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OBJECTIVES: We tested the hypothesis that routine monitoring data could de-
scribe a detailed and distinct pathophysiologic phenotype of impending hypogly-
cemia in adult ICU patients.

DESIGN: Retrospective analysis leading to model development and validation.

SETTING: All ICU admissions wherein patients received insulin therapy during a 
4-year period at the University of Virginia Medical Center. Each ICU was equipped 
with continuous physiologic monitoring systems whose signals were archived in 
an electronic data warehouse along with the entire medical record.

PATIENTS: Eleven thousand eight hundred forty-seven ICU patient admissions.

INTERVENTIONS: The primary outcome was hypoglycemia, defined as any ep-
isode of blood glucose less than 70 mg/dL where 50% dextrose injection was 
administered within 1 hour. We used 61 physiologic markers (including vital signs, 
laboratory values, demographics, and continuous cardiorespiratory monitoring 
variables) to inform the model.

MEASUREMENTS AND MAIN RESULTS: Our dataset consisted of 11,847 
ICU patient admissions, 721 (6.1%) of which had one or more hypoglycemic 
episodes. Multivariable logistic regression analysis revealed a pathophysiologic 
signature of 41 independent variables that best characterized ICU hypoglycemia. 
The final model had a cross-validated area under the receiver operating char-
acteristic curve of 0.83 (95% CI, 0.78–0.87) for prediction of impending ICU 
hypoglycemia. We externally validated the model in the Medical Information Mart 
for Intensive Care III critical care dataset, where it also demonstrated good per-
formance with an area under the receiver operating characteristic curve of 0.79 
(95% CI, 0.77–0.81).

CONCLUSIONS: We used data from a large number of critically ill inpatients to 
develop and externally validate a predictive model of impending ICU hypoglycemia. 
Future steps include incorporating this model into a clinical decision support system 
and testing its effects in a multicenter randomized controlled clinical trial.

KEY WORDS: critical care outcomes; critical care; hypoglycemia; precision 
medicine; statistical models

Hypoglycemia, defined as a blood glucose level less than 70 mg/dL (3.9 
mmol/L), is the most common side effect of treatment for all types of 
diabetes and hyperglycemia in the hospital setting (1, 2). Inpatient hy-

poglycemia is associated with a number of adverse events, including patient dis-
tress, cardiac arrhythmias, cardiac ischemia, seizures, brain damage, increased 
length-of-stay, and increased short- and long-term mortalities (1, 3–7).  
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Beyond poor clinical outcomes, inpatient hypoglycemia 
also carries financial implications. A recent study of 
43,659 admissions within the Florida Hospital System 
found that even one episode of hypoglycemia resulted 
in a total cost of care that was $10,405 greater than 
that in patients whose blood glucose remained within 
the normal range (8). With these factors in mind, The 
Centers for Medicare and Medicaid Services (CMS) has 
identified inpatient hypoglycemia as a high-priority 
measurement area and is currently adapting a hypo-
glycemia prevention measure (National Quality Forum 
#2363: Glycemic Control-Hypoglycemia) for possible 
future CMS use. In practice, this measure would incen-
tivize hospitals to implement clinical workflows that 
facilitate evidence-based glycemic management strate-
gies to reduce the likelihood of hypoglycemic events.

The prevalence of inpatient hypoglycemia is nearly 
threefold higher in the ICU than that in non-ICU set-
tings (9, 10), and multiple studies confirm that ICU 
hypoglycemia is linked to increased morbidity and 
mortality (6, 11–13). Given the strong association be-
tween ICU hypoglycemia and poor outcomes, a pro-
active approach using targeted predictive analytics is 
needed (14). One such approach is to retrospectively 
analyze historical clinical data and develop a predic-
tion tool that determines the individualized risk of 
ICU hypoglycemia. The possibility of developing such 
a prediction tool lies in the growing availability of rich 
clinical datasets stored in a hospital’s electronic health 
record (EHR) system (15). With the well-established 
biochemical, hemodynamic, and electrophysiology 
changes that occur during hypoglycemia (16), EHRs 
provide an invaluable resource for prediction tool de-
velopment. Despite recent advancements in EHRs and 
machine learning, few studies have focused on model 
development solely for ICU hypoglycemia (17). In this 
study, we used machine learning to test the hypothesis 
that routine monitoring data could describe a detailed 
and distinct pathophysiologic phenotype of impend-
ing hypoglycemia in adult ICU patients.

MATERIALS AND METHODS

Study Design

We retrospectively analyzed all ICU admissions from 
October 2013 to August 2017 at the University of 
Virginia (UVa) Medical Center wherein patients were 
greater than or equal to 18 years old and received 

insulin therapy. This included medical (28 beds), 
surgical-trauma (15 beds), thoracic-cardiovascular 
postoperative (19 beds), coronary care (10 beds), and 
neuroscience (12 beds) ICUs. Each ICU was equipped 
with continuous physiologic monitoring systems whose 
signals were archived in an electronic data warehouse 
along with the entire medical record. Monitoring data 
archival was interrupted in the coronary care and tho-
racic-cardiovascular postoperative ICUs in July 2015 
due to changes in biomedical engineering infrastruc-
ture. We used the Transparent Reporting of a multi-
variable prediction model for Individual Prognosis or 
Diagnosis (TRIPOD) guidelines (18) and followed the 
recommendations set forth by Leisman et al (19) to an-
alyze and report this study (20). A completed TRIPOD 
checklist is included in the Supplemental Material 
(http://links.lww.com/CCM/G587). All study proto-
cols were approved by the UVa Institutional Review 
Board for Health Sciences Research (protocol number 
22152).

Outcome Definition

The primary outcome was hypoglycemia, defined as 
any episode of blood glucose less than 70 mg/dL, where 
50% dextrose injection (i.e., D50) was also adminis-
tered within 1 hour. This specific definition was chosen 
because our EHR hypoglycemia order set includes ad-
ministration of D50 whenever a blood glucose less than 
70 mg/dL is recorded. Secondary outcomes included 
mortality and length of stay. We focused on physio-
logic data starting 12 hours before the hypoglycemic 
episode. As controls, we included data from greater 
than 12 hours before the hypoglycemic episode and 
from insulin-treated ICU patients who did not expe-
rience hypoglycemia during admission. We censored 
all data after each initial hypoglycemic episode (i.e., re-
current hypoglycemia was not captured).

Model Development and Validation

We performed modeling in R 4.0.2 (R Core Team 2020, 
Vienna, Austria) using the “rms” package (21). For the 
univariable analysis, we plotted predictiveness curves 
to show the individual association of 61 vital signs, 
laboratory values, demographics, and continuous car-
diorespiratory monitoring variables with episodes of 
hypoglycemia compared with no hypoglycemia. We ran-
domly sampled one measurement within 24 hours before 

http://links.lww.com/CCM/G587
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to 15 hours after each episode. We calculated the relative 
risk of hypoglycemia at each decile of the sampled var-
iable and then interpolated the risk to 20 points evenly 
spaced in the variable range. We repeated this process of 
sampling, calculating relative risk, and interpolating 30 
times. Finally, we averaged the 30 risk estimate curves 
to obtain a predictiveness curve at the 20 evenly spaced 
points and displayed results as a heat map.

For multivariable modeling (both for the aggre-
gate ICU model and the individual ICU models), we 
assessed 41 physiologic variables that were clinically rel-
evant to hypoglycemia and at least 70% available (i.e., 
a given variable is available for greater than or equal to 
70% of the time points for the entire cohort). We used 
multivariable logistic regression adjusted for repeated 
measures to relate physiologic data to the hypoglycemia 
outcome on the entire cohort (21). We systematically 
built the model by: 1) removing, blinded to the outcome, 
the most predictable features correlated more than R2 
of 0.9 with other features, 2) imputing missing values 
with median values for the study population, 3) build-
ing a model with all remaining features and restricted 
cubic splines (three knots) on each feature with enough 
unique values (21, 22), adjusting for repeated measures 
using the Huber-White method (21), and 4) using ridge 
regression (23) to penalize model coefficients, shrinking 
the effective degrees of freedom to maximize the cor-
rected Akaike information criterion (24, 25).

We then performed internal validation using 10-fold 
cross-validation (TRIPOD type 1b model study) (20, 26).  
We randomly split the patient admissions into 10 
groups, excluded a single group’s data as a test set, 
trained a model on the remaining data using the same 
features and penalty found above, used that model to 
estimate the risk of hypoglycemia for the test set, and 
then calculated the area under the receiver operating 
characteristic curve (AUROC) in the test set. We re-
peated this procedure until each of the 10 groups had 
served as a test set and used the 10 resulting AUROC 
measurements to estimate the mean and 95% CIs. 
Although this method calculated out-of-sample pre-
dictions with the same features, we made the predic-
tions with slightly different models, one for each test 
set. We note that predictions were made every hour, 
there were multiple predictions per patient, and not 
every patient experienced the primary outcome.

We performed external validation in the Medical 
Information Mart for Intensive Care (MIMIC-III) 

Waveform Database Matched Subset, a freely available 
critical care dataset for researchers consisting of 22,317 
waveform records and 22,247 numeric records for 
10,282 distinct ICU patients at the Beth Israel Deaconess 
Medical Center (Boston, MA) from June 2001 to October 
2012 (27, 28). The MIMIC-III database was approved 
by the Institutional Review Boards of the Massachusetts 
Institute of Technology (Cambridge, MA) and Beth Israel 
Deaconess Medical Center. We note that the MIMIC-
III Waveform Database Matched Subset consists of all 
waveform and numeric recordings for which the cor-
responding clinical record is also available and that this 
dataset was not limited to insulin-treated patients only.

RESULTS

Baseline Characteristics and Outcomes

We analyzed data obtained from 11,847 UVa ICU pa-
tient admissions, 721 (6.1%) of whom had one or more 
hypoglycemic episodes. Table 1 demonstrates baseline 
demographics, admission characteristics, mortality, 
and length of stay for our study population. Mortality 
was about three-fold higher (28.3% vs 9.8%; p < 0.001) 
and length of stay doubled (15 vs 7 d; p < 0.001) in 
patients who experienced hypoglycemia (Table  1). 
Notably, hypoglycemia was associated with increased 
mortality even after accounting for age, comorbidities, 
illness severity, and clinical presentation (p < 0.0001). 
Black inpatients were overrepresented in the hypogly-
cemia cohort, comprising 23.4% of that group but only 
16.1% overall. Conversely, White inpatients were un-
derrepresented in the hypoglycemia cohort, compris-
ing 74.3% of that group but 81.3% overall.

For external validation in MIMIC-III, we analyzed 
data obtained from 9,878 ICU patient admissions. 
Four hundred ninety-three (5.0%) of these ICU patient 
admissions experienced one or more hypoglycemic 
episodes. As in the UVa dataset, those who experi-
enced hypoglycemia had higher mortality (27.6% vs 
10.7%; p < 0.001) and longer length of stay (13.5 vs 7.1 
d; p < 0.001) when compared with those who did not 
experience hypoglycemia.

Pathophysiologic Signature of Impending 
Hypoglycemia

Univariable analysis of 61 physiologic and biochemical 
variables identified trends in each that were associated 
with hypoglycemia (Fig. 1). Several of these variables 
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had nonlinear associations with ICU hypoglycemia 
(e.g., WBC count and serum potassium), indicating 
that hypoglycemia risk increased at both the lowest 
and highest percentiles of these variables. Another no-
table finding was that serum anion gap demonstrated a 
strongly positive association with ICU hypoglycemia. 
We initially attributed this to diabetic ketoacidosis but 
noted that lactic acid also demonstrated a strongly 
positive relationship with hypoglycemia risk. These 
results suggest that the positive relationship between 
ICU hypoglycemia risk and higher anion gap is likely 
indicative of severe or worsening illness due to factors 
(e.g., lactic acidosis and uremia) beyond diabetic keto-
acidosis alone.

Multivariable logistic regression modeling identi-
fied a signature of 41 independent predictors that best 
characterized impending ICU hypoglycemia. The top 

10 features in decreasing strength of association were 
serum glucose, serum anion gap, body temperature, 
serum potassium, serum creatinine, prothrombin 
time, blood urea nitrogen/creatinine, serum carbon 
dioxide, the sd of oxygen saturation by pulse oximetry, 
and serum calcium. These predictors are consistent 
with prior reports demonstrating that: 1) hypothermia 
forms a basic aspect of the response to hypoglycemia 
(29–31), 2) adrenaline release and excess insulin (as 
seen with hypoglycemia) stimulate potassium uptake 
from the bloodstream (32), and 3) renal dysfunction 
increases risk for hypoglycemia (33).

Model Validation and Performance

The cross-validated AUROC for our composite ICU 
hypoglycemia model (including all variables) was 0.83 

TABLE 1. 
Demographic and Clinical Characteristics of Critically Ill Adult Patients Admitted to the 
ICU From October 2013 to August 2017

Variable
Hypoglycemia  

(n = 721)
No Hypoglycemia  

(n = 11,126) p

Age, yr, median (IQR) 62.7 (51.1–72.1) 63.6 (53.2–73.1) 0.019

Sex, n (%)

  Male 405 (56.2) 6,008 (54.0) 0.255

  Female 316 (43.8) 5,118 (46.0)

Race, n (%)

  White 536 (74.3) 9,098 (81.8) < 0.001

  Black 169 (23.4) 1,744 (15.7) < 0.001

  Other 10 (1.4) 192 (1.7) 0.496

  Asian 5 (0.7) 71 (0.6) 0.857

  Unspecified 0 (0.0) 17 (0.2) 0.294

  Native American 1 (0.1) 4 (0.0) 0.193

Weight, kg, median (IQR) 80.3 (64.9–97.1) 83.5 (71.2–99.8) < 0.001

ICU, n (%)

  Coronary ICU 47 (6.5) 752 (6.8) 0.803

  Medical ICU 388 (53.8) 3,252 (29.2) < 0.001

  Neuroscience ICU 74 (10.3) 3,983 (35.8) < 0.001

  Surgical-trauma ICU 141 (19.6) 1,771 (15.9) 0.010

  Thoracic cardiovascular postoperative unit 71 (9.8) 1,368 (12.3) 0.051

Length of stay, d, median (IQR) 15 (8–28) 7 (4–12) < 0.001

Mortality, n (%) 204 (28.3) 1,090 (9.8) < 0.001

Acute Physiology and Chronic Health  
Evaluation score, median (IQR)

14 (8–21) 8 (4–14) < 0.001

IQR = interquartile range.
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Figure 1. Heat map depiction of the univariable risk of ICU hypoglycemia as a function of 61 measured physiologic and biochemical variables. 
Each tile plots the value of the variable on the x-axis against the relative risk of ICU hypoglycemia on the right y-axis. Variables on the left y-axis 
represent model outputs, with those in red text indicating laboratory values, those in blue text indicating hemodynamic monitoring variables, and 
those in green text indicating electrophysiology variables. The relative risk color bar ranges from 0.50 to 2.0. A red color saturation indicates 
higher relative risk of hypoglycemia; a blue color saturation indicates a lower relative risk. <RRI> = mean R-R interval, AF = probability of atrial 
fibrillation, AGAP = anion gap, Alb = albumin, ALP = alkaline phosphatize, ALT = alanine aminotransferase, AST = aspartate aminotransferase, 
BE = base excess from arterial blood gas, Bili = bilirubin, BUN = blood urea nitrogen, BUN/Cr = blood urea nitrogen/creatinine, Ca = 
calcium, Cl = chloride, CO2 = carbon dioxide, COSEn = coefficient of sample entropy of R-R interval, Cr = creatinine, DBP (cuff) = diastolic 
blood pressure by cuff measurement, DBP = invasive diastolic blood pressure (mm Hg), DFA = detrended fluctuation analysis applied to 
R-R intervals, EDR = electrocardiogram-derived respiratory rate (breaths/min), Gluc = glucose, Hco3 = bicarbonate, Hct = hematocrit, HR = 
heart rate measured by cardiac telemetry (beats/min), HRV = sd of heart rate by cardiac telemetry (beats/min), HRxEDR = cross-correlation 
coefficient of heart rate and electrocardiogram-derived respiratory rate, HRxRR = cross-correlation coefficient of heart rate measured by 
cardiac telemetry and respiratory rate measured by chest impedance, HRxSO2 = the cross-correlation coefficient of heart rate and oxygen 
saturation, K = potassium, Lact = lactate, LDd = local dynamics density of heart rate, MAP = mean arterial pressure by cuff measurement, 
MBP = invasive mean blood pressure (mm Hg), Mg = magnesium, Na = sodium, Neut % = neutrophil percentage (%), O2 = oxygen saturation 
from arterial blood gas, O2V = the sd of oxygen saturation by pulse oximetry, pH = pH from arterial blood gas, Plt = platelet count, Po2 = 
Po2 from arterial blood gas, PO4 = phosphorous, PT/INR = prothrombrin time/international normalized ratio, PTT = partial thromboplastin 
time, Pulse = heart rate measured by pulse oximetry (beats/min), Resp = respiratory rate measured by pulse oximetry, RR = respiratory rate 
measured by chest impedance, RRV = sd of respiratory rate by chest impedance (breaths/min), RRxSO2 = cross-correlation coefficient of 
respiratory rate measured by chest impedance and oxygen saturation measured by pulse oximetry, SBP (cuff) = systolic blood pressure by cuff 
measurement, SBP = invasive systolic blood pressure (mm Hg), SO2 = oxygen saturation measured by pulse oximetry (%), Spo2 = clinician-
documented oxygen saturation (%), sRRI = the sd of R-R intervals, Temp = temperature (°C), TP = total protein, Trop I = troponin I

(95% CI, 0.79–0.88) (Fig. 2A). To assess 
the inputs required for acceptable pre-
dictive validity, we examined models 
consisting of laboratory values only (ex-
cluding glucose), vital signs only, and 
continuous monitoring variables only. 
The respective cross-validated AUROCs 
for these models were 0.69, 0.67, and 0.65, 
confirming that each stream can predict 
hypoglycemia individually. As expected, 
the composite model performed better 
(34). The area under the precision-recall 
curve (AUPRC) for our composite ICU 
hypoglycemia model was 0.084 (event 
rate = 0.0045 and ratio = 20.7). For refer-
ence, the AUPRC of a random predictor 
is the event rate and is therefore neces-
sarily higher for more frequent events 
(35). The AUPRC of our predictor is 20.7 
times better than a random predictor at 
this event rate.

Although AUROC and AUPRC have 
the advantage of being threshold-inde-
pendent, we also evaluated threshold-
dependent metrics (e.g., sensitivity and 
positive predictive value). For this, we 
defined an “alert” by a rise in predicted 
risk. In this way, we can set the number 
of alerts by defining the rise in risk re-
quired. We found that sending one alert 
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per day yields a sensitivity ~24% and positive predic-
tive value ~26%.

We also examined performance of prior models 
developed by our group for prediction of ICU sepsis, 
intubation, and hemorrhage (22) to determine their 
predictive capability for ICU hypoglycemia. These 
models all demonstrated poor predictive ability for 
ICU hypoglycemia (Fig. 2B). For example, a model  
for sepsis in the medical ICU had an AUROC of 0.62 
for detection of ICU hypoglycemia. This suggests that 
our ICU hypoglycemia model is specific to hypogly-
cemia and not just worsening clinical status.

Our model demonstrated good performance 
(AUROC: 0.79 [95% CI, 0.77–0.81], and AUPRC: 
0.09 [event rate = 0.0082 and ratio = 11.0]) with ex-
ternal validation testing in the MIMIC-III Waveform 
Database Matched Subset. However, some limitations 
of the MIMIC-III dataset should be noted: 1) bedside 
monitoring blood pressure values were significantly 
lower in some MIMIC ICUs, 2) bedside monitoring 
vital signs in MIMIC-III were often sampled every 
1 minute instead of every 1 second, so the sd dif-
fers from our UVa dataset, 3) time stamps for labs in 
MIMIC-III were blood draw time and not result time, 
and 4) medication administration was not available, 
and thus, we could not restrict analysis to insulin-
treated patients.

Model Calibration and Temporal Risk 
Association

The plotted calibration curve for the aggregate ICU hy-
poglycemia model is shown in Figure 3A. The model 
demonstrated reasonable calibration within both the 
UVa and MIMIC-III datasets, with predicted risk ris-
ing as relative risk increased. Notably, in both datasets, 
patients with the lowest 80% of predicted risk had less 
than average observed risk. Figure 3B demonstrates 
average risk in relation to timing of hypoglycemic 
events. The model identified rising hypoglycemia risk 
~4–6 hours prior to the hypoglycemic event in both 
the UVa and MIMIC-III datasets, reflecting a rising 
degree of physiologic and biochemical abnormality in 
the hours prior to clinical recognition of hypoglycemia.

DISCUSSION

We used a “Big Data” analytic approach and applied 
multivariable logistic regression to describe signatures 

of ICU hypoglycemia from readily available physi-
ologic and biochemical data collected from the EHR 
of a large university hospital. Mortality and length of 
stay were significantly higher in patients who expe-
rienced hypoglycemia, and these associations held 
true after adjusting for variables like age, comorbidi-
ties, and illness severity. We also identified racial dif-
ferences in frequency of hypoglycemia and thought 
that mechanisms for this are not obvious. Further tar-
geted research that more accurately captures the social 
construct of race along with appropriate explanatory 
(though intertwined) biological and sociologic vari-
ables is required (36, 37).

The pathophysiological signature of impending ICU 
hypoglycemia was composed of 41 different variables 
and demonstrated good discriminatory capability and 
reasonable calibration (38). To our knowledge, this is 
the first study that incorporates hemodynamic and 
electrophysiology bedside monitoring data to provide a 
comprehensive predictive model of ICU hypoglycemia. 
The features of our model described a pathophysio-
logic signature that was consistent across different adult 
ICUs, independent of recent blood glucose trends, 
and had general similarities to other illnesses (e.g., 
hypoglycemia, hypothermia, increasing anion gap, 
and hypocalcemia are metabolic and hemodynamic 
derangements frequently seen in critically ill states [11, 
39–42]) but was sufficiently different to warrant its own 
model. The model identified rising hypoglycemia risk 
~4–6 hours prior to the hypoglycemic event in both the 
UVa and MIMIC-III datasets, suggesting that there is 
a reasonable timeframe for early intervention prior to 
occurrence of a hypoglycemic event.

Machine learning has been increasingly used to de-
velop predictive models for inpatient hypoglycemia 
(15, 17, 43–46). Only one report thus far focused on 
predicting solely ICU hypoglycemia, and this study 
used classification tree learning for model development 
(17). Several other models used logistic or multivari-
able regression techniques for prediction of inpatient 
hypoglycemia, but these studies examined only inpa-
tients with a diagnosis of diabetes mellitus (15, 45), 
only inpatients who experienced severe hypoglycemia 
(43, 44), and only noncritically ill inpatients (46, 47). 
Ruan et al (15) recently used average values from the 
entire admission (based on data available after the ad-
mission ended) to compare the ability of advanced 
machine learning and logistic regression models to 
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retrospectively estimate the risk of hypoglycemia in 
inpatients with diabetes. The model we present, by 
contrast, is appropriate for risk prediction at any point 
during the ICU stay based only on data available at 
that time. Similar to the present study, Mathioudakis 
et al (47) recently developed and validated a machine 
learning model to predict near-term risk of iatrogenic 

hypoglycemia in hospitalized patients. Their model, 
however, was trained on and specifically developed for 
non-ICU admissions and did not exclude blood glu-
cose as a predictor. Our results show that an aggregate 
ICU hypoglycemia model (including blood glucose, 
biochemical, and electrophysiology monitoring data) 
demonstrated significantly higher AUROC values at 

every detection window 
when compared with mod-
els based on either blood 
glucose alone or hemody-
namic/electrophysiology 
monitoring data alone 
(Supplemental Figure, 
http://links.lww.com/
CCM/G587). Furthermore, 
several existing software-
as-medical device tools 
(e.g., Glucommander 
[Glytec, Greenville, SC] 
and GlucoStabilizer 
[Medical Decision 
Network, Charlottesville, 
VA]) use evidence-based 
multivariable algorithms 
to evaluate patient blood 
glucose values and regu-
late delivery of IV insulin 

Figure 2. Model performance. A, Area under the receiver operating characteristic curve values for the aggregate ICU hypoglycemia 
model and ICU-specific models. Values on the diagonals are cross-validated. B, Performance of prior models developed for prediction 
of ICU sepsis, intubation, and hemorrhage. CCU = coronary care ICU, hem.m = MICU hemorrhage model, hem.s = STICU hemorrhage 
model, int.m = MICU intubation model, int.s = STICU intubation model, MICU = medical ICU, NNICU = neuroscience ICU, sep.m = 
MICU sepsis model, sep.s = STICU sepsis model, STICU = surgical-trauma ICU, TCVPO = thoracic-cardiovascular postoperative ICU.

Figure 3. Model validation. A, Calibration plot demonstrating goodness-of-fit for the ICU 
hypoglycemia model as a risk metric and classifier of impending ICU hypoglycemia in both the 
University of Virginia (UVa) and Medical Information Mart for Intensive Care (MIMIC)-III datasets. 
The solid line represents hypoglycemia index values normalized by the average risk of 0.62% and 
plotted from lowest to highest. Dark circles represent proportion of ICU patients per decile with 
proven hypoglycemia in the next 24 hr. Error bars are based on the se of observed risk (proportion). 
B, Average risk relative to hypoglycemic event as determined by the ICU hypoglycemia model in 
both the UVa and MIMIC III datasets.

http://links.lww.com/CCM/G587
http://links.lww.com/CCM/G587
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to drive blood glucose toward a predetermined target 
range (48). These tools improved glycemic control (49, 
50) but have limitations: 1) they are not employed in 
all ICUs, 2) hypoglycemia still occurs in patients being 
managed with them (49, 51), and 3) their algorithms 
do not incorporate many of the pertinent hemody-
namic and electrophysiology predictors identified 
in the current study. Our findings advance the work 
of other groups and demonstrate that hemodynamic 
and electrophysiology data augment biochemical data 
to improve predictive models for ICU hypoglycemia. 
One possible clinical application of these findings is to 
present a single calibrated input using weighted non-
glucose, noninsulin, and noncarbohydrate predictors 
to add dimensionality to existing schemes for titra-
tions of antihyperglycemic therapy and carbohydrate 
exposure.

Appropriate glycemic control is a necessary com-
ponent of quality-driven inpatient healthcare. In 
critically ill inpatients, intensive glycemic control 
reduces hyperglycemia but often leads to subse-
quent hypoglycemia (11). The  Normoglycemia in 
Intensive Care Evaluation-Survival Using Glucose 
Algorithm Regulation trial found that intensive in-
sulin therapy increased 90-day mortality compared 
with conventional treatment in ICU patients (52). In 
that trial, the frequency of severe hypoglycemia was 
significantly higher with intensive insulin therapy 
compared with conventional treatment. Other work 
has shown that even mild hypoglycemia is strongly 
associated with increased ICU length of stay (13). 
Our study found similar associations among ICU 
hypoglycemia, mortality, and length of stay. We 
cannot prove causality for these associations, and 
it may be that hypoglycemia itself is a clinical sign 
of worsening or severe illness. However, one recent 
study found that reducing the frequency of inpatient 
hypoglycemia concomitantly reduced inpatient 
and 30-day mortality rates (53). Further trials are 
needed to determine if direct reduction of ICU hy-
poglycemia improves clinical outcomes. Toward this 
goal, the next step for this project is to determine if 
our prediction model offers clinical impact. We are 
currently running the model “in the background” 
of real-time ICU admissions to determine if it pro-
spectively predicts hypoglycemia and assess what 
clinical events might be prevented with earlier in-
tervention. Future steps include incorporating our 

model into a clinical decision support system and 
evaluating its effects on clinical outcomes in a mul-
ticenter randomized controlled clinical trial.

Our study has several strengths that should be 
noted, including the large dataset used for model 
development. Another strength is the model’s 
ability to immediately quantify the change in hy-
poglycemia risk from small changes in any of its 
physiologic variables and then produce a new and 
continuously updated estimate of ICU hypogly-
cemia risk in a given patient. The use of variables 
that are easily accessible from EHR and bedside 
monitoring data will also allow integration into a 
clinical decision support system that suggests ap-
propriate interventions based on individual risk lev-
els, ultimately providing a personalized approach to 
ICU hypoglycemia.

There are also limitations of this study which 
warrant discussion. First, our model was generated 
using single-center, retrospective, observational 
data. Second, our EHR dataset does not quan-
tify status of hypoglycemia awareness, continuous 
blood glucose monitoring values, or blood glucose 
self-monitoring values prior to admission. These 
data may be an important factor in developing in-
patient hypoglycemia, though others have pointed 
out that such data may not be directly applicable to 
critically ill patients (15). Finally, we did not assess 
nutritional intake or medications as predictor vari-
ables, though they would without question add 
information. Our goal was to seek a pathophysi-
ological signature of subclinical hypoglycemia in 
ICU patients that was not dependent on factors 
such as practice patterns that can vary significantly 
among health systems.

CONCLUSIONS

In summary, we used data from a large number of 
critically ill adult patients to test the hypothesis that 
routine monitoring variables could provide a distinct 
pathophysiologic phenotype of ICU hypoglycemia. 
This physiologic signature could provide a basis for fu-
ture predictive modeling by improving recognition of 
impending ICU hypoglycemia, informing the design 
of earlier interventions and measuring their effective-
ness, and identifying opportunities for the develop-
ment of novel therapeutics.
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