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Abstract

Liquid biopsy, characterized by minimally invasive detection through biofluids such as blood, saliva, and urine, has
emerged as a revolutionary strategy for cancer diagnosis and prognosis prediction. Exosomes are a subset of extracel-
lular vesicles (EVs) that shuttle molecular cargoes from donor cells to recipient cells and play a crucial role in mediat-
ing intercellular communication. Increasing studies suggest that exosomes have a great promise to serve as novel
biomarkers in liquid biopsy, since large quantities of exosomes are enriched in body fluids and are involved in numer-
ous physiological and pathological processes. However, the further clinical application of exosomes has been greatly
restrained by the lack of high-quality separation and component analysis methods. This review aims to provide a
comprehensive overview on the conventional and novel technologies for exosome isolation, characterization and
content detection. Additionally, the roles of exosomes serving as potential biomarkers in liquid biopsy for the diagno-
sis, treatment monitoring, and prognosis prediction of cancer are summarized. Finally, the prospects and challenges
of applying exosome-based liquid biopsy to precision medicine are evaluated.
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Introduction

Cancer is a leading cause of death around the world [1].
Mounting evidence suggests that the development of
cancer is a dynamic process and diverse components
are involved, including tumor cells, stromal cells, and
immune cells. Up to now, tissue biopsy has been consid-
ered as the most common method for cancer diagnosis
[2]. However, the extracted small tissues fail to represent
tumor heterogeneity or monitor dynamic tumor progres-
sion, and the potential of metastasis may be increased by
this invasive method, finally leading to poor survival and
prognosis [3]. Due to minimal invasion, liquid biopsy,
which collects the specimen of biofluids such as blood
and urine, has drawn widespread attention and generated
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more opportunities for cancer diagnosis as well as real-
time monitoring [4]. Exosomes, with a diameter of
40-160nm, are lipid bi-layer membrane vesicles that are
actively released by most cells and stably circulate in body
fluids [5, 6]. Originally underestimated as vehicles for dis-
posal of cellular waste products, exosomes are now being
recognized as important players in intercellular com-
munication [4, 7]. Accumulating evidence suggests that
a variety of bioactive molecules, including nucleic acids,
proteins, and lipids, are enriched in exosomes and could
be transferred from donor cells to recipient cells, leading
to the intracellular transfer of information [4, 8—10]. The
bioactive cargoes in exosomes may be uptaken by recipi-
ent cells, facilitating tumorigenesis and tumor progres-
sion. In addition, exosomes are involved in the formation
of pre-metastatic niche, tumor angiogenesis, and tumor
immune suppression. Moreover, exosomes could reflect
the altered physiological and pathological state of their
parental cells [11-14]. These findings have led to the idea
that analyzing the circulating exosomes and their derived
cargoes may provide new opportunities for cancer liquid
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biopsy (Fig. 1), highlighting the potential of exosomes as
biomarkers for cancer diagnosis, progression monitoring,
and prognosis prediction.

Currently, circulating tumor cells (CTCs), circulating
tumor DNA (ctDNA) and exosomes have become the
three main branches of liquid biopsy [15, 16]. Compared
with CTCs and ctDNA, exosomes have shown greater
advantages in liquid biopsy. First, the presence of large
amounts of exosomes (~10° particles/mL) in biofluids
contributes to relatively easy obtaining of vesicles, while
only several CTCs exist in 1 mL blood samples [14]. Sec-
ond, exosomes are secreted by living cells and inherent
abundant biological information from their parental
cells. Therefore, exosome is more representative than
ctDNA, which limitedly reflects the information of apop-
totic or dead tumor cells [11, 14]. Third, exosomes are
innately stable because of their lipid bilayers, and thus
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stably circulate in physiological conditions even in harsh
tumor microenvironment. The high biological stability
allows long-term storage of specimens for exosome iso-
lation and detection [17]. Notably, one of the big chal-
lenges for the application of exosomes in liquid biopsy
is isolation with high efficiency and purity, which arises
from their nanoscale size and intrinsic heterogeneity
[18-20]. Moreover, since cancerous exosomes represent
only a small fraction of all exosomes present in body flu-
ids, ultrasensitive and specific detection is a prerequisite
for the development of exosome-based cancer diagnos-
tics. To date, a variety of methods have been developed
for exosome isolation as well as the detection of exoso-
mal proteins and nucleic acids [21-26]. Although nota-
ble progress has been made, the limited sensitivity and
specificity, low purity and throughput remain significant
challenges for academic research and practical use [27].
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Fig. 1 Exosomes as a new target for liquid biopsy. Exosomes are enriched in body fluids and are critically involved in tumorigenesis, tumor
progression and metastasis. Compared with CTC and ctDNA, exosomes show superior characteristics such as living-cell secreted vesicles, large
amounts and stable circulation. Traditional and advanced technologies have been used to separate exosomes from various body fluids and to
detect exosomal cargoes. The detection of specific molecules of exosome may provide a new strategy for cancer diagnosis, progression monitoring,
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Therefore, active research is needed to develop an easy-
to-operate, high-sensitivity and high-purity platform for
exosome separation and detection. In this review, we dis-
cussed about recent advance in the isolation and detec-
tion of exosomes as well as their clinical application with
an emphasis on the newly developed techniques for exo-
some separation and detection. Furthermore, the applica-
tion of exosomes as potential biomarkers in cancer liquid
biopsy was summarized.

Exosome biogenesis and contents

Exosomes are a heterogeneous group of membrane-
structured vesicles actively released by most cells and
could be found in many human body fluids, such as
blood, saliva, tear and urine [4]. The process of exosome
biogenesis involves invagination of plasma membrane,
formation of multivesicular bodies (MVBs) and exosome
secretion [28]. MVBs are endocytic structures formed
by the inward budding of endosomal membranes. Vesi-
cles accumulating inside of MVBs, named intraluminal
vesicles (ILVs), are released as exosomes by the fusion
of MVBs with plasma membrane [4] (Fig. 2). Extensive
studies suggest that donor cell-derived bioactive mol-
ecules are enriched in exosomes, which indicates the cru-
cial role of exosomes in genetic information exchange [4,
28]. Notably, the specific RNA components in exosomes
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have shown great differences compared to those in their
parental cells, which may be attributed to the unique
process of cargo sorting during exosome formation
[29]. The mechanisms of cargo sorting are still unclear,
both endosomal sorting complex required for transport
(ESCRT)-dependent manner [30, 31] and ESCRT-inde-
pendent mechanism have been reported to participate
in this process [32, 33]. Intriguingly, proteins such as tet-
raspanins (CD9, CD63 and CD81), heat shock proteins
(HSP60, HSP70) and ESCRT-associated components
(Alix and TSG101) have been confirmed to be present
in exosomes, which provides certain markers for their
identification and detection [34].

Increasing studies have shown that various disease-
related proteins and nucleic acids are loaded into
exosomes and differentially expressed in tumors of differ-
ent origin. Hoshino et al. indicated that plasma-derived
exosomes could identify specific cancer types and dis-
tinguish tumor sources by proteomic analysis. They
found that 51 and 19 plasma-derived exosome proteins
were specifically identified in pancreatic and lung can-
cer, respectively [35]. In addition, exosomal CD63 was
reported to be high in ovarian cancer while low in lung
cancer [36]. CD317 and epidermal growth factor recep-
tors (EGFR) were highly expressed on non-small cell lung
cancer (NSCLC)-derived exosomes [37]. Compared with
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Fig. 2 The biogenesis, contents, and internalization of exosomes. Exosomes are vesicles derived from the fusion of multivesicular bodies with
plasma membranes. Cytoplasmic contents of donor cells such as nucleic acids and proteins are sorted into exosomes and are delivered to recipient
cells through the manner of endocytosis, phagocytosis, direct fusion or direct binding (receptor-ligand interaction)
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healthy subjects, glypican-1 (GPC-1) was found to signif-
icantly increase in serum exosome of patients with pan-
creatic cancer and could be used for the early detection
of pancreatic cancer with 100% diagnostic specificity and
sensitivity [38]. In addition to proteins, nucleic acids such
as miRNA, mRNA, and IncRNA are differentially distrib-
uted in exosomes and could be used as specific cancer
biomarkers. For instance, mutant EGFRvIII mRNA was
detected in serum exosomes of glioblastoma patients
[39]. Zhou et al. reported that the expression level of exo-
somal miR-15a-5p was 7-19 times higher in endometrial
cancer than that in other cancer types [40]. Additionally,
high expression of exosomal miR-1247-3p was positively
associated with lung metastasis from liver cancer, which
indicated a poor outcome [41]. Given that exosomes are
secreted by living cells, the specific contents in exosomes
could reflect the pathophysiological state of their parental
cells, which makes them useful biomarkers for dynamic
monitoring of disease progression [42]. In general, car-
goes sorted into exosomes can not only supply additional
characteristics for their identification, but also provide
promising biomarkers for diagnosis, treatment monitor-
ing, and prognosis prediction in patients with cancer,
which offers a new tool for liquid biopsy.

Methods for exosome isolation and enrichment

Due to unique formation manner and specific cargo sort-
ing process, exosomes are heterogeneous in size and
molecular contents. Exosome separation and enrichment
from complicated biological components is essential for
basic study and clinical translation. Up to now, a number
of methods have been developed that are significantly
varied in the amount and purity of isolated exosomes.

Conventional isolation methods

Ultracentrifugation-based separation

As the gold standard for exosome separation, ultracen-
trifugation is the most commonly used method [43],
including differential ultracentrifugation and gradient
density ultracentrifugation. Conventional differential
ultracentrifugation was first proposed by Johnstone et al.
to isolate exosomes from culture medium of reticulocytes
[44]. Typically, low-speed centrifugation (300g) is first
employed to remove cellular debris, while 20,000g speed
of centrifugation is utilized to eliminate other large vesi-
cles. A high force (100,000 g) is finally utilized to sediment
exosomes. However, this method needs costly instru-
ment and has contamination with aggregated proteins.
More centrifugation cycles may obtain a purer outcome
but lead to lower recovery. Gradient density ultracen-
trifugation is a better alternative to obtain exosomes with
higher purity [45]. During centrifugation, different sizes
of particles from two or more solutions are separated

Page 4 of 33

into different layers, whose density increases from top to
bottom. Based on this, the method has been applied to
separate exosomes, which have been found to float with
densities of 1.15 to 1.19g/mL [45, 46]. Although with
higher purity than ultracentrifugation, limitations such
as time-consuming process and the requirement of large
biofluid volume have largely restrained its use in clinical
application.

Size-based separation

The feature of fixed-range diameters allows for the pos-
sibility to separate exosomes by size-based methods.
Filtration is one of the size-based approaches for exo-
some separation by using membrane filters with specific
pore sizes, which has the advantages of simple opera-
tion and effective purification but disadvantage of low
yield [47]. Ultrafiltration is usually applied to concen-
trate exosomes from large amounts of original mate-
rials such as cell culture medium [48]. Currently, the
combination of ultrafiltration with ultracentrifugation
has been widely employed, in which filtration is used to
remove cells and large vesicles while the purification of
exosomes is achieved by ultracentrifugation [49]. Moreo-
ver, size-exclusion chromatography (SEC) could sepa-
rate biomolecular components according to the size of
sample and pore size of gel. During the separation, large
molecules are eluted early, while small molecules or par-
ticles directly diffuse into the pores [50]. Anita N Boing
et al. developed an SEC-based protocol by cross-linked
sepharose CL-2B column, which could efficiently isolate
exosomes with a diameter larger than 70nm from plate-
let-free supernatant [50]. Guo et al. showed that CL-6B
column had better performance than CL-2B column in
particle yields and purity of exosomes [51]. Compared
with centrifugation and filtration methods, SEC has the
advantages of gentle processing and nondestructive
outcomes [52]. Moreover, the combination of SEC with
ultracentrifugation may have an improved recovery and

purity [53].

Precipitation techniques

As for precipitation techniques, highly hydrophilic poly-
mer is used to competitively bind to water molecules
around the exosomal membrane, thereby reducing the
solubility and finally achieving low input volume of exo-
some separation. To date, polyethylene glycol (PEG) is
the most commonly used polymer for exosome sepa-
ration [54]. An exosome purification method called
ExtraPEG was proposed by Rider et al., which could
rapidly enrich exosomes and obtain sufficient contents
harvested from vesicles for downstream analysis [55].
Recently, many commercial kits that rely on precipitation
techniques have been developed for exosome isolation
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and enrichment, such as ExoQuick™ and Total Exosome
Isolation. Study from Ding et al. indicated that Exo-
Quick " could generate a relatively high yield of exosomes
compared with other kits [56]. However, this method has
been often criticized for the high cost and contamination
of coprecipitated protein aggregates.

New enrichment methods

The discoveries of exosome-specific markers and compo-
nents provide a new avenue for separating exosomes as
well as exosome subsets (Fig. 3). Through antibodies and
aptamers that specifically target tumor-associated pro-
teins such as GPC-1 and EpCAM (epithelial cell adhesion
molecule), exosomes of cancer cell origin could be well
distinguished from that of normal cell [57]. Moreover, the
applications of microbeads, microfluid chip and thermo-
phoresis enabled the rapid and convenient enrichment of
exosomes. Herein, we summarized the advantages and
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limitations of new approaches for exosome enrichment
(Table 1).

Immunoaffinity enrichment

Owing to the priority of simplicity and specificity, immu-
noaffinity isolation strategy has been used for exosome
enrichment in many studies (Fig. 3A). For example, anti-
CD81 functionalized microfluidic chip was fabricated
by Zhang et al. to isolate exosomes from plasma sam-
ples [70]. Yang et al. reported an integrated microfluidic
device for exosome separation through forming a sand-
wich structure of AuNC-exosome-AuR complexes [58]
(Fig. 3A,). This device achieved a yield of 5 x 10° particles
from 5mL urine sample in 30 min. Nevertheless, the dis-
sociation of captured exosomes remains a big challenge,
which arises from the strong affinity between antigen and
antibody. To address this challenge, Kang et al. developed
an exosome-specific dual-patterned immunofiltration
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(ExoDIF) device [59]. The biotinylated anti-CD63 anti-
body was immobilized on the surface of inner channel
that sequentially pretreated with 3,3’-dithiobissulfosuc-
cinimidylpropionate (DTSSP), biotinylated BSA, and avi-
din. As a result, nearly 87.1% of exosomes were captured
from high dilution of cell culture media. Notably, the
captured exosomes could be dissociated by DTT (dithi-
othreitol) through breaking the embedded disulfide bond
of DTSSP (Fig. 3A,).

Recently, EVs on demand chip (EVOD) was proposed
by Kang et al, in which the capture of cancer-related
exosome subpopulations was achieved by the reaction
between tetrazine-conjugated anti-EpCAM/anti-EGFR
antibody (TzAb) and TCO (trans-cyclooctene) function-
alized microfluidic surface [82]. This chip was able to
selectively isolate 76% more EGFR™ exosomes from can-
cer patients than that from healthy donors, which exhib-
ited great potential for the early detection of NSCLC.
Sun et al. designed an interesting covalent chemistry-
mediated EV click chip to recognize, enrich, and recover
hepatocellular carcinoma (HCC)-specific exosomes from
plasma samples by multi-marker cocktail (anti-EpCAM,
anti-ASGPR1 (asialoglycoprotein receptor 1), anti-
CD147) [61] (Fig. 3Ac). The proposed exosome purifi-
cation system achieved more than 81% of recovery yield
and more than 85% of purity, providing a novel liquid
biopsy tool to detect hepatocellular carcinoma. Despite
great significance, these methods are high-cost and
marker-dependent. In addition, more attention should be
paid to the non-destructive release of captured exosomes.

Magnetic separation and enrichment

Magnetic bead-based immunoaffinity enrichment has
attracted much attention in recent years due to the
advantages of convenience and high efficiency (Fig. 3A).
Generally, exosomes are captured by antibody-modified
magnetic beads, which are then separated by magnetic
force. For example, Fang et al. conducted CD63 antibody-
conjugated magnetic nanoparticles to isolate exosomes
[71]. Moreover, novel immuno-affinitive superparamag-
netic nanoparticles (IS-NPs) were proved to possess
high efficiency, which combined anti-CD63 antibod-
ies with superparamagnetic nanoparticles through the
interactions between p-cyclodextrin (B-CD) and 4-ami-
noazobenzene (AAB) [60] (Fig. 3A,). a-CD, a competi-
tive agent extracting AAB from the p-CD-AAB inclusion
compound, was adapted for the elution of exosomes. As
a result, the capture and release efficiency of exosomes
from artificial model samples was as high as 80% and
86.5%, respectively. IS-NPs method exhibited higher
yield, increased purity and well-retained structural and
functional integrity of exosomes than conventional sepa-
ration methods.
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The isolation of exosome subsets, especially cancer-
derived exosomes, could be achieved by coupling mag-
netic beads with antibodies targeting tumor-specific
biomarkers. Luo et al. performed a rapid separation
and capture of exosomes by immunoaffinity magnetic
beads and DNA origami-based aptamer. The quantita-
tive detection of exosomes could be achieved through
the combination with DNA fluorescence probe [83]. Li
et al. developed a homogenous magneto-fluorescent exo-
some (hMFEX) nanosensor to separate GPC-1 positive
exosomes in 80 uL of plasma from breast cancer patients
[84]. He et al. conducted a microfluidic platform to cap-
ture tumor-derived exosomes by mixing samples with
anti-EpCAM or anti-CA125 antibodies-labeled magnetic
beads [36]. In general, the immunomagnetic separation
methods hold the potential to facilitate rapid separa-
tion and clinical implication of circulating exosomes in
desired areas.

Physical feature-based separation

Size-based microfluidic chip was used to separate
exosomes from large cell debris or other membra-
nous vesicles [76, 85] (Fig. 3B). Liu et al. designed a
size-based exosome total isolation chip (ExoTIC) in
which exosomes ranging in 30-200nm were enriched
and purified by multiple nanoporous membranes [62]
(Fig. 3B,). Compared with ultracentrifugation and
commercial PEG precipitation kits, ExoTIC obtained
much higher yields of exosomes from small volumes
of human plasma. However, the blockage of mem-
brane pores greatly limited the continuous separation
of exosomes. To overcome this problem, Chen et al.
introduced an ultrafast-isolation system, EXODUS,
which integrated double coupled harmonic oscillations
into a dual membrane filter configuration. By periodic
negative pressure and air pressure switching, periodic
negative pressure oscillations were generated on the
nanoporous anodic aluminum oxide membrane, allow-
ing small particles (i.e., proteins and nucleic acids) and
fluids to pass through, while larger exosomes remained
in the central chamber. Moreover, two pairs of oscilla-
tors enabled the resuspension of particles into the lig-
uid via transverse waves and acoustofluidic streaming,
which effectively limited fouling and particle aggrega-
tion [86]. In addition, tangential flow filtration (TFF)
is a technology that effectively reduces the potential
of pore clogging due to the perpendicular state of flow
direction and filtration direction. Sunkara et al. devel-
oped a microfluidic tangential flow filtration device,
Exodisc, to separate exosomes from human plasma
and urine, which showed better exosome yield com-
pared to conventional methods [63] (Fig. 3B,). Deter-
ministic lateral displacement (DLD) has been used for
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exosome separation since particles with different sizes
perform distinct trajectories in a platform with certain
angle-displayed micropillars. Wunsch et al. proposed
a nanoscale lateral displacement (nano-DLD) array,
in which larger vesicles laterally displaced across the
array and were collected at a side channel while smaller
vesicles flew out of the array in a zigzag mode, finally
achieving the collection of urine-derived exosomes
[75]. However, DLD was limited by low throughout and
the requirement of high voltage and the density and
stiffness of vesicles may interfere with DLD-based exo-
some isolation.

Lipid-based separation

Lipid molecules on the surface of vesicles enable affi-
nition-mediated exosome capture (Fig. 3C). Wan et al.
reported a lipid nanoprobe for the rapid separation of
exosomes from plasma [80]. The lipid bilayer of exo-
some was labeled with biotin-tagged 1,2-distearoyl-sn-
glycero-3-phosphethanolamine-poly (ethylene glycol)
(DSPE-PEG) probes in which DSPE was inserted into
the exosome membrane by hydrophobic effect and PEG
provided solubility in the aqueous phase. NeutrAvi-
din-coated magnetic sub-micrometer particles were
used for the collection of exosomes through avidin-
biotin affinity. As a result, it took only 15 min to isolate
exosomes, which greatly shortened the isolation pro-
cedure [87]. Notably, cholesterol-PEG,,, of ~6.4nm
was considered to minimize steric hindrance in surface
immobilization of lipid nanoprobes and thus achieved
a much higher capture efficiency. Additionally, mol-
ecules absorbed to lipids on exosome membrane have
also been applied to capture exosomes [88]. T-cell
membrane protein 4 (Tim-4), which has high affinity
to phosphatidylserine (PS), has been verified to facili-
tate simple exosome separation from serum samples,
making it easier for rapid downstream analysis [65, 89]
(Fig. 3C,). In addition, the affinity interaction of TiO,
shell and phosphate groups of exosomes is a novel
strategy for the enrichment of phosphorylated peptide.
Pang et al. used Fe;0,@TiO, nanoparticles to enrich
and separate exosomes within 5 min with a capture effi-
ciency of 96.5% [90]. The combination of Fe;O,@TiO,
nanoparticles and surface-enhanced Raman scattering
(SERS) tags could enrich exosomes and achieve in-situ
qualification of target miRNAs simultaneously [66]
(Fig. 3C,).

Acoustic-based isolation method

Acoustic-based microfluidics is a simple and efficient
method for exosome separation. Typically, ultrasonic
waves are applied to samples and the particles undergo
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different forces and are separated depending on their
physical properties such as size and density [81]
(Fig. 3D). Anson et al. utilized the ultrasonic waves
scattering between micrometer-sized seeding parti-
cles and nanoparticles in a resonant cavity to enrich
exosomes. The integrated acoustic device enabled fast
operation, non-contact and continuous separation of
exosomes from urine and plasma samples [91]. Wu
et al. developed an acoustofluidic platform for direct,
label-free, and contact-free enrichment of exosomes
from whole blood. The device integrated two separa-
tion modules, one of which was able to remove par-
ticles larger than 1pm in diameter and the other one
could isolate exosomes from larger microvesicles and
other particles [92]. Recently, Gu et al. reported an
acoustically driven spinning droplets device, in which
slanted interdigitated transducers (IDTs) were used to
allow nanoparticles to move according to the sound
waves of varying frequencies. Particles of fixed size
could be specifically concentrated by placing two drop-
lets of different sizes next to each other. As a result,
the method could isolate exosomes from 5 pL samples
in less than 1 min [93]. In addition, Tayebi et al. com-
bined acoustic radiation force (ARF) with dielectro-
phoretic (DEP), in which high frequency (>10MHz)
interdigital transducer was placed in the flow path to
simultaneously generate ARF and dielectrophoretic
force field. Particles in the medium presented lateral
translation by the competition between fluid drag
forces, ARF, and DEP force fields, resulting in an active
separation of extracellular vesicles [67] (Fig. 3D,).

Thermophoretic enrichment

Thermophoresis refers to a phenomenon that particles
migrate from space with high- temperature to low-
temperature areas via a temperature gradient induced
by localized laser heating. To address the challenge
of time-consuming isolation and purification proce-
dures, Liu et al. developed a sensitive thermophoretic
method to enrich tumor-derived exosomes. By using
aptamers that targeted tumor-specific markers, ther-
mophoresis could achieve rapid isolation and enrich-
ment of exosomes from other components without
exosome pre-isolation (Fig. 3D). The accumulation of
exosomes produced an amplified fluorescence signal of
aptamers, which enabled profiling of surface biomark-
ers of exosomes as well as detection of miRNAs [68]
(Fig. 3Dy). Tian et al. performed a similar assay to ana-
lyze exosomes in 1 uL plasma, which offered a low-cost,
sensitive method for liquid biopsy in metastatic breast
cancer [69] (Fig. 3D,).
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Exosome characterization

As suggested in the Minimal information for studies of
extracellular vesicles 2018 (MISEV2018), the identifica-
tion of exosomes should include western blot verification
of exosome-specific markers and at least two methods for
characterization of single exosome [94, 95].

Visible characterization

Transmission electron microscopy (TEM) is consid-
ered as the common method to identify and character-
ize a single exosome with typically cup-shaped structure
(Fig. 4A) [62]. For scanning electron microscopy (SEM),
images are presented by collecting the electrons ejected
from the samples (Fig. 4C) [96]. Notably, the morphology
of exosomes may be affected by dehydration during sam-
ple handling procedures. On the contrary, cryo-electron
microscopy (cryo-EM) is a better choice because it avoids
sample fixation and dehydration. Exosomes are analyzed
at a very low temperature and exhibit a round struc-
ture that is different from TEM images [97] (Fig. 4B). In
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addition, atomic force microscopy (AFM) could provide
information on both surface morphology and material
properties (stiffness, adhesion) by amplitude modulation
and phase modulation [96] (Fig. 4D). Moreover, specific
exosome membrane markers functionalized AFM tips
permit the identification and detection of proteins in sin-
gle exosome [96, 98].

Quantitative characterization

Dynamic light scattering (DLS) is a technique for meas-
uring the distribution of exosome size and zeta potential.
The changes of scattered light interfere and intensity can
be identified by a sensor, allowing for estimating the size
distribution of particles [100-102] (Fig. 4E). However, the
contamination of protein aggregates and large vesicles
makes it challenging for DLS to distinguish them from
exosomes [103]. Nanoparticle tracking analysis (NTA)
is a widely used method for determining the concentra-
tion and size distribution of particles (Fig. 4F). Particles
are illuminated by a beam of light and the scattering light
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signals are collected by optical microscope [100, 104].
Tunable resistive pulse sensing (TRPS) detects the elec-
trical signals generated by changes in ion conductivity
when exosomes pass through pores filled with conduc-
tive media [105] (Fig. 4G).

Techniques for detecting exosome contents
Conventional protein analysis

Both membrane and cytoplasmic proteins could be
detected in exosomes [4]. Some membrane proteins on
exosomes are involved in cancer development and pro-
gression and thus have been used as targets for exosome
isolation and purification [28, 106]. Western blot and
enzyme-linked immunosorbent assay (ELISA) are two
regular approaches widely used to detect exosomal pro-
teins [7, 107]. However, these methods are faced with
complex procedure and low sensitivity problems [108].

New protein detection methods

Colorimetric detection

Up to now, multiply novel techniques have been devel-
oped to detect exosomal proteins (Table 2). Colorimetric
detection is a method to determine the content of a com-
ponent by comparing or measuring the color intensity of
chromogenic substances (Fig. 5A). Similar to other nano-
materials like Fe;O, NPs and AuNPs, DNA has the abil-
ity of significantly increasing the peroxidase activity of
single-walled carbon nanotubes (s-SWCNTs). Xia et al.
developed a visible and simple method for the detection
of exosomes [109]. Briefly, CD63 aptamer improved the
minic peroxidase activity of s-SWCNTs and effectively
catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine
(TMB), resulting in a colorless solution turning blue.
On the contrary, the addition of exosomes induced the
release of aptamer from the surface of nanotubes and the
color of solution to turn from dark to light, which could
be observed by naked eye or UV-visible spectrometry
with a detection limit (LOD) of 5.2 x 10° particles/uL. As
previously discussed, ZnO-chip was designed to effec-
tively isolate exosomes. After incubation with primary
antibody mixture (anti-CD9/CD63 antibody), exosomes
were recognized by HRP (horseradish peroxidase)-
labeled secondary antibody (Fig. 5A,). Finally, a minimal
detectable concentration of 2.2 x 10* particles/uL was
obtained by UV-visible spectrometry or microplate ana-
lyzer [110]. Liang et al. designed a microfluidic system
integrated with double membrane filter and ELISA to
detect the content of exosomes in urine samples of blad-
der cancer patients [111]. In addition to common exo-
somal proteins, colorimetry could be applied to detect
cancer-specific proteins as well. For instance, a PSA
(prostate-specific antigen) aptamer-based sensor was
used for the visual detection of prostate cancer-specific
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exosomes in 500puL human plasma [72]. Moreover, Di
et al. reported a nanozyme-assisted immunosorbent
assay (NAISA), which enabled sensitive and rapid mul-
tiplex profiling of exosomal proteins [112] (Fig. 5A).
The surface proteins of exosomes could be specifically
captured by antibodies immobilized on the surface of a
microplate and catalyzed a colorimetric reaction. Signal
intensity obtained from microplate reader is proportional
to the number of target proteins. As a result, NAISA
allowed the rapid profiling of multiple exosomal proteins
such as CD63, CEA (carcinoembryonic antigen), GPC-3
(Glypican-3), PD-L1 (programmed death-ligand 1), and
HER2 (human epidermal growth factor receptor 2) from
clinical samples.

Fluorescence detection
Fluorescence spectrophotometry is a method for sub-
stance identification and content determination accord-
ing to the positivity and intensity of fluorescence spectral
line (Fig. 5B). He et al. conducted a microfluidic chip to
detect surface and intravesicular biomarkers from 30 pL
plasma samples. This chip obtained a markedly improved
detection sensitivity of IGF-1R (type 1 insulin growth
factor receptor), 0.281pg/mL of IGF-1R and 0.383pg/
mL of p-IGF-1R, which was 100-fold higher than that
achieved by ELISA [36] (Fig. 5B,). Liu et al. developed an
immunosorbent assay, in which immunomagnetic beads
were utilized to capture exosomes, followed by the con-
jugation of an enzymatic reporter, which could produce
a fluorescent signal for quantitation of GPC-1* exosomes
in the droplet microfluidic system [124]. Wei et al. pro-
posed similar single molecule array (SiMoa) platform, by
which universal exosomes and tumor-derived exosomes
could be ultrasensitively detected with an LOD of 34 par-
ticles/uL and 25 particles/pL, respectively [125]. Yu et al.
conducted a CD63 aptamer-based detection method.
CD63 on exosomes could bind to aptamers modified on
the surface of magnetic beads, resulting in the shedding
of a Cy3-labeled short sequence into the supernatant.
The fluorescence intensity in the supernatant was used to
quantify exosomes in complex clinical samples [126].
Graphene oxide has the ability of quenching fluores-
cence via fluorescence resonance energy transfer (FRET)
when conjugated with fluorescent dyes. For instance, the
fluorescence of FAM-labeled aptamers was quenched
when absorbed onto graphene oxide membranes, while
target exosomes competitively bound to aptamers and
re-exhibited fluorescent signals with an LOD of 1.6 x 10°
particles/mL [113] (Fig. 5By). Li et al. developed a facile
fluorescent aptasensor based on aggregation-induced
emission luminogens (AlEgens). Graphene oxide
absorbed (tetrafrylene-containing tertiary amine) TPE-
TAS/aptamer complex allowed fluorescence quenching
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in the absence of exosomes. When target exosomes were
introduced, the aptamer preferentially bound to its tar-
get, resulting in the separation of the TPE-TAS/aptamer
complex from the graphene oxide surface, followed by a
“turn-on” fluorescence signal. The linear range of tumor-
derived exosomes was around 4.0 x 10°-1.8 x 107 parti-
cles/pL under optimized conditions [99].

Electrochemical detection
Electrochemical detection is used to detect the analytes
by measuring the electrochemical potential or current

of the sample, which has the advantages of high sensi-
tivity and wide measurement range (Fig. 5C). In recent
years, electrochemical biosensors have been developed
by researchers since the altered electrochemical sig-
nals could quantify exosomes when recognition ele-
ments such as antibody and aptamer specifically bind to
exosomes [127, 128]. Cao et al. proposed an electrochem-
ical biosensor to accurately detect PD-L1" exosomes
[114] (Fig. 5C,). Exosomes were firstly captured by anti-
CD63 functionalized magnetic beads and then bound
with anti-PD-L1-linked DNA strand, introducing a
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hyperbranched rolling circle amplification (HRCA). The
HRCA could decrease the environmental pH, leading
to the decomposition of PVP@HRP@ZIF-8 and release
of HRP, which resulted in amplified electrochemical
responses and thus achieved the identification and detec-
tion of cancer-derived PD-L1" exosomes. This biosensor
displayed a wide dynamic range for PD-L1" exosomes
(1 x10% to 1 x 10'° particles/mL) and the detection limit
was 334 particles/mL. Jeongmin et al. reported a HIMEX
approach which integrated magnetic exosome separa-
tion and electrochemical detection of exosome-bound
proteins after enzymatic amplification. The combined
detection of tumor biomarkers (EGFR, EpCAM, CD24
and GPA33) in exosomes from 20pL plasma samples
were helpful for the diagnosis and monitoring of colo-
rectal cancer [129]. Electrochemical methods, especially
aptamer-based biosensors have shown great poten-
tial in the detection and profiling of exosomal proteins
[65]. Kashefi-Kheyrabadi et al. introduced a detachable
microfluidic device implemented with an aptamer-based
electrochemical biosensing method (DeMEA). In this
system, aptamer targeting EpCAM was immobilized on
the electrode surface that was pre-electroplated with gold
nanostructures and microfluidic vortexes could increase
the collision between exosomes and sensing surface
(Fig. 5C;). Consequently, DeMEA was able to quantify
exosomes from plasma samples of breast cancer patients
at different stages, which provides a highly sensitive and
early detection of cancer-specific exosomes [115].

Surface plasmon resonance detection

Surface plasmon resonance (SPR) is a physically opti-
cal phenomenon caused by total reflection of light at
the metal film/liquid level interface to analyze molecu-
lar interactions (Fig. 5D) [130, 131]. Im et al. developed
a nano-plasmonic exosome (nPLEX) assay based on
transmission SPR through periodic nanohole arrays
(Fig. 5D,). With functionalized antibodies in each array,
the nPLEX sensor displayed spectral shifts or intensity
changes that were proportional to the levels of target
exosomal proteins [116]. In another study, the mark-
edly improved scattering wavelength shift and scattering
intensity were observed on AuNC-Exosome-AuR due
to the plasmon effect [58]. The differential expression of
LRG1 (leucine rich alpha-2-glycoprotein 1) in urinary
exosomes between lung cancer patients and healthy indi-
viduals was evaluated by anti-LRG1 antibody-conjugated
AuR probes. Another surface plasmon resonance imag-
ing (SPRi)-based biosensing assay was developed by
Fan et al. The bioaffinity interactions between antibod-
ies (anti-CD63/anti-EGFR/anti-EpCAM) modified-gold
chip and different recognition sites permitted the multi-
plex characterization of NSCLC-derived exosomes. The
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LOD of this biosensor was estimated to be 10* particles/
pL. Despite multiple merits, the broad applications of
nanoplasmonic biosensors are restrained by the difficult
fabrication of nanostructures. To address this challenge,
Liu et al. developed an intensity-modulated SPR biosen-
sor free from nanostructure. In this sensor, the reflection
intensity and reference intensity of lasers were recorded
by two photodetectors and were used to quantify the
expression levels of exosomal proteins, which exhibited a
higher detection sensitivity than ELISA [132].

Surface enhanced Raman scattering

Surface enhanced Raman scattering (SERS) is capable of
enhancing the Raman signal of small molecules attached
to the rough metal surface through electromagnetic and
chemical mechanisms [133] (Fig. 5D). A new assay was
reported for the real-time detection and protein pro-
filing of exosomes. Generally, gold-plated slides com-
bined with 3D-printed antibody arrays were fabricated
to capture exosomes, and QSY21-coated gold nanorods
were used as the label agent to quantitatively detect tar-
get proteins. The levels of plasma-derived exosomes of
breast cancer patients were quantitatively determined
by using this assay targeting HER2 and EpCAM. The
proposed 3D-printed array template enabled cheap,
portable, and easily available establishment of detection
platform, providing a new strategy for the development
of novel cancer liquid biopsy [134]. Dong et al. showed
that the analysis of protein phosphorylation status may
provide new possibilities for cancer diagnostics [117]
(Fig. 5D;). A beehives-like Au-coated TiO, macropo-
rous inverse opal structure was developed to capture
and analyze exosomes without any labeling process. The
intensity of 1087cm~' SERS peak referred to the P-O
bond within the phosphoproteins of exosomes and the
intensity of peak was at least two times from plasma of
cancer patients than that from healthy donors. However,
the above-mentioned two assays both require the pre-
separation of exosomes, which greatly hinders the rapid
analysis. Pang et al. presented a simple immunoassay to
capture and analyze exosomal PD-L1 directly from serum
samples [90]. Fe;0,@TiO, nanoparticles were designed
to isolate exosomes and anti-PD-L1 antibody modified
Au@Ag@MBA SERS tags were applied for exosomal
PD-L1 labeling and SERS detection. This assay was con-
firmed to quantify exosomal PD-L1 in 4 uL serum sample
within 40 min.

CRISPR/Cas system-assisted detection

In CRISPR/Cas9 system, the Cas9 nuclease could effi-
ciently shear the double-stranded DNA (dsDNA)
sequence by recognizing specific complementary dsDNA
containing protospacer adjacent motif (PAM) sequences
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with the help of guide RNA (gRNA) [135]. Through
aptamers that specifically target exosomal proteins, the
detection of proteins could be transformed into the quan-
tification of nucleic acids. Recently, Zhao et al. reported
a detection method which combined aptamer-based
exosomal membrane protein recognition with CRISPR/
Casl2-assisted fluorescence signal amplification [136].
In this system, CD63 aptamer specifically targeted exo-
some membrane proteins, triggering the conformational
change of aptamer and release of blocker strands (with
complementary sequences to aptamer). The released
blocker was then recognized by CRISPR/Cas12a, result-
ing in the trans-cleavage toward TagMan probe and the
separation of fluorescence reporter group and quenching
group, finally leading to the generation of amplified fluo-
rescence signal. As a result, this method achieved a linear
detection range of 10°-10 particles/pL and was success-
fully applied in the direct detection of plasma exosomes
without ultracentrifugation. Xing et al. developed an
apta-HCR-CRISPR assay to detect circulating nucleolin™
or PD-L1" exosomes from 50 uL serum of nasopharyn-
geal carcinoma cancer (NPC) patients [137]. Nucleolin
or PD-L1-targeted aptamer was first amplified by HCR
(hybridization chain reaction) to produce a long-repeated
CRISPR-targetable DNA unit. Through collecting the
fluorescence signal induced by collateral cleavage activi-
ties of CRISPR-Casl2a, the assay enabled a detection
limit of 107 particles/uL. A similar assay was conducted
by Li et al. for the ultrasensitive detection of CD109" and
EGFR* exosomes [138]. CRISPR/Cas system is expected
to be a sensitive tool for the identification and quantifica-
tion of exosomal proteins and may contribute to the diag-
nosis and therapeutic monitoring of cancer.

Single exosome detection

Intrinsic heterogeneity is one of the main factors hin-
dering exosome analysis in body fluids. Single exosome
detection may provide more accurate information of
tumor progression (Fig. 5E). Guo et al. presented an
ssDNA-assisted single exosome detection platform. Roll-
ing circle amplification (RCA) contributed to an ampli-
fied fluorescence signal from the surface protein, enabling
easy visualization of individual exosomes with an LOD
of 82 vesicles/pL [139]. In addition, Liu et al. developed
a A-DNA and aptamer-mediated approach, allowing for
two-dimensional analysis of single exosome by size and
tumor-associated marker expression [140].

Since nanosized exosomes cannot be sensitively iden-
tified by conventional flow cytometry, aldehyde/sulfate
latex beads have been used to bind to vesicles, which are
then stained with fluorescent antibodies and character-
ized for their protein markers. For example, anti-GPC-1
antibody and Alexa-488-tagged secondary antibody
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were introduced to the exosome-attached beads and the
percentage of positive beads was therein referred as the
percent of GPC-1" exosomes [38]. In addition, the detec-
tion of expressed EpCAM, HER2 and EGFR in exosomes
indicated their potential role in cancer diagnostics [118,
141] (Fig. 5E,). Moreover, the development of nano-flow
cytometry has provided a new option for multi-param-
eter analysis of single particle. The expression of CD9,
CD63, CD81, CD235a, CD45, CD41a and CD144 of sin-
gle exosome was measured via immunofluorescent label-
ling using nano-flow cytometry to evaluate the quality
of exosome preparations isolated by six different meth-
ods. Liu et al. used nano-flow cytometry to analyze the
expression of CD9, CD63, CD81, CD47, CD45, CD24,
and EpCAM in tear-derived exosomes and found that the
exosome concentration in tear fluid was approximately
100-fold higher than that of plasma exosomes [142].

Conventional nucleic acids analysis

In addition to protein cargoes, nucleic acids are encap-
sulated in exosomes as well. RNAs represent the major
nucleic acid cargo of exosomes, which have shown the
potential to be specific biomarkers for cancer diagnosis
and prognosis prediction [2, 143, 144]. Nevertheless, the
accuracy and feasibility of detecting exosomal nucleic
acids are often hampered by their low abundance. To
quantify the expression levels of exosomal nucleic acids,
techniques such as qRT-PCR (real-time quantitative
reverse transcription PCR), microarray, and next-gen-
eration sequencing (NGS) have been used. Despite high
sensitivity, qRT-PCR can only be used to detect nucleic
acids with known sequences [145]. NGS is beneficial for
high-throughput discovery and quantitation of unknown
exosomal RNA transcripts. However, shortcomings such
as high cost, huge amount of data and complexity of
building libraries need to be addressed [146]. Through
the complementary combination of hybridized probes
and target genes, microarrays can analyze thousands of
nucleic acids in exosomes at one time but have the dis-
advantages of low sensitivity [147]. To overcome these
limitations, more efforts are being devoted to developing
highly sensitive and convenient methods for exosomal
nucleic acid detection (Table 3).

New nucleic acids detection technologies

ddPCR

Droplet digital PCR (ddPCR) is a technique in which
the PCR reaction mixture is divided into tens of thou-
sands of aqueous droplets in an oil emulsion (Fig. 5F).
Each single droplet contains no more than one copy of
target gene and is labeled as positive or negative accord-
ing to the fluorescence amplitude. The concentration
of target nucleic acids is then estimated by the Poisson
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distribution and ratio of the positive droplets [177]. The
comparison between ddPCR and qPCR showed that
ddPCR had higher accuracy and sensitivity in analyzing
urinary exosomal miRNAs [163]. Chen et al. used ddPCR
to identify IDHI1 (isocitrate dehydrogenase 1) tran-
scripts in exosomes derived from serum or cerebrospi-
nal fluid (CSF) of glioblastoma (GBM) patients. Mutant
IDHI1 mRNA was identified in CSF-derived exosomes of
patients bearing mutant /DHI glioblastoma and higher
level of IDHI mRNA was found in exosomes from
patients with tumors than healthy controls [164]. Sun
et al. recently used ddPCR to quantify 10 HCC-specific
mRNA from plasma samples of HCC patients (Fig. 5F,).
The diagnostic value of HCC exosome-derived mRNA
signatures was evaluated by computing the digital scoring
[61]. Moreover, exosomal miR-15a-5p was detected by
ddPCR to distinguish endometrial cancer (EC) patients
from healthy subjects [40]. Shen et al. reported that more
copy numbers of IncRNAs RP11-77G23.5 and PHEX-AS1
were quantified by ddPCR in EpCAM-specific exosomes
from malignant lung cancer patients compared to benign
lung tumors [178].

Molecular beacons

Molecular beacon (MB) is a hairpin-like oligonucleo-
tide labeled with fluorescent dye and quencher at two
ends of the probe (Fig. 5G). MB is designed to sponta-
neously hybridize with the targeted sequence, thereby
destroying the hairpin ring structure and inducing the
appearance of fluorescence [179]. Lee et al. observed
that high fluorescent signals were obtained by the
hybridization of molecular beacons and miRNA-21
in exosomes of cancer cells and human serum [122]
(Fig. 5G;). Moreover, miR-375 and miR-574-3p were
detected from exosomes of human urine by MB-based
biosensors [168]. The expression levels of miR-21, miR-
375, and miR-27a were detected in exosomes of human
serum [121] (Fig. 5G,). Oliveira et al. utilized CPP (cell-
penetrating peptides) to deliver MB across the plasma
membrane and then to detect miRNA-45la in red
blood cell (RBC)-derived exosomes [170]. Chen et al.
designed a 2’-O-methyl and phosphorothioate modi-
fied molecular beacon to quantitatively analyze exoso-
mal miRNA-1246 from human plasma. After rupturing
the exosome membrane with Triton X-100, the probe
could specifically target miRNA-1246 inside and dis-
play quantitative fluorescence signals [169]. Zhang et al.
developed an integrated exosome isolation and detec-
tion system, in which exosomes could be separated
by microfluidic technology via using a little volume of
samples. Meanwhile, nanopore detection technology
effectively improved the detection efficiency of tumor-
related miRNA without the need for amplification and
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fluorescence labeling of detected objects [180]. The
molecular beacon-based biosensor has the priority of
simple procedure, free from exosome pre-isolation and
nucleic acid extraction, indicating their great potential
in liquid biopsy for cancer diagnosis and prognosis.

DNA tetrahedron probe

DNA tetrahedron, a DNA nanoarchitecture with high
controllability, can provide diverse amplified signal tags
through chemical modification and DNA self-assembly
[181]. Gao et al. conducted a DNA tetrahedron nano-
probe-based FRET sensing platform to sensitively detect
miR-146b-5p in different cell lines [182]. Chen et al.
reported a hairpin-tetrahedron nanoprobe for quantita-
tive measurement of exosomal miR-21 in human serum
[171]. In the absence of miR-21, the construction of fluo-
rophore donor-quencher pairs resulted in a low FRET
effect, while the presence of target miRNA induced the
damage of stem-loop structure and occurrence of strong
FRET. Consequently, the assay obtained a good linearity
in the range from 1 x 1072 to 10 x 10"°M (mol/L) and
a detection limit of 45.4 x 10~ ' M. Zhang et al. proposed
a similarly electrochemical biosensor based on two mul-
tifunctional DNA tetrahedrons assisted catalytic hairpin
assembly. By leverage localized reaction and cascade
amplification, the sensor enabled sensitive detection of
tumor-associated exo-miRNAs down to 7.2 aM in 30 min
[172].

Localized surface plasmon resonance

Localized surface plasmon resonance (LSPR) occurs
when the incident photon frequency matches the overall
vibration frequency of precious metal nanoparticles or
metal conducting electrons (Fig. 5H). Joshi et al. devel-
oped a biosensor based on LSPR for the label-free and
nondestructive measurement of exosomal miR-10b [173].
Gold nanoprisms were chemically synthesized onto a
silanized glass substrate and then functionalized with
HS-C6-ssDNA and PEG6-SH. The direct hybridization
of target miR-10b and HS-C6-ssDNA induced the for-
mation of double-strand DNA which could increase the
index of refraction of nanoprisms and change the wave-
length of LSPR dipole peak (ALSPR). The concentration
of miR-10b could be evaluated by AALSPR. This platform
was sensitive enough to distinguish between miR-10b
and miR-10a (only one nucleotide difference) even in the
subattomolar concentration range. Wu et al. developed
an SPRi-based biosensor to detect multiple exosomal
miRNAs for accurate diagnosis of NSCLC, in which Au-
on-Ag heterostructure and DNA tetrahedral framework
were utilized to enhance SPR signal and each exosomal
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miRNA could be ultrasensitively identified with different
SPR signals [123] (Fig. 5H,).

TIRF-based single-vesicle imaging

As a single-exosome analytic method, total internal
reflection fluorescence (TIRF) has emerged for provid-
ing additional information about the heterogeneity of
exosomes (Fig. 5E). He et al. proposed a TIRF-based sin-
gle-vesicle imaging assay which delivered molecular bea-
con probes into exosomes and thus induced an amplified
fluorescence of target miRNA (Fig. 5E;). They performed
a direct visualization of single vesicles and in-situ quan-
titative analysis of miR-21 in human serum samples and
found that this assay showed better performance than
conventional PCR assay in distinguishing cancer patients
from healthy subjects [119].

Thermophoresis-assisted detection

Zhao et al. developed a thermophoretic sensor for in situ
detection of exosomal miRNAs without the need of RNA
extraction or target amplification (Fig. 5F). Aptamer
modified in nanoflares could bind to target exosomal
miRNA, inducing the appearance of fluorescence. The
fluorescent signal became amplified after thermal elec-
trophoretic accumulation, allowing the sensitive detec-
tion of 0.36 fM exosomal miRNA in a small volume of
serum sample [175]. In addition, Han et al. proposed a
DNA tetrahedron-based thermophoretic assay (DTTA)
which achieved a detection limit of 14 aM mRNA in
serum exosomes. After internalized by exosomes, the
two fluorophore-labeled recognition sequences of
DNA tetrahedron could bind to target mRNA, leading
to an increase in FRET signal. Thermophoretic effect
was applied to further amplify the FRET signal, which
achieved a highly sensitive detection of PSA mRNA in
exosomes. The DTTA assay showed that exosomal PSA
mRNA performed better than serum PSA protein in dis-
criminating prostate cancer from benign prostatic hyper-
plasia (AUC: 0.93 versus 0.74), providing a new approach
for precise detection of prostate cancer [183].

CRISPR/Cas system-assisted detection

Recently, CRISPR/Cas system has offered new opportu-
nities to develop analytical methods for the detection and
quantification of nucleic acids in exosomes. The strategy
of integrating nucleic acid amplification with CRISPR/
Cas has been proposed to improve analytical specificity
and sensitivity [184]. For instance, the platform of roll-
ing circular amplification-assisted CRISPR/Cas9 cleavage
(RACE) was conducted by Wang et al. to detect multiple
exosomal miRNAs [176]. During RCA process, padlock
probe recognized single base differences in the pres-
ence of HiFi Taq DNA ligase. The amplification product
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of long ssDNA, which consisted of a large number of
repeated target sequences and PAM structures, was spe-
cifically recognized by Cas9 nuclease. Consequently, the
TagMan probe hybridized with ssDNA was completely
cleaved by Cas9 protein, allowing “turn on” fluorescence
change that could be conveniently measured by a spec-
troscopy. As a result, this RACE platform could be used
for highly specific detection of single or multiple exoso-
mal miRNAs from human plasma. However, the large
number of naturally PAM structures in the genome may
increase the risk of off-target effects, greatly impairing
the specificity of analysis [185].

Machine learning

Machine learning refers to a technology that predicts
and analyzes unknown data by building models of
known data. As a crucial branch of artificial intelligence,
machine learning has been widely used for the multi-
plex profiling of exosomal biomarkers. Algorithms such
as linear discriminant analysis (LDA), principal compo-
nent analysis (PCA), neural network (NN), support vec-
tor machine (SVM), and random forests (RF) have been
developed to classify multivariable data into a typical
classification model, which are then applied for the pre-
diction and grouping of unknown biological data [186].
Kawakami et al. demonstrated that machine learning
algorithms performed better than traditional logistic
regression analysis to predict and diagnose epithelial
ovarian cancer [187]. Wu et al. used the fluorescent sig-
nal of urine-derived exosomes as input data, and KNN
(K-Nearest Neightbors) and SVM serving as machine
learning models, were applied for exosomal biomarker
analysis. By introducing machine learning algorithm, the
diagnostic model could make an accurate diagnosis and
classification of multiple diseases [188]. Liu et al. used
LDA to determine a sum signature of seven exosomal
biomarkers, which achieved a high accuracy in discrimi-
nating prostate cancer from benign disease [68]. Tian
et al. analyzed a weighted sum of eight cancer-associated
proteins of exosomes from 1pL plasma via LDA [69].
PCA is an algorithm that transforms a group of proba-
bly-related variables into a series of linearly-unrelated
variables through orthogonal transformation. Shin et al.
used PCA to explore the features of cell exosomes and
human plasma exosomes. As a result, the machine learn-
ing model could classify normal and lung cancer cell
lines-derived exosomes with an accuracy of 95% and
obtain an AUC of 0.912 in predicting lung cancer for the
whole cohort [162]. Liu et al. employed RF, NN, and SVM
to analyze multiple exosome-derived mRNAs of breast
cancer patients, which exhibited improved diagnostic
performance compared to a single marker [120]. These
studies suggest the great potential of combining exosome
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Fig. 6 The application of exosomes in cancer liquid biopsy. Cancer-derived exosomes are enriched in differentially expressed proteins and
nucleic acids, and have been tested as new biomarkers for the early diagnosis, stage classification, and prognosis prediction of different cancers,
highlighting their important value in cancer liquid biopsy and precision medicine

analysis and machine learning in cancer liquid biopsy.
Notably, large data sets are required for typical machine
learning approaches, while a limited number of clinical
samples and insufficient data may lead to poor accuracy
and reliability. The emergence of more powerful machine
learning algorithms will favor the analysis of exosomes
for liquid biopsy.

The implication of exosomes in cancer liquid
biopsy

Recent studies have shown that exosomes are superior to
CTCs and ctDNA in liquid biopsy for early diagnosis, dis-
ease monitoring, and prognosis prediction [34, 189, 190].
Herein, we summarized the application of exosomes in
liquid biopsy for various cancers (Fig. 6, Table 4).

HCC

Hepatocellular cancer is the fourth cause of cancer-related
death. Molecular signatures loaded into HCC-derived
exosomes may be used to for diagnosis. Exosomal miR-21

was found to suppress the apoptosis of HCC cells and be
upregulated in HCC patients [112]. Exosomal proteins
such as CEA and GPC-3, were able to distinguish HCC
patients from healthy subjects [193], which may serve as
promising biomarkers for noninvasive cancer diagnosis. In
a study containing 158 samples, plasma was collected for
the detection of 10 HCC-specific genes, including alpha-
fetoprotein (AFP), GPC3, albumin, apolipoprotein H, etc.
[61]. It was observed that higher fluorescent signals were
obtained in HCC cohort via ddPCR in comparison with
noncancer cohorts. The 10 gene signatures were fur-
ther computed by machine learning, which showed great
potential to distinguish early-stage HCC from at-risk liver
cirrhosis with an AUC of 0.93. Nakano et al. compared the
expression levels of exosomal miR-92b and circulating AFP
among HCC patients who received liver transplantation
[194]. It was revealed that exosomal miR-92b could pre-
dict early recurrence of HCC with an AUC of 0.925, while
the AUC of AFP was 0.651. Zhu et al. integrated plasma
exosomal RNA-sequence, cell-free RNA-sequence and
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TCGA tissue RNA-sequence datasets to identify 5 non-
coding RNAs (circ-0073052, circ-0080695, SNORD3B-1,
LINCO01226 and HULC) as potential biomarkers of liver
cancer. In addition, a panel of SNORD3B-1, circ-0080695
and miR-122 showed the highest AUC (89.4%) to classify
liver cancer patients from healthy donors in comparison
with other marker panels. By the selected panel, 79.2%
AFP-negative samples and 77.1% early-stage liver cancer
samples were successfully detected in the testing and vali-
dation sets, which indicated the potential of exRNAs panel
in the early diagnosis of liver cancer [210].

PDAC

As one of the most recognized indicators associated with
pancreatic cancer progression, miRNA-10b is now being
widely studied for the early diagnosis of pancreatic ductal
adenocarcinoma (PDAC) [211]. Joshi et al. indicated that
the levels of exosomal miR-10b were remarkably different
among pancreatic cancer patients, at-risk patients with
chronic pancreatitis (CP) and healthy individuals, which
suggested the potential of miR-10b in diagnosing pancre-
atic cancer and predicting CP patients who may develop
to PDAC [173]. The same conclusion was obtained by
Pang’s group by using a dual-SERS biosensor for one-
step detection of mRNAs in exosomes [195]. Melo et al.
found that GPC-17 circulating exosomes (GPC-1"
crExos) exhibited high specificity and sensitivity to iden-
tify PDAC patients from healthy individuals and chronic
pancreatitis (AUC=1.0), which was superior to CA199
(AUC=0.739). Moreover, the levels of GPC-1" crExos
were correlated with tumor burden and survival in
patients before and after surgery, suggesting the potential
of GPC-1 serving as a reliable biomarker for treatment
effect and prognostic monitoring [38]. In addition, the
combination of GPC-1 and CD63 was demonstrated to
show 99% sensitivity and 82% specificity in distinguishing
PDAC patients from healthy subjects [197]. Furthermore,
migration inhibitory factor (MIF) was reported to have
better performance than GPC-1 and EGFR in the dis-
crimination of different stages of pancreatic cancer [199].

CRC

Colorectal cancer (CRC) is one of the most common
malignancies with high morbidity and mortality [1].
CircRNA in exosomes is related to the occurrence and
development of cancer. Due to the circular structure, it
provides a stable biomarker for cancer diagnosis. Cir-
cRNA-0004771 was found to be upregulated in serum
exosomes of CRC patients [200]. The AUC of exoso-
mal circ-0004771 to identify CRC from healthy controls
was 0.88, and that to distinguish patients with stage I
and II from other benign intestinal diseases was 0.816,
which indicated that circ0004771 could be used as a
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potential diagnostic marker for colorectal cancer. Wei
et al. explored novel exosome biomarkers for the early
diagnosis and prognosis of colorectal cancer [125]. The
detection of plasma samples revealed that the expression
of CD9, CD63 and EpCAM were significantly higher in
CRC patients compared with healthy and benign controls
(with an AUC of 0.90 and 0.96, respectively). In addition,
miR-15b, miR-21, and miR-31 were reported to be highly
expressed in serum exosomes of CRC patients. ROC
curves showed that AUC of miR-15b was 0.86 and the
combined miR-15b, miR-21, and miR-31 panel exhibited
81.21% sensitivity and 81.03% specificity [212].

NSCLC

Non-small cell lung cancer accounts for over 80% of
lung cancer-induced deaths [1]. High level of PD-L1 was
detected in serum exosomes of NSCLC patients com-
pared to normal individuals [132]. The diagnostic value
of exosomal PD-L1 was further confirmed by Pang et al.
in a larger cohort of patients with an AUC of 0.97 [90].
Ma et al. found that the expression of exosomal miR-21
was higher in patients with recurrent NSCLC compared
with healthy individuals [201]. However, high levels of
exosomal miR-21 were also identified in other cancers
such as colorectal cancer, breast cancer, and liver cancer
[123, 189, 204]. Therefore, the detection of multiple miR-
NAs may be more valuable for NSCLC diagnosis. Wu
et al. demonstrated that miR-21, miR-378, miR-139, and
miR-200 were differentially expressed between NSCLC
patients and healthy donors, providing more optional
biomarkers for the early diagnosis of NSCLC [123]. Nota-
bly, the experimental results showed that more amounts
of exosomal RNAs were obtained in urine-derived
exosomes of NSCLC patients than that from plasma and
bronchoalveolar lavage fluid, which may provide a new
direction of sample selection to analyze exosomes [62].

Breast cancer

Breast cancer (BC) is the most common cause of cancer-
related death among females. Early diagnosis can effec-
tively suppress the mortality and achieve better treatment
outcomes. Despite as a widely used biomarker, CA15-3
(carbohydrate antigen 15-3) is not sensitive enough to
diagnose primary and metastatic breast cancer (MBC)
[203]. Lee et al. demonstrated that cancer cell-derived
exosomal miR-21, miR-222, and miR-200c could be quan-
tified in body fluids and used for breast cancer diagnosis
[204]. Lu et al. reported that the combination of RDW
(red blood cell distribution width), MPV (mean platelet
volume), and CA15-3 showed better specificity and sen-
sitivity to identify breast cancer than single biomarker
[203]. In addition, an exosome signature was identified by
computing weighted sum of eight biomarkers (CA15-3,
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CA125, CEA, HER2, EGFR, PSMA, EpCAM, and VEGF)
through machine learning. Consequently, the signature
showed a high discriminative accuracy to differenti-
ate MBC from non-metastatic ones and age-matched
healthy donors (91.1%). Moreover, the exosome signa-
ture was reported to accurately monitor MBC treatment
response and serve as an independent prognostic factor
for progression-free survival in MBC patients.

Prostate cancer

PSA is a widely used biomarker for the detection of
prostate cancer. However, increased PSA was also iden-
tified in inflammatory diseases such as benign prostatic
hyperplasia (BPH) [213]. Therefore, the development of
sensitive and specific biomarker is urgently needed to
diagnose patients at early stage and monitor the progres-
sion of cancer. Li et al. reported that exosomal ephrinA2
had superior capability to blood circulating PSA to differ-
entiate prostate cancer patients from BPH patients with
an AUC of 0.906 [207]. Moreover, increased EpCAM
and PSMA were found in the serum exosomes of pros-
tate cancer [127]. In addition, the expression of exosomal
TUBB3 mRNA was reported to be associated with poor
progression-free survival of abiraterone in metastatic
castration-resistant prostate cancer patients [208].

Exosomes in clinical trial and use for cancer liquid biopsy

Due to the priority of living-cell secretion, large amounts
and stable circulation compared to CTC and ctDNA,
exosome-based liquid biopsy has been tested in clini-
cal trials and several of them have been approved and
reached the market. In 2016, Exosome Diagnostics pro-
posed the first exosome-based liquid biopsy in the world,
ExoDx"" Lung (ALK), for the isolation and analysis of
exosomal RNA from blood samples. At CLIA-certified
laboratory, ExoDx" Lung (ALK) was proved to be an
accurate, real-time tool to detect EML4-ALK mutations
in NSCLC patients with 88% sensitivity and 100% speci-
ficity, which provides a more direct and sensitive method
to detect gene fusions than cfDNA. In addition, the
ExoDx Prostate IntelliScore (EPI) has been certified by
FDA. Based on the detection of ERG, PCA3, and SPDEF
RNA in exosomes, EPI provides a risk score to predict
whether a patient with PSA from 2 to 10ng/mL is likely
to develop higher-grade prostate cancer [214]. Accord-
ing to ExoDx, 93% of sensitivity was achieved in prospec-
tive studies, and 26% of unnecessary needle biopsies were
avoided when the EPI threshold was set at 15.6 [215].
Three independent, prospective, and multicenter clini-
cal trials declared that EPI outperformed standard of care
and could be used to assist in the early diagnosis of pros-
tate cancer and eliminate unnecessary prostate biopsy
[64]. Moreover, MedOncAlyzer 170 is a newly developed
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liquid biopsy system capable of detecting both exosomal
RNA and ctDNA in a single trial. It can identify signifi-
cant and functional mutations in multiple cancer types
from small volumes (0.5ml) of patient blood or plasma.
Due to the unique formation manner of exosome and
ctDNA, MedOncAlyzer 170 is accurate and highly sensi-
tive to detect mutation at all stages of cancer progression
and treatment. Although the clinical application value
has been verified, larger clinical samples, populations
and trials are still needed to confirm the role of exosome-
based liquid biopsy in cancer diagnosis and treatment.

Conclusions and perspectives

At present, the limitation of tissue biopsy has been gradu-
ally recognized in the field of precision medicine. On the
contrary, liquid biopsy has the advantages of minimal
invasiveness, easy sample acquisition, and dynamic analy-
sis. Exosomes have been confirmed to stably circulate in
body fluids and contain diverse information that reflects
the status of tumor progression [28, 33]. The potential of
exosome serving as diagnostic and prognostic biomark-
ers has been investigated in a variety of cancers. However,
the high heterogeneity and nano-size of exosomes have
posed great technical challenges to the acquisition of their
molecular information and interactions. In this review,
we have summarized the advantages and drawbacks of
conventional and novel techniques to isolate, character-
ize and detect exosomes. Techniques based on physical or
biological characteristics are being widely developed for
exosome separation, and the application of microfluidic
devices holds great potential for the ultrafast separation
of pure exosomes with high yields. Although revolution-
ary progress has been achieved, there is no standardized
method for the high-throughput, high-purity, and mini-
mal damage separation of exosomes from both cell culture
medium and human body fluids. Diverse molecules con-
tained in the circulating exosomes have highlighted the
potential of exosomes in liquid biopsy. Faster and more
convenient methods are required to validate the exosomal
cargoes as biomarkers in the diagnosis of cancer. Most
new detection platforms, although superior to conven-
tional methods, still face the challenge of low sensitivity
and high heterogeneity of different exosome subsets. The
technology of single exosome detection and analysis may
reveal the unique molecular profile of specific exosomes
and provide a plausible strategy to obtain accurate cancer-
related information. The further exploration in exosome
heterogeneity will address many of the challenges in cur-
rent exosome studies. Improvements in developing new
strategies to isolate exosomes from body fluids and profile
exosomal contents in a fast and sensitive way will facilitate
the practical application of exosome-based liquid biopsy
for cancer precision medicine.
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