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Abstract

Investigating the structure of the older adult brain at high spatial resolution is of high significance, 

and a dedicated older adult structural brain template with sub-millimeter resolution is currently 

lacking. Therefore, the purpose of this work was twofold: (A) to develop a 0.5mm isotropic 

resolution standardized T1-weighted template of the older adult brain by applying principles of 

super resolution to high quality MRI data from 222 older adults (65–95 years of age), and (B) 

to systematically compare the new template to other standardized and study-specific templates in 

terms of image quality and performance when used as a reference for alignment of older adult 

data. The new template exhibited higher spatial resolution and improved visualization of fine 

structural details of the older adult brain compared to a template constructed using a conventional 

template building approach and the same data. In addition, the new template exhibited higher 

image sharpness and did not contain image artifacts observed in some of the other templates 

considered in this work. Due to the above enhancements, the new template provided higher 

1A portion of the data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
*Corresponding author at: Department of Biomedical Engineering, Illinois Institute of Technology, 3440 S Dearborn St, M-100, 
Chicago, IL 60616, United States. arfanakis@iit.edu (K. Arfanakis). 

Data and template availability statement
The data used in this work can be assessed by submitting a request to www.radc.rush.edu. MIITRA_0.5mm is available for download 
at www.nitrc.org/projects/miitra.

Declaration of Competing Interest
The authors have no conflict of interest to report.

Credit authorship contribution statement
Mohammad Rakeen Niaz: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing – 
original draft, Writing – review & editing, Software. Abdur Raquib Ridwan: Methodology, Validation, Writing – review & editing, 
Software. Yingjuan Wu: Methodology, Validation, Software. David A. Bennett: Data curation, Funding acquisition, Resources. 
Konstantinos Arfanakis: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, 
Project administration, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing, Supervision.

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.neuroimage.2021.118869.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2022 March 01.

Published in final edited form as:
Neuroimage. 2022 March ; 248: 118869. doi:10.1016/j.neuroimage.2021.118869.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.radc.rush.edu
http://www.nitrc.org/projects/miitra
https://doi.org/10.1016/j.neuroimage.2021.118869


inter-subject spatial normalization precision for older adult data compared to the other templates, 

and consequently enabled detection of smaller inter-group morphometric differences in older adult 

data. Finally, the new template was among those that were most representative of older adult 

brain data. Overall, the new template constructed here is an important resource for studies of 

aging, and the findings of the present work have important implications in template selection for 

investigations on older adults.
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1. Introduction

Human brain T1-weighted (T1w) templates provide a standard reference for brain 

MRI investigations. Template-based studies in older adults require templates that are 

representative of the features of the aging brain (Dickie et al., 2016a, 2016b; Lemaître et al., 

2005; Matsumae et al., 1996; Sullivan et al., 1995; Ridwan et al., 2021) and use of templates 

constructed from younger or middle-aged adult data can negatively impact the accuracy 

of investigations in older adults (Ridwan et al., 2021; Van Hecke et al., 2011; Zhang and 

Arfanakis, 2018). To date, the publicly available library of standardized T1w brain templates 

includes only few that were constructed exclusively from older adult data, and several that 

combined data from young adults, middle-aged individuals and older adults (Ridwan et al., 

2021). The dedicated older adult templates as well as most other templates have a voxel 

size of 1×1×1mm3 or larger. The introduction of advanced image reconstruction techniques 

(Jia et al., 2016; Jafari-Khouzani, 2014; Manjón et al., 2010a, 2010b; Zhang et al., 2009), 

AI-based resolution enhancements (Chen et al., 2018; Pham et al., 2019; Sánchez and 

Vilaplana, 2018; Zeng et al., 2018), and advances in neuroimaging software (Manjón et 

al., 2020; Park et al., 2014; Sone et al., 2016) and MRI hardware have sparked an interest 

in studying the older adult brain at submillimeter resolution (Bookheimer et al., 2019; de 

Flores et al., 2015; Yushkevich et al., 2015; ADNI3 http://adni.loni.usc.edu). Use of the 

currently available lower resolution dedicated older adult T1w brain templates limits the 

accuracy of template-based processing steps (Zhao et al., 2016), reducing the sensitivity 

to small effects and losing important information in small structures. There is therefore a 

clear need for a high resolution T1w template of the older adult brain. However, collecting 

high resolution T1w data from a large number of older adults in order to construct such a 

template is still complicated due to long scan times, motion artifacts, and/or low signal to 

noise ratio.

Super resolution algorithms are a set of methods used to enhance the spatial resolution 

of an image, either from multiple low resolution images of the same object with slightly 

different perspectives (Farsiu et al., 2004; Kim et al., 2015; Yuan et al., 2010), or from 

a single low resolution image (Bevilacqua et al., 2012; Glasner et al., 2009; Ledig et 

al., 2016; Lim et al., 2017; Rueda et al., 2013). In neuroimaging, multiple image super 

resolution overcomes some of the aforementioned limitations associated with acquiring MRI 

data in older adults at high spatial resolution (Plenge et al., 2012; Scherrer et al.,2012; 
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Gholipour et al., 2010; Greenspan et al., 2002; He et al., 2007; Li et al., 2019; Rousseau 

et al., 2006; Shilling et al., 2009; Sui et al., 2019). The concept of multiple image super 

resolution can also be adapted for the construction of a high resolution population-based 

brain MRI template from low resolution images on individual subjects, assuming careful 

alignment of individuals to a common space and considering every co-registered image 

as a different realization of the template brain. A similar approach was successfully used 

in the development of a high angular (not spatial) resolution diffusion imaging (HARDI) 

brain template from low angular resolution diffusion data on individual subjects (i.e. super 

resolution in angular sampling) (Varentsova et al., 2014). This approach therefore holds 

promise for the development of a high spatial resolution T1w template of the older adult 

brain from lower spatial resolution data on individual subjects, and avoids the limitations 

associated with collecting high resolution data on a large number of older adults.

The purpose of this work was twofold: (A) to develop a high resolution standardized 

T1w template of the older adult brain using principles of super resolution as part of an 

ongoing project to develop a comprehensive older adult brain atlas named Multichannel 

Illinois Institute of Technology & Rush university Aging (MIITRA) atlas, and (B) to 

systematically compare the new template to other standardized and study-specific templates 

in terms of image quality and performance when used as a reference for alignment of 

older adult data. First, T1w data with isotropic 1mm voxels were collected on a large 

number of well-characterized non-demented older adults (65–95 years of age). Next, the 

0.5mm resolution MIITRA T1w template was generated by applying principles of super 

resolution to the available data. The image quality of the new template was compared to 

that of other standardized and study-specific templates in terms of the ability to resolve 

small brain structures, image sharpness, and presence of artifacts. The performance of the 

new template when used as a reference for alignment of older adult data was evaluated in 

terms of the inter-subject spatial normalization precision, ability to detect small inter-group 

morphometric differences, and representativeness of the older adult brain.

2. Materials and methods

2.1. Data

Two older adult brain MRI datasets were used in this work. Dataset 1 was used for 

constructing the new high resolution T1w template. Dataset 1 consisted of T1w brain MRI 

data collected on 222 community-based non-demented older adults (65–95 age-range, mean 

± sd age=80.1±8.3 years, 50% female) participating in the Rush Memory and Aging Project 

(Bennett et al., 2018). All participants signed an informed consent according to procedures 

approved by the institutional review board of Rush University Medical Center. T1w data 

were collected on a 3 Tesla (T) Siemens scanner for 171 participants and on a 3 T Philips 

scanner for 51 participants using a 3D magnetization prepared rapid acquisition gradient 

echo (MPRAGE) sequence with the following parameters: 3 T Siemens scanner: TR=2300 

ms, TE=2.98 ms, TI=900 ms, flip-angle=9°, field of view=256 mm x 256 mm, 176 slices, 

acquired voxel size=1×1×1 mm3, and an acceleration factor of 2; 3 T Philips scanner: TR=8 

ms, TE=3.7 ms, TI=955 ms, flip-angle=8°, field of view=240 mm x 228 mm, 181 slices, 

acquired voxel size=1×1×1 mm3, and an acceleration factor of 2.
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Dataset 2 was used first to construct a study-specific template and then to evaluate 

the performance of the different templates considered in this work. Dataset 2 consisted 

of T1w brain MRI data collected on 222 non-demented older adults (65-95 age-range, 

mean ± sd age=80.1±5.7 years, 50% female) participating in the Alzheimer’s Disease 

Neuroimaging Initiative 3 (ADNI3) (http://adni.loni.usc.edu). ADNI was launched in 2003 

as a public-private partnership, led by Dr. Michael W. Weiner to investigate whether 

serial MRI, positron emission tomography (PET), other biological markers, and clinical 

and neuropsychological assessment can be combined to measure the progression of mild 

cognitive impairment and early Alzheimer’s disease. T1w data were collected on a 3 T 

Siemens scanner for 163 individuals and on a 3 T Philips scanner for 59 individuals using 

3D MPRAGE sequences with the following parameters: 3 T Siemens scanner: TR = 2,300 

ms, TE = 2.98 ms, TI = 900 ms, flip-angle = 9°, field of view = 256 mm × 240 mm, 208 

slices, acquired voxel size=1×1×1 mm3, and an acceleration factor of 2; 3 T Philips scanner: 

TR = 6.5 ms, TE = 2.9 ms, TI = 900 ms, flip-angle = 9°, field of view = 256 mm x 256 mm, 

211 slices, acquired voxel size = 1 × 1 × 1 mm3, and an acceleration factor of 2.

2.2. Preprocessing

All raw T1w images were skull-stripped (MASS) (Doshi et al., 2013; Heckemann et al., 

2015), segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 

(CAT) (Farokhian et al., 2017), and corrected for bias field inhomogeneity using the tissue 

probability maps generated by CAT as priors (N4) (Tustison et al., 2010). The resulting 

images were visually inspected. Image intensities were converted to z-scores using the mean 

and standard deviation of intensities in the combined GM and WM masks. For Dataset 2, 

the gray matter was also segmented into Desikan-Killiany regions using FreeSurfer (Fischl, 

2012; McCarthy et al., 2015) without manual corrections.

2.3. Template construction

The approach used in this work for high resolution template construction combined a widely 

used iterative image registration process (Fonov et al., 2011; Guimond et al., 2000; Joshi et 

al., 2004; Ridwan et al., 2021) and concepts of multiple image super resolution. The entire 

process can be divided into 6 steps. Steps 1-3 generally followed the method described in 

Ridwan et al. with modifications (Ridwan et al., 2021), and steps 4-6 included the super 

resolution portion of template construction.

2.3.1. Step 1: Rigid registration and construction of an initial template—The 

preprocessed images from Dataset 1 were rigidly registered to the previously constructed 

T1w template of the MIITRA atlas (Ridwan et al., 2021) referred to as MIITRA_1mm in 

this work (Fig. 1) (the MIITRA_1mm template space was up-sampled to 0.5×0.5×0.5mm3 

voxels using linear interpolation prior to performing the rigid registrations). Rigid 

registration used mutual information as the cost function and linear resampling (Appendix 

1). An initial template with 0.5×0.5×0.5mm3 voxel-size was generated by using weighted 

averaging on the rigidly registered images:
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Zk =
∑i = 1

N Xki ⋅ ωki
∑i = 1

N ωki

where Zk was the average signal in voxel k of the initial template, Xki was the ith signal in 

voxel k, ωki was the weight applied to Xki, and N was the total number of signals in voxel 

k. The weight ωki was determined using a Gaussian kernel centered at the median signal in 

voxel k:

ωki = 1
σk 2πe−

(Xki − xk)2

2σk
2

where xk was the median signal in voxel k, and ωk was given by:

σk =
∑i = 1

N Xki − xk
2

N

The above weighted averaging technique is based on the widely used kappa-sigma clipping 

average method (Jörsäter, 2008; Lalys et al., 2010) and is less sensitive to the effects of 

outliers due to residual misregistration.

2.3.2. Step 2: Iterative affine registration and construction of a new initial 
template—The rigidly co-registered and linearly resampled images were affinely registered 

to the initial template using ANTs (Avants et al., 2008, 2009, 2010, 2011) SyN affine 

registration (Fig. 1). Both cross-correlation and mutual information were separately used as 

cost functions (Appendix 1). A shape update transformation (Avants, and Gee, 2004) was 

also generated from all resulting affine transformations (shape update was conducted using 

the built-in algorithm of the ANTs tool buildtemplateparallel.sh). The rigid, affine and shape 

update transformations were concatenated for each participant and were used to transform 

the raw T1w images of Dataset 1 (after the basic pre-processing of Section 2.2) to a common 

minimum deformation space with 0.5×0.5×0.5mm3 voxel-size (using linear resampling). 

The Gaussian weighted averaging approach of Step 1 was applied to the warped images 

to generate a new initial template. Using this new initial template as reference, Step 2 

was repeated iteratively until the Pearson cross correlation (PCC) between two templates 

of consecutive iterations was greater than 0.9995 (Ridwan et al., 2021). Convergence was 

reached after 9 iterations.

2.3.3. Step 3: Iterative nonlinear registration—The affinely co-registered images 

(obtained by applying the combination of the rigid transformation from Step 1 and the 

affine and shape update transformation from the final iteration of Step 2 on the preprocessed 

images of Section 2.2 with linear resampling) were nonlinearly registered using ANTs SyN 

to the template generated in the final iteration of Step 2, and weighted averaging was used 

(as in Steps 1 and 2) to generate a new initial template (Fig. 1). Both cross-correlation 

and mutual information were separately used as cost functions in this step (Appendix 1). 

Niaz et al. Page 5

Neuroimage. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This initial template was then used as reference and Step 3 was repeated iteratively until 

PCC>0.9995 between templates of consecutive iterations. Convergence was reached after 7 

iterations.

2.3.4. Step 4: Inversion and concatenation of the transformations—The rigid 

transformation from Step 1, the affine and shape update transformations from the final 

iteration of Step 2, and the affine, nonlinear and shape update transformations from the 

final iteration of Step 3 were inverted and concatenated into a single transformation 

for each participant (Fig. 1). The shape update transformations do not have an analytic 

inverse, but approximate inverted transformations were generated using the command 

InvertTransformation included in DRTAMAS (Irfanoglu et al., 2016) and were empirically 

found to be suitable.

2.3.5. Step 5: Mapping signals from raw image space to template space—The 

transformations obtained in Step 4 were used to map the signals from the raw images 

(after the basic preprocessing of Section 2.2) to exact physical locations in template space 

with sub-voxel accuracy (Fig. 1). This process generated a point cloud of signals inside 

each voxel in template space. No interpolation was used. This approach is in essence the 

application of the concept of multiple image super resolution on the participants of Dataset 1 

as if they were multiple realizations of the same brain.

2.3.6. Step 6: Voxel-wise weighted averaging—The final signal in each 

0.5×0.5×0.5mm3 voxel in template space was calculated by applying Gaussian weighted 

averaging (as in Step 1) on the signals mapped to that voxel. The resulting template is 

referred to as MIITRA_0.5mm in the rest of this work (Fig. 2) and is available for download 

at www.nitrc.org/projects/miitra. To add skull and other head structures to this brain-only 

template, the strategy by Rohlfing et al was employed (Ridwan et al., 2021; Rohlfing et al., 

2012). The brain-only template was considered in the rest of this work.

2.4. Comparison of MIITRA_0.5mm to other standardized and study-specific templates

The MIITRA_0.5mm template was compared to other standardized and study-specific 

templates with different voxel-sizes: three standardized templates with 0.5mm isotropic 

voxels, namely (a) MCALT (Schwarz et al., 2017), (b) ICBM2009b (Fonov et al., 2009, 

2011), and (c) Colin27 (Aubert-Broche et al., 2006; Holmes et al., 1998), (d) a study specific 

(SS) template with 0.5×0.5×0.5mm3 voxel-size constructed by applying Steps 1 through 3 

(Sections 2.3.1–2.3.3) to Dataset 2, (e) HCP-1200 with 0.7mm isotropic voxels (Glasser et 

al., 2013), five templates with 1mm isotropic voxels, namely (f) MIITRA_1mm (Ridwan 

et al., 2021), (g) ICBM2009c (Fonov et al., 2009, 2011), (h) OASIS (Avants and Tustison, 

2018), (i) SRI24 (Rohlfing et al., 2010), (j) UNC-Adult (https://www.nitrc.org/projects/

unc_brain_atlas/), and (k) IXI-ANTs with 1.2×0.9375×0.9375mm3 voxel-size (Avants and 

Tustison, 2018). A summary of the characteristics of all templates, including the age-range 

of the individuals participating in each one, is provided in Table 1 and image examples are 

shown in Fig. 3. Comparison of MIITRA_0.5mm to the above templates aimed at assessing 

if super resolution was achieved and at evaluating the new template in terms of image 

sharpness, presence of artifacts, inter-subject spatial normalization precision for older adult 
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data, ability to detect small inter-group morphometric differences, and representativeness of 

the older adult brain. More details on the evaluation of MIITRA_0.5mm are provided in the 

following sub-sections.

2.4.1. Evaluation of super resolution, image sharpness and artifacts—To 

evaluate the outcome of the application of super resolution principles in template 

construction, the ability to resolve small brain structures in MIITRA_0.5mm template was 

compared to that in MIITRA_1mm which was previously constructed using conventional 

template construction techniques and the exact same data (Ridwan et al., 2021). This 

comparison was conducted by visual inspection. Image sharpness was assessed for 

MIITRA_0.5mm and all other templates by means of the normalized power spectra along 

the left-right (LR), anterior-posterior (AP) and superior-inferior (SI) axes (Ridwan et al., 

2021, Zhang and Arfanakis, 2018; Zhang et al., 2011). The power spectral density for the 

LR axis was first calculated in each coronal slice as follows:

PSDLR = ∑
kSI

F kSI, kLR ,

where F(kSI, kLR) is the 2D FFT of a coronal slice, and the results were averaged over all 

coronal slices. Similarly, the power spectral density for the AP axis was first calculated in 

each axial slice as follows:

PSDAP = ∑
kLR

F kLR, kAP ,

where F(kLR, kAP) is the 2D FFT of an axial slice, and the results were averaged over all 

axial slices. Finally, the power spectral density for the SI axis was first calculated in each 

sagittal slice as follows:

PSDSI = ∑
kAP

F kAP, kSI ,

where F(kAP, kSI) is the 2D FFT of a sagittal slice, and the results were averaged over 

all sagittal slices. The average power spectral density for each axis was normalized by the 

corresponding maximum value. The presence of image artifacts and atypical structures was 

evaluated in each template by visual inspection.

2.4.2. Evaluation of inter-subject spatial normalization precision—The 

precision of inter-subject spatial normalization of older adult data achieved when 

MIITRA_0.5mm is used as reference was compared to that of all other templates, using four 

different approaches. For this evaluation, older adult data from Dataset 2 were registered 

to each of the templates using ANTs registration (Avants et al., 2011; Klein, 2016). The 

precision of inter-subject spatial normalization was first assessed by means of the pairwise 

normalized cross-correlation (PNCC) (Ferreira et al., 2014; Wang et al., 2004) of spatially 

normalized images:
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PNCCij = 1
N ⋅

∑m = 1
N Xmi − μi ⋅ Xmj − μj

σi ⋅ σj

where X mi and X mj are the non-zero brain signals in voxel m of participants i and j, 
μi, σi and μj, σj are the mean and standard deviation of the intensities of all the voxels 

of participants i and j, and N is the total number of voxels. The average and standard 

deviation of PNCC over all pairs of spatially normalized data (222×221/2 = 24,531 pairs) 

were computed for normalization to each template. One-way ANOVA and Tukey-Kramer 

post-hoc tests were performed to ascertain statistically significant differences in PNCC 

across templates. Differences with p<0.05 were considered significant.

Second, the transformations of Dataset 2 data to each template were applied to the 

corresponding gray matter labels of participants in Dataset 2 and the pairwise overlap of 

regional gray matter labels (PORGM) (Crum et al., 2006) was calculated for each template:

PORGMij =
∑L Li ∩ Lj
∑L Li ∪ Lj

where Li ∩ Lj and Li ∪ Lj are the intersection and union of label L for participants i 
and j. In addition, the pairwise Jaccard index (PJI) was calculated for each gray matter 

label (homologous labels in contralateral hemispheres were combined) and for spatial 

normalization to each template (Rohlfing et al., 2012):

P J Iij =
Li ∩ Lj
Li ∪ Lj

The average and standard deviation of PORGM and PJI over all pairs of spatially normalized 

data (222×221/2 = 24,531 pairs) were computed for normalization to each template. One-

way ANOVA and Tukey-Kramer post-hoc tests were performed to ascertain statistically 

significant differences in PORGM and PJI across templates. Differences with p<0.05 were 

considered significant. It should be noted that gray matter parcellation using a single 

template was used here merely to evaluate precision of inter-subject spatial normalization 

when different templates are used as references, and it does not suggest that using a single 

template for gray matter parcellation is ideal.

Third, maps of the standard deviation of signals across spatially normalized data from 

Dataset 2 were generated for normalization to each template. Whole brain cumulative 

distributions of the standard deviation were compared across templates using the one-sided 

two-sample Kolmogorov-Smirnov (KS) test and differences were considered significant at 

p<0.05.

Finally, a fourth approach for evaluating the spatial normalization precision achieved 

when using different templates as reference was based on the standard deviation of 

cortical thickness of spatially normalized older adult data. The main idea here is that, 

if spatial normalization was perfect, the cortex would be perfectly matched across 
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participants in template space and, therefore, all spatially normalized data would have 

the exact same cortical thickness in template space (i.e. zero standard deviation of 

cortical thickness). Imperfectly normalized data may have different cortical thickness in 

template space (i.e. higher standard deviation of cortical thickness). Thus, the standard 

deviation of cortical thickness of spatially normalized data can be used to evaluate 

spatial normalization precision. The ANTs implementation (Tustison et al., 2014) of 

the diffeomorphic registration-based cortical thickness (DiReCT) (Das et al., 2009) was 

used to compute continuous estimates of cortical thickness in template space. DiReCT 

encodes thickness measures within the volumetric domain in the form of maps, which 

allows for voxel-wise analysis. Maps of the standard deviation of cortical thickness across 

spatially normalized data from Dataset 2 were generated for normalization to each template. 

Cumulative distributions of the standard deviation of cortical thickness were compared 

across templates using the one-sided two-sample Kolmogorov-Smirnov (KS) test and 

differences were considered significant at p<0.05.

2.4.3. Evaluation of the ability to detect small inter-group differences in 
voxel-based morphometry studies—The impact of spatial normalization precision 

achieved with MIITRA_0.5mm on the ability to detect small inter-group morphometric 

differences (Good et al., 2002; Karas et al., 2003; Radua et al., 2014; Salmond et al., 2002) 

was assessed using power analysis (Wicks et al., 2011; Zhang, and Arfanakis, 2018) and 

compared to that of other templates. The transformations from registration of Dataset 2 

to the different templates were applied to the corresponding gray matter tissue probability 

maps and the resulting maps were smoothed using a Gaussian filter with sigma of 3.4mm, 

in accordance with unmodulated voxel-based morphometry procedures (Good et al., 2002; 

Radua et al., 2014). Maps of the standard deviation of the smoothed maps were then used in 

power analyses to assess the minimum morphometric differences that can be detected across 

two groups, assuming 100 participants per group, significance at p<0.05, and power>0.95. 

Maps of the minimum detectable inter-group morphometric differences were generated for 

MIITRA_0.5mm and all other templates, and cumulative distributions were compared across 

templates using the one-sided two-sample Kolmogorov-Smirnov (KS) test. Differences were 

considered significant at p<0.05.

2.4.4. Evaluation of the representativeness of the older adult brain—The 

degree to which MIITRA_0.5mm is representative of the older adult brain was assessed 

via maps of the average log-Jacobian determinant of the deformations obtained for spatial 

normalization of Dataset 2 and was compared to that of all other templates. The value in 

each voxel of these maps represented how data were deformed on average during spatial 

normalization (Leow et al., 2007; Yanovsky et al., 2009). Zero values represented no change 

in volume, values greater than zero indicated volume expansion, and values lower than 

zero indicated volume contraction. One-sided two-sample Kolmogorov-Smirnov (KS) test 

was used to compare histograms of the average log-Jacobian determinant across templates, 

separately for expansion and contraction. Differences were considered significant at p<0.05.
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2.5. Data and template availability

The data used in this work can be assessed by submitting a request to www.radc.rush.edu. 

MIITRA_0.5mm is available for download at www.nitrc.org/projects/miitra.

3. Results

3.1. Super resolution, image sharpness and artifacts

Fine structures that were not visible in MIITRA_1mm were resolved in MIITRA_0.5mm 

(Fig. 4) demonstrating that the application of multiple image super resolution in template 

construction successfully generated a population-based brain MRI template with higher 

spatial resolution. The fine structures resolved in MIITRA_0.5mm include features in 

the cerebellum, the anterior commissure, inter-thalamic adhesion and others (Fig. 4). 

Furthermore, visual inspection showed that MIITRA_0.5mm was among the templates with 

the highest image sharpness (Fig. 3). This was supported by comparing the normalized 

power spectra across templates, which showed a higher energy at high spatial frequencies 

over all axes for MIITRA_0.5mm compared to all other templates (Fig. 5) (MIITRA_0.5mm 

was also superior to a 0.5mm template generated by resampling the MIITRA_1mm template 

using linear interpolation; see Appendix 2). MIITRA_0.5mm was also relatively free of 

image artifacts in contrast to the hyperintense structures seen in Colin27, ICBM2009b, 

ICBM2009c and OASIS, and the atypical structures seen in MCALT (Fig. 6).

3.2. Inter-subject spatial normalization precision

The precision of inter-subject spatial normalization of older adult data from Dataset 2 

achieved when using the MIITRA_0.5mm template as reference was higher than that 

achieved with other templates as demonstrated by means of the average PNCC and PORGM 

(p<10−6 in all cases; see Appendix 3) (Fig. 7A, B) (also see Appendix 2), as well as by 

the average PJI (in the majority of brain regions) (see Appendix 3) (Fig. 7C). Similar 

results were obtained for spatial normalization of older adult data collected on an MRI 

scanner from a different vendor than those used in Dataset 2 (see Appendix 4). In addition, 

the standard deviation of signals from normalized data of Dataset 2 was lower in more 

voxels when using MIITRA_0.5mm as reference compared to other templates (p<10−10 in 

all cases) (Fig. 8). Furthermore, the standard deviation of cortical thickness of spatially 

normalized data from Dataset 2 was lower when MIITRA_0.5mm was used as a reference 

compared to other templates (p<10−10 in all cases) (Fig. 9), suggesting better matching of 

the cortex across older adults when using MIITRA_0.5mm.

3.3. Ability to detect small inter-group differences in voxel-based morphometry studies

Power analysis showed that use of the MIITRA_0.5mm template allowed detection of 

smaller inter-group morphometric differences in gray matter compared to other templates. 

This was demonstrated as a higher number of gray matter voxels with cooler colors and a 

lower number of voxels with warmer colors when using MIITRA_0.5mm (Fig. 10A). Also, 

the cumulative distribution of the minimum detectable inter-group morphometric differences 

was significantly higher for MIITRA_0.5mm compared to other templates (p<10−10 in all 

cases) (Fig. 10B).
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3.4. Representativeness of the older adult brain

Registration of older adult data from Dataset 2 to MIITRA_0.5mm resulted in a higher 

number of voxels with an average deformation near zero compared to registration to 

MCALT, ICBM2009b, Colin27, HCP-1200, ICBM2009c, OASIS, SRI24, UNC-Adult and 

IXI-ANTs (p<10−10 in terms of both expansion and contraction), as demonstrated by means 

of the average log-Jacobian determinant (Fig. 11). This suggests that MIITRA_0.5mm is 

more representative of the older adult data of Dataset 2 than the templates mentioned above. 

Only MIITRA_1mm and SS templates resulted in even less deformation (p<10−10 in terms 

of both expansion and contraction).

4. Discussion

The present work constructed a 0.5mm isotropic resolution standardized T1w template 

of the older adult brain, termed MIITRA_0.5mm, using principles of super resolution 

(available for download at www.nitrc.org/projects/miitra). The newly constructed template 

was systematically compared to several other standardized and study-specific templates in 

terms of image quality and performance when used as a reference for spatial normalization 

of older adult data. It was demonstrated that the application of multiple image super 

resolution principles in template construction successfully enhanced the spatial resolution 

of the new population-based brain MRI template compared to that of a template constructed 

using a conventional template building approach and the same data. The enhanced resolution 

of MIITRA_0.5mm improved visualization of fine structural details of the older adult brain, 

an important prerequisite for providing high spatial matching of such structures across 

individuals and for detecting small morphometric differences. In addition, MIITRA_0.5mm 

exhibited the highest image sharpness and did not contain image artifacts observed in 

some of the other templates considered here, both characteristics also contributing to 

high spatial matching. As anticipated, MIITRA_0.5mm provided higher intersubject spatial 

normalization precision for older adult data compared to all other templates. Consequently, 

MIITRA_0.5mm also enabled detection of smaller inter-group morphometric differences in 

older adult brain data compared to all other templates. Finally, MIITRA_0.5mm was among 

the templates that were most representative of older adult brain data. Overall, the present 

work generated an important new resource for studies of aging.

4.1. Super resolution, image sharpness and artifacts

Application of multiple image super resolution principles in template construction 

successfully enhanced the spatial resolution of MIITRA_0.5mm compared to a template 

developed using a conventional template building approach and the same raw data (i.e. 

MIITRA_1mm). The enhanced resolution of the new template improved visualization of 

fine brain structures. These findings are in agreement with previous work that applied super 

resolution principles in the development of a high angular resolution diffusion imaging 

(HARDI) brain template from low angular resolution diffusion data (i.e. super resolution 

in angular sampling) and demonstrated that two-way and three-way fiber crossings were 

resolved in the HARDI template even though such crossings were not visible in the raw data 

(Varentsova et al., 2014). As careful alignment across individuals in space is essential for 

successful application of multiple image super resolution principles in template construction, 
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precise non-linear image registration has played a catalytic role in the present work. 

Nevertheless, even the top-performing image registration algorithm used here has typically 

lower precision in those cortical details that are drastically different across individuals. This 

means that resolution enhancement in those parts of the brain depends on the number of 

persons precisely aligned, while those imprecisely aligned contribute to noise. The latter 

appears to not be of concern in MIITRA_0.5mm probably due to the high number of 

participants considered in its construction and the template building approach employed. 

The same factors also contributed to the high sharpness and lack of visible artifacts in 

MIITRA_0.5mm. Overall, MIITRA_0.5mm exhibits enhanced detail and image quality, 

both of which are important prerequisites for providing high spatial normalization precision 

of older adult data.

4.2. Inter-subject spatial normalization precision and its impact on the ability to detect 
small inter-group differences in voxel-based morphometry studies

MIITRA_0.5mm allowed higher inter-subject spatial normalization precision when used as 

a reference for normalization of older adult data compared to other templates considered 

in this work. This was manifested by means of three whole brain and one cortex-specific 

metrics. The factors that led to this improvement in normalization precision are explained in 

the previous section. In turn, precise alignment of tissues across individuals directly impacts 

the sensitivity and specificity of voxel-wise analyses (Zhang and Arfanakis, 2018). The 

present work demonstrated that MIITRA_0.5mm allowed detection of smaller inter-group 

differences in voxel-based morphometry studies compared to other templates. In studies 

of the older adult brain, being able to detect smaller changes is important as it directly 

translates into being able to detect changes earlier.

4.3. Representativeness of the older adult brain

MIITRA_0.5mm, MIITRA_1mm and SS were most representative of older adult brain 

data compared to other templates. This was anticipated because these were the only 

three templates constructed with data exclusively from older adults (i.e. 65 years of age 

and older). In contrast, registration of older adult data to young adult templates such as 

ICBM2009b, ICBM2009c, HCP-1200, Colin27, UNC-Adult, or to templates combining 

data across a wide age-range such as MCALT, OASIS, SRI24, IXI-ANTS, required larger 

amounts of deformation on average (i.e. extensive contraction of the ventricles and sulci, and 

expansion of gray and white matter tissue) which is undesirable in template-based studies 

(Dickie et al., 2016a, 2016b; Lemaitre et al., 2005; Matsumae et al., 1996; Sullivan et al., 

1995; Ridwan et al., 2021). These findings have important implications in template selection 

for studies on older adults which traditionally have used the young adult or wide age-range 

templates mentioned above due to the lack of a dedicated older adult template. The primary 

reason why MIITRA_1mm required on average smaller amounts of deformation of older 

adult data than MIITRA_0.5mm, an observation that was also made when comparing 

ICBM2009c (1mm voxel size) to ICBM2009b (0.5mm voxel size), was probably the fact 

that the larger voxels in MIITRA_1mm limited local deformations. SS was shown to be the 

most representative of the older adult brain, which is expected since it was built from the 

same data used in this evaluation (Dataset 2). Nevertheless, MIITRA_0.5mm has several 

important advantages over SS as it exhibited higher spatial resolution, higher sharpness, 
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and allowed higher spatial normalization precision and detection of smaller intergroup 

differences than the SS template. And since MIITRA_0.5mm is standardized, it requires 

no time for development, it provides consistently high performance, and may facilitate 

integration and comparison of results across studies.

4.4. Limitations

In addition to its multiple strengths presented above, the present work also has a few 

limitations. First, the performance of the new template was compared to only 11 other 

commonly used templates, and not to all available T1w templates. However, an exhaustive 

comparison was conducted for MIITRA_1mm by Ridwan et al. (2021), using the exact 

same data of Dataset 2 and identical metrics as those used in the present work. Since 

MIITRA_0.5mm was compared to MIITRA_1mm in the present work, and the latter 

outperformed a large number of templates considered in Ridwan et al. (2021), one can safely 

conclude that MIITRA_0.5mm also outperforms those templates. In addition, the present 

work evaluated the performance of MIITRA_0.5mm as a reference for alignment of data 

from older adults in the 65–95 years age-range using a state of the art registration algorithm 

and ADNI T1w data of typical image quality, however, future work should also consider 

other registration algorithms as well as data with different image quality and from different 

age-ranges. This is especially true for data with submillimeter spatial resolution, which are 

not yet publicly available for a sufficiently large number of older adults to facilitate the 

statistical analyses conducted here. Nevertheless, we anticipate that the main conclusions 

of the present work would remain unchanged if submillimeter resolution data were used in 

template evaluation instead of Dataset 2, especially considering that spatial normalization of 

submillimeter resolution data to any 1mm isotropic template would lead to loss of spatial 

details.

5. Conclusion

The present work constructed a 0.5mm isotropic resolution standardized T1w template 

of the older adult brain, named MIITRA_0.5mm, using principles of super resolution. 

The new template exhibited higher spatial resolution and improved visualization of fine 

structural details of the older adult brain compared to a template constructed using a 

conventional template building approach and the same data. In addition, MIITRA_0.5mm 

exhibited the highest image sharpness and did not contain image artifacts observed in some 

of the other templates considered here for comparison. Due to the above enhancements, 

MIITRA_0.5mm provided higher inter-subject spatial normalization precision for older 

adult data compared to all other templates. Consequently, MIITRA_0.5mm also enabled 

detection of smaller inter-group morphometric differences in older adult brain data 

compared to the other templates. Finally, MIITRA_0.5mm was among the templates that 

were most representative of older adult brain data. Overall, the new template constructed 

here is an important new resource for studies of aging, and the findings of the present 

work have important implications in template selection for studies on older adults. The 

MIITRA_0.5mm template is available for download at www.nitrc.org/projects/miitra.
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Fig. 1. 
Schematic representation of the approach used to construct the MIITRA_0.5mm T1-

weighted brain template.

Niaz et al. Page 20

Neuroimage. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Examples of sagittal, coronal and axial slices of the MIITRA_0.5mm. The sagittal slices are 

from the right hemisphere.
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Fig. 3. 
Examples of axial slices from the T1-weighted templates evaluated in this work. Templates 

for which a brain mask was not available were skull stripped using HD-BET (Isensee 

et al., 2019). The dynamic range was set for each template as follows: 0.5–7.5 for 

MIITRA_0.5mm, 0.5–7.5 for MIITRA_1mm, 2.5–9.75 for SS, 1000-21930 for MCALT, 

15–91.5 for ICBM2009b, 3000000–47166900 for Colin27, 200-990 for HCP-1200, 15–91.5 

for ICBM2009c, 0-9 for OASIS, 50–850 for SRI24, 350–900 for UNC-Adult, and 0.8–4.0 

for IXI-ANTs.
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Fig. 4. 
Examples of fine structures that are better resolved in MIITRA_0.5mm compared to 

MIITRA_1mm, demonstrating that the application of multiple image super resolution in 

template construction successfully generated a population-based brain MRI template with 

higher spatial resolution.
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Fig. 5. 
Normalized power spectra for the (A) left-right, (B) anterior-posterior, (C) superior-inferior 

axes, separately, for the MIITRA_0.5mm and other standardized and study-specific 

templates.
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Fig. 6. 
Examples of artifacts seen in some of the standardized templates included in this work that 

are not present in the MIITRA_0.5mm template.
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Fig. 7. 
Boxplots of the (A) pairwise normalized cross-correlation (PNCC) and (B) pairwise overlap 

of regional gray matter labels (PORGM), and (C) average pairwise Jaccard index (PJI) for 

individual gray matter labels over all spatially normalized data of Dataset 2 when using 

different templates as reference. Caudal anterior cingulate (CAC), caudal middle frontal 

(CMF), isthmus cingulate (IC), lateral orbitofrontal (LOF), medial orbitofrontal (MOF), 

paracentral (PAC), pars opercularis (PAOC), pars orbitalis (PAO), pars triangularis (PAT), 

posterior cingulate (POC), precentral (PRC), rostral anterior cingulate (RAC), rostral middle 

frontal (RMF), superior frontal (SF), frontal pole (FP), banks of the superior temporal sulcus 

(BKS), entorhinal (ETR), fusiform (FF), inferior temporal (IT), middle temporal (MT), 

parahippocampal (PAH), superior temporal (ST), temporal pole (TP), transverse temporal 

(TRT), insula (INS), inferior parietal (IFP), postcentral (POTC), precuneus (PREC), superior 

parietal (SPP), supramarginal (SUPRM), cuneus (CN), lateral occipital (LAO), lingual 

(LIG), pericalcarine (PRC), cerebellum cortex (CC), thalamus (T), caudate (CD), putamen 

(PT), pallidum (PAL), hippocampus (HIP), amygdala (AMY), accumbens area (ACA), 

ventral diencephalon (VDC).
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Fig. 8. 
(A) Maps and (B) cumulative distributions of the standard deviation of signals across 

spatially normalized data of Dataset 2 when using different templates as reference.
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Fig. 9. 
(A) Maps and (B) cumulative distributions of the standard deviation of cortical thickness of 

spatially normalized data of Dataset 2 when using different templates as reference.
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Fig. 10. 
(A) Maps and (B) cumulative distributions of the minimum detectable inter-group 

morphometric differences in gray matter when using different templates as reference, 

according to power analysis in non-demented older adults of Dataset 2.
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Fig. 11. 
(A) Maps and (B) histograms of the average log-Jacobian determinant of the deformation of 

older adult data of Dataset 2 for registration to different templates.
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