density differences. With all these precautions, we
believe that the classification results presented here are mostly
driven by the density in the vanilloid binding pocket. In this
regards, better signal-to-noise ratio and higher resolution of

particle image and larger dataset should help to improve the
separation.

Concluding remarks
We used TRPV1 as a model sample to ask the question
if it is possible to separate particles in a compositional
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heterogeneous dataset that contains particles with and with-
out ligand binding or having different ligands bound in
the same binding site but without major conformational
differences. Our results demonstrate that this is possible
but with limitations. By applying symmetry expansion and
focused classification around the ligand binding site, clean
subsets of particles classes containing different ligands can
be classified with good confidence to produce high-quality
3D reconstructions. The resolution of a final reconstruc-
tion is a good indicator for the success. Higher quality of
data would enable better classification results and produce
higher-resolution reconstruction. Symmetry expansion also
allows the selection of particles with sub-stoichiometric lig-
and binding. However, because a large number of particles
are excluded by classification, the information about ratios
of particles bound with different ligands is unreliable. Thus,
it is still challenging to obtain quantitative kinetic informa-
tion about ligand binding. Our results suggest that it is likely
possible to apply multiple ligands to the same protein tar-
gets and determine multiple structures from the same sample,
which likely can improve the throughput to facilitate effi-
cient structural-based drug development. In this case, the
accuracy of the separation is most dependent on the overlap
of the ligands and the overall resolution of the details that
distinguish them. If ligands produce larger conformational
variances, such as large domain movements, then the separa-
tion will likely be easier and may not depend on the ligands as
much.
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