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Abstract

Background: Despite the significant adverse clinical consequences of RBC alloimmunization, 

our understanding of the signals that induce immune responses to transfused RBCs remains 

incomplete. Though RBC storage has been shown to enhance alloimmunization in the hen egg 

lysozyme, ovalbumin, and human Duffy (HOD) RBC alloantigen mouse model, the molecular 

signals leading to immune activation in this system remain unclear. Given that the nonclassical 

major histocompatibility complex (MHC) Class I molecule CD1D can bind to multiple different 

lysophospholipids and direct immune activation, we hypothesized that storage of RBCs increases 

lysophospholipids known to bind CD1D, and further that recipient CD1D recognition of these 

altered lipids mediates storage-induced alloimmunization responses.

Study Design and Methods: We used a mass spectrometry-based approach to analyze the 

changes in lysophospholipids that are induced during storage of mouse RBCs. CD1D knockout 

(CD1D-KO) and wild-type (WT) control mice were transfused with stored HOD RBCs to measure 

the impact of CD1D deficiency on RBC alloimmunization.

Results: RBC storage results in alterations in multiple lysophospholipid species known to bind 

to CD1D and activate the immune system. Prior to transfusion, CD1D-deficient mice had lower 

baseline levels of polyclonal immunoglobulin (IgG) relative to WT mice. In response to stored 

RBC transfusion, CD1D-deficient mice generated similar levels of anti-HOD IgM and anti-HOD 

IgG.
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Conclusion: Although storage of RBCs leads to alteration of several lysophospholipids known 

to be capable of binding CD1D, storage-induced RBC alloimmunization responses are not 

impacted by recipient CD1D deficiency.

Keywords

CD1D; lysophospholipids; red blood cell alloimmunization; storage

1 | INTRODUCTION

RBC alloimmunization occurs when patients are exposed to foreign RBCs through either 

transfusion or pregnancy, driving the generation of antibodies against surface proteins 

or carbohydrates that are either polymorphic or differently expressed on donor RBCs.1 

For those patients who have made an initial anti-RBC protein response, re-exposure to 

the antigen via subsequent transfusion may induce a rapid recall response and increase 

circulating alloantibody levels. The resulting alloantibodies often bind to the transfused 

RBCs and induce their destruction in a process known as a hemolytic transfusion reaction 

(HTR).2 In addition to destroying the clinically needed transfused RBCs, the widespread 

immune and coagulation activation induced during an HTR can lead to the development 

of shock, disseminated intravascular coagulation, renal failure, and in extreme cases, death. 

Accordingly, much of blood banking practice is dedicated to the detection of anti-RBC 

alloantibodies and providing alloimmunized patients with antigen-negative blood. RBC 

alloimmunization can be a significant problem for patients who require chronic transfusions. 

In those who generate either multiple alloantibodies or antibodies to common antigens, 

providing sufficient units of compatible antigen-negative RBCs can be both time and 

resource intensive. This can lead to significant morbidity due to delays in locating sufficient 

compatible units to treat symptoms in a timely manner and, in rare cases, death due to 

inability to identify sufficient units.3

Despite the medical importance of RBC alloimmunization, our understanding of the 

fundamental immune mechanisms that govern anti-RBC alloantibody generation is limited. 

In particular, the molecular signals that stimulate innate immune cell activation in response 

to RBC transfusion are unknown. Specifically, innate immunity evolved to respond to 

moieties not found in humans known as pathogen-associated molecular patterns (PAMPs),4 

and sterile RBCs have no obvious source of PAMPs. Alternatively, immune activation can 

occur in the absence of clear infectious etiology via a different class of patterns known as 

damage-associated molecular patterns (DAMPs),5 though no RBC-derived DAMP has been 

described. DAMPs are endogenous molecules that are released from damaged cells and are 

recognized by specific receptors that can in turn stimulate the immune system. RBC storage 

has been shown to induce a wide variety of biophysical and molecular changes,6 and several 

reports have demonstrated that storage of human RBCs leads to production of biologically 

active lipids capable of activating neutrophils.7,8 Thus, potential sources of DAMPs are 

bioactive lipids such as lysophospholipids.

Clinically, all RBCs are stored for some time at 4°C prior to their transfusion. Although 

most RBC units are transfused between 10 and 21 days, the storage time allowed by 
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current FDA standards is 35–42 days depending on storage solution. We have previously 

demonstrated that extending storage of allogenic mouse RBCs to a date, which mimics the 

extremes of allowable recovery characteristics set out by the FDA, leads to enhancement of 

alloimmunization in the HOD mouse model system.9,10 Enhancement of alloimmunization 

to donor RBCs as a function of storage time has also been reported in recipient patients 

with sickle cell disease (SCD) who require transfusion.11 It is important to note that 

similar effects were not observed in general transfusion practice.12,13 Although its clinical 

applicability may be restricted to certain patient populations or to certain blood group 

antigens, the enhancement observed in the stored HOD model provides an experimentally 

tractable system to investigate potential molecular drivers of alloimmunization. Indeed, 

mechanistic studies in the murine model have shown that extended storage of mouse 

RBCs leads to (i) increases in uptake by multiple different innate cell phagocytes including 

macrophages and dendritic cells,14,15 (ii) increases in circulating levels of multiple different 

innate cell-produced cytokines,10,16 and ultimately (iii) increases in adaptive antibody 

production.9,10 Our working model is that extended RBC storage induces DAMP production 

by stored HOD RBCs, which in turn stimulates both the innate and adaptive immune system.

One potential source of DAMPs is altered endogenous lipids that occur during RBC storage. 

It has become increasingly clear that the immune system has evolved the ability to recognize 

and respond to changes in various lipid moieties through a number of innate-like T-cell 

subsets.17 Chief among these are NK T cells (NKT), which are able to respond to changes 

in lipid species via their recognition of a wide variety of self and non-self lysophospholipid 

species bound to the nonclassical MHC molecule CD1D.18,19 NKT recognition of lipids 

bound to CD1D has been shown to play a role in controlling immune responses in multiple 

different contexts including atheroschlerosis,20–22 multiple models of autoimmunity,23 

cancer,24 as well as bacterial, mycobacterial, and fungal infections.19,25 NKT recognition of 

altered phospholipids bound to CD1D typically leads to activation of NKT cells. Activated 

NKT cells can in turn provide help to B cells via cytokines such as IL-21 and direct 

CD40-CD40L interactions, thereby inducing B-cell activation and antibody secretion.26 

Herein, we demonstrate that storage of mouse RBCs leads to dramatic alterations in multiple 

phospholipid species capable of binding to CD1D. Given that NKT recognition of lipids 

bound to CD1D is known to drive immune activation and antibody production, we tested the 

hypothesis that CD1D plays a functional role in the immune recognition of transfused RBCs 

and regulates anti-RBC alloantibody production in a mouse model.

2 | MATERIALS AND METHODS

2.1 | Mice

FVB, C57BL/6J wild-type (WT), and CD1D-KO mice were purchased from Jackson 

Laboratories (strain IDs 001800, 000664, and 008881, respectively). CD1D-KO mice have 

been described previously.27 As detailed on the Jackson Laboratories website, the CD1 locus 

was targeted by a neomycin cassette in 129S6/SvEvTac-derived TC1 embryonic stem (ES) 

cells. Correctly targeted ES cells were injected into recipient blastocysts, and chimeric mice 

were bred to C57BL/6J mice to establish the CD1-mutant colony. Mice were backcrossed to 

C57BL/6J mice for 12 generations. HOD transgenic mice express a triple fusion construct of 
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Hen egg lysozyme, Ovalbumin, and the human Duffy red blood cell antigen selectively on 

the surface of RBCs, and were generated on the FVB background as described previously.28 

All mice were bred and maintained at the animal facilities of the University of Virginia and 

Bloodworks Northwest. They were transfused between 8 and 10 weeks of age. Experimental 

groups were age and sex matched. All procedures were approved by Institutional Animal 

Care and Use Committees at the University of Virginia and Bloodworks Northwest.

2.2 | Blood collection and storage

Blood from donor FVB or HOD mice was collected by cardiac puncture under sterile 

conditions into 20% CPDA-1 (Boston Bioproducts, IBB-420). The blood was leukoreduced 

with white blood cell filters (Pall, AP-4851), hematocrit was set to 75%, and blood was 

either transfused fresh or stored at 4°C for 12 days.

2.3 | Transfusion and phlebotomy of mice

Recipient mice were transfused with 100 μL (volume adjusted equivalent of 1 unit of packed 

RBCs in humans) of stored HOD blood via retro-orbital injection, as previously described.10 

Blood from transfused mice was collected by submandibular vein puncture 7 and 14 days 

post-transfusion (dpt) and allowed to clot. Samples were then spun at 5000 rpm for 5 

min, and the supernatant was transferred to new tubes. This process was then repeated for 

the second time to get sera with no RBC contamination. Sera were stored at −20°C until 

analysis.

2.4 | Flow cross-match

Sera samples from untransfused controls or transfused WT and CD1D-KO mice were 

diluted at 1:10 in FACS buffer (phosphate-buffered saline (PBS) with 0.5% bovine serum 

albumin (BSA), 2% fetal bovine serum, and 0.1% sodium azide) and cross-matched with 

HOD or WT antigen-negative FVB RBCs as control. HOD or FVB RBCs were plated 

in 96-well plates (Costar 3795) and incubated with diluted serum for 20 min at room 

temperature. The cells were then washed with FACS buffer and stained using secondary 

antibodies: phycoerythrin-conjugated anti-mouse immunoglobulin M (IgM) (Invitrogen, 

M31504), Alexa Fluor 647-conjugated anti-mouse immunoglobulin G (IgG) (Invitrogen, 

A21236), phycoerythrin-conjugated anti-mouse IgG1 (Invitrogen, 31862), Alexa Fluor 647-

conjugated anti-mouse IgG2b (Invitrogen, A21242), or fluorescein isothiocyanate (FITC)-

conjugated anti-mouse IgG2c (SouthernBiotech, 1077-02) at 1:200 dilution in FACS buffer 

for 20 min at room temperature. Antibody binding was detected using an Attune NxT flow 

cytometer, and data were analyzed using the FlowJo Software to obtain mean fluorescence 

intensity (MFI). RBC-specific MFIs (HOD MFI minus FVB MFIs) are shown throughout.

2.5 | HEL-specific enzyme-linked immunosorbent assay

Antibody responses to the Hen egg lysozyme (HEL) portion of the HOD antigen were 

measured by HEL-specific enzyme-linked immunosorbent assay (ELISA), as previously 

described.10 Briefly, high-binding polystyrene plates (Corning 9018) were coated overnight 

at 4°C with 10 μg/ml HEL (Sigma-Aldrich, L6876) in PBS. Plates were then washed (0.05% 

Tween-20 in PBS) and incubated with blocking buffer (2% BSA and 0.05% Tween-20 
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in PBS). Sera samples were serially diluted (starting at 1:50) in blocking buffer and 

incubated in coated plates for 1 h at room temperature. Horseradish peroxidase-conjugated 

goat anti-mouse IgM or IgG-specific antibody (Jackson ImmunoResearch, 115-035-075 

or 115-035-008, respectively) was then used as a secondary stain at a 1:5000 dilution 

for 1 h at room temperature. Wells were developed using 3,3′,5,5′-Tetramethylbenzidine 

(TMB) substrate (SeraCare, 52-00-03) and quenched with 2 N H2SO4 after 10 min. Optical 

densities were measured at 450 nm. End-point titers were calculated using GraphPad Prism 

through interpolation of the cutoff value from the fit of the optical density versus (1/serum 

dilution) curve for each sample using the “plateau followed by one-phase exponential 

decay” model. The cutoff value was defined as the average plus 3 standard deviations (SDs) 

of signals from background wells (i.e., signal values from wells incubated with blocking 

buffer alone). IgG subtypes were determined by single dilution ELISAs. Sera samples were 

diluted at 1:1000 or 1:100 depending whether they were obtained from mice transfused 

with stored or fresh HOD, respectively. Serum dilutions were incubated on HEL-coated 

high-binding plates (Corning 9018) for 1 h at room temperature. After being washed, 

plates were incubated with the secondary antibodies (HRP-conjugated anti-mouse IgG1, 

IgG2b, or IgG2c, Jackson Immuno-Research, 115-035-205, 115-035-207, or 115-035-208, 

respectively) at 1:5000 for 1 h at room temperature. Plates were developed using TMB for 

10 min, quenched with 2 N H2SO4, and then optical densities were measured at 450 nm.

2.6 | Total IgG and IgM ELISA

Sera samples from 8-week-old unimmunized WT or CD1D-KO mice were diluted at 

1:20,000 and total IgG and IgM were measured using the ELISA kits, according to 

manufacturer’s instructions (Invitrogen 88–50400 and 88–50470, respectively). Briefly, 

ELISA plates were coated with captured antibodies and incubated overnight at 4°C. After 

blocking, diluted sera samples were added, as well as serially diluted standards. Following 

incubation, detection antibody was added. Plates were developed with the substrate solution. 

All reagents were provided with the kits.

2.7 | Analysis of lysophospholipids

Lysophospholipids in fresh and stored RBCs from FVB mice were analyzed by liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) as described previously.29 

Briefly, analytes were extracted by 80% methanol (vol/vol) with an internal standard mixture 

containing lyso-platelet-activating factor C-16-d4 (LPAF 16:0-d4, Cayman Chemical); 17:1 

lysophosphatidylcholine (LPC 17:1), 17:1 lysophosphatidylethanolamine (LPE 17:1), and 

17:1 lysophosphatidylserine (LPS 17:1) from Avanti Polar Lipids. LC–MS analysis was 

performed on a QTrap 6500 mass spectrometer (AB Sciex) coupled with an Acquity I-class 

UPLC (Waters). Analytes were detected using multiple reaction monitoring (MRM) in the 

negative-ion mode. Data were analyzed by using the MultiQuant software (AB Sciex) and 

peak areas were used for relative quantification.

2.8 | Statistical analysis

Statistical analysis and graphing were performed using the GraphPad Prism software. 

One-way Kruskal–Wallis analysis of variance was initially performed followed by Mann–

Whitney test for post hoc comparisons. A value of p < .05 was considered to be statistically 
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significant and assigned *, whereas p < .01, p < .001, and p < .0001 were assigned **, ***, 

and ****, respectively.

3 | RESULTS

WT mice were transfused with either (i) fresh HOD RBCs or (ii) stored HOD RBCs. Two 

weeks post transfusion, serum was isolated from each mouse and tested for anti-HOD IgG. 

Consistent with previously published reports, stored HOD RBCs induced a substantially 

increased level of anti-HOD IgG compared with fresh HOD RBCs, as measured by either 

flow cross-match (Figure 1A) or limiting dilution ELISA (Figure 1B). These findings 

confirmed that the storage conditions used in the current studies recapitulated the previously 

reported phenomenon indicating storage of HOD RBCs leads to production of factors that 

enhance immunity.9,10

To better understand how storage might be driving immune activation, we next focused 

on the generation of bioactive lipids. Lysophospholipids are an important class of 

bioactive lipids that are known to have multiple different downstream effects on immune 

cell function, and other bioactive lipids have been shown to be altered during RBC 

storage.7,8 We employed a mass spectrometry-based approach to characterize the changes 

in lysophospholipids that are induced during storage of RBCs from the background strain 

of HOD mice, FVB. Although there were small but reproducible alterations for many of 

the lipid species measured (Figure 2), four lysophospholipid species demonstrated greater 

than twofold changes in their abundance after RBC storage. Two different species of LPAF 

were increased greater than twofold, with LPAF (16:0) increased 2.3-fold and LPAF (18:1) 

increased 2.8-fold. In contrast, one LPC species and one LPE species were decreased greater 

than twofold, with LPC (20:4) decreased 2.1-fold and LPE (18:0) decreased 3.8-fold.

Given that CD1D has been shown to bind multiple different phospholipid species18 

including LPAF30 and LPC,30 we hypothesized that CD1D-mediated binding of altered 

phospholipids mediated storage-associated anti-RBC alloantibody responses. Mice with 

a targeted disruption of the CD1D gene (CD1D-KO) were used to assess if CD1D 

in the recipient is required for the increased IgG response to stored RBCs. Baseline 

characterization of naïve CD1D-KO mice prior to transfusion demonstrated similar total 

levels of circulating polyclonal IgM antibodies compared to WT mice (Figure 3A), but 

significantly reduced levels of circulating polyclonal IgG (Figure 3B), consistent with 

CD1D playing a general role in class switching of immunoglobulin.26 This confirmed that 

CD1D does indeed control class-switched IgG antibody production globally in our specific 

pathogen free (SPF) housed mouse colony, and presumably reflects a functional role for 

CD1D responses generated to our SPF microflora.

To determine whether CD1D was necessary for the response to stored RBC transfusion, we 

transfused WT and CD1D-KO mice with 1 “mouse unit” (100 μl) of stored HOD blood. 

Transfusion of stored HOD blood resulted in similar anti-RBC IgM levels in both WT 

and CD1D-KO mice as measured by both flow cross-match (Figure 4A) and HEL-specific 

ELISA (Figure 4B). Thus, the absence of CD1D does not impact IgM secretion induced by 

stored HOD transfusion. Like IgM, no difference was observed in anti-HOD IgG in response 
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to stored RBCs in WT compared with CD1D-KO mice, as measured by flow cross-match 

or ELISA (Figure 5). To test whether deletion of CD1D alters IgG subclass, IgG1-, IgG2b-, 

and IgG2c-specific secondary antibodies were used to test recipient sera. No reproducibly 

significant differences were found between WT and CD1D-KO mice in the production of the 

measured IgG subclasses (Figure 6). These data indicate that recipient CD1D is not required 

for the increase in immunogenicity of stored HOD RBCs and that its deletion does not alter 

the overall quantity of anti-HOD IgG or distribution of anti-HOD IgG subclass. This stands 

in sharp contrast to the overall levels of IgG in these mice, as pre-transfusion CD1D-KO 

mice have significantly lower total polyclonal IgG levels.

To address the possibility that CD1D might be playing a functional role in response to 

freshly collected RBCs rather than stored RBCs, we compared anti-HEL antibody levels 

generated in WT and CD1D-KO mice in response to fresh HOD RBC transfusion (Figure 

7). Similar to what we observed in response to stored RBCs, both WT and CD1D-KO 

mice generated similar levels of anti-HOD IgM, total anti-HOD IgG, and anti-HOD IgG 

subclasses in response to fresh RBC transfusion. Thus, CD1D is not required for the 

generation of anti-RBC alloantibodies in response to fresh RBC transfusion.

4 | DISCUSSION

We have used MS to characterize the changes in specific lysophospholipid species induced 

during storage of RBC from the FVB strain. Two different species of LPAF were increased 

greater than twofold during storage: LPAF (16:0) and LPAF (18:1). One species of 

lysophosphatidylcholine (LPC) was decreased twofold: LPC (20:4), and one species LPE 

was decreased fourfold: LPE (18:0). Although there are several publications that have 

looked at lipid profiles of stored RBCs,6–8,31–34 we have uniquely quantified a wide range 

of different lysophospholipid species of different acyl chain lengths. Collectively, our MS 

data demonstrate that storage of RBCs induces a range of changes in multiple different 

lysophospholipid species with some increasing while others decreasing.

Given the known biological activity of many of these species, we were interested in 

determining how these alterations might lead to immune recognition and activation. CD1D 

has been shown to bind multiple different phospholipid species with different acyl chain 

lengths18 including LPAF30 and LPC.30 Importantly, CD1D-bound lysophospholipids can 

be recognized by NKT cells, and this recognition can lead to NKT activation.19 NKT 

cell activation via recognition of CD1D bound lysophospholipids can drive NKT cell 

activation. Activated NKT cells can then go on to support B cell antibody secretion 

via both NKT secretion of cytokines such as IL-21 and direct co-stimulation via CD40-

CD40L interactions.26 Thus, based on the existing literature, it is reasonable to hypothesize 

that CD1D-mediated binding of altered phospholipids mediates the storage-associated 

enhancement anti-RBC alloantibody responses by driving NKT cell activation, which in turn 

drives B-cell antibody secretion. To address this hypothesis, we compared immune antibody 

responses in WT versus CD1D-deficient animals. Prior to transfusion, we first characterized 

the baseline polyclonal total antibody levels in WT and CD1D-deficient mice. We found that 

they had similar levels of circulating IgM, but CD1D-KO mice had significantly lower levels 

of circulating total IgG at baseline. This presumably reflects the fact that CD1D plays an 
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important role in the generation of IgG against normal flora in our SPF mouse colony, and 

is consistent with previous reports demonstrating CD1D control of antibody responses to 

various infectious agents.23–25

Having established that at baseline CD1D-deficient mice express lower IgG for the same 

level of IgM, we next asked whether they responded differently to stored RBC transfusion. 

We anticipated that CD1D-deficient mice would similarly demonstrate similar anti-RBC 

IgM responses but lower anti-RBC IgG responses to stored RBC transfusion. We were 

surprised to find that CD1D-deficient mice have similar anti-RBC alloantibody responses 

across the board for anti-HOD IgM, anti-HOD IgG, and anti-HOD IgG subclass-specific 

responses. CD1D-deficient mice also had similar anti-HOD IgM, anti-HOD IgG, and anti-

HOD IgG subclass responses to fresh HOD RBC transfusion. Overall, our data demonstrate 

that CD1D deficiency functions differently in response to either fresh or stored RBC 

transfusion compared with that it does in response to either commensal microbiota35 or 

influenza infection.36

There are several potential interpretations of our results. One is that the lysophospholipid 

alterations induced during RBC storage do not play a functional role in the stimulation 

of anti-RBC immune responses. Alternatively, it is possible that lipid alterations induced 

by storage do play a role in driving anti-RBC alloantibodies, but that that they do so by 

activating CD1D independent pathways. The current data only show that CD1D is not 

required, but we cannot rule out that it is still involved for two reasons. First, there may be 

a redundant pathway capable of compensating for the loss of CD1D. Second, lipids are a 

complex family of molecules, often with opposing actions, and so the observed effects may 

be a balance of stimulatory and/or inhibitory pathways that both act through CD1D. Indeed, 

CD1D is known to bind to both LPAF that we observe being increased by storage, and also 

LPC that is decreased during storage. Thus, CD1D may have opposing effects in response 

to the specific mix of lipids, which could be deconvoluted by testing the specific effects 

of different lipid mixtures. Given the diverse molecular mechanisms driven by immune 

recognition of lipid species,37–39 future studies should investigate whether specific lipids 

or other lipid responsive regulatory pathways might be responsible for driving anti-RBC 

alloantibodies in response to transfusion of stored blood.
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DAMPS damage-associated molecular patterns

dpt days post transfusion

ELISA enzyme-linked immunosorbent assay

FACS flourecent activated cell sorting

FDA Food and Drug Administration

HOD hen egg lysozyme, ovalbumin, and human Duffy

HTR hemolytic transfusion reaction

IgG immunoglobulin G

IgM immunoglobulin M

IL interleukin

KO knock out

LPAF lyso-platelet-activating factor

LPC lysophosphatidylcholine

LPE lysophosphatidylethanolamine

LPS lysophosphatidylserine

MHC major histocompatibility complex

NKT natural killer T cells

PAMPS pathogen associated molecular patterns

SCD sickle cell disease

SPF specific pathogen free

WT WT
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FIGURE 1. 
Transfusion of stored HOD blood results in the production of higher levels of anti-RBC IgG 

compared to fresh blood. WT mice were either untransfused, transfused with fresh HOD 

RBCs, or stored HOD RBCs. Serum was collected 14 dpt and the levels of anti-HOD IgG 

generation were measured by (A) flow cross-match presented as adjusted MFI and (B) anti-

HEL limiting dilution ELISA presented as antibody titer. Each dot represents one mouse. 

Bars on scatter plots are median values. Figure shows a representative experiment out of 4. 

*p < .05, **p < .01, ***p < .001, ****p < .0001, ns p > .5. dpt, days post-transfusion; IgG, 

immunoglobulin G; ELISA, enzyme-linked immunosorbent assay; MFI, mean fluorescence 

intensity; WT, wild type
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FIGURE 2. 
Storage of RBCs leads to alterations in multiple different lysophospholipid species. Specific 

lysolipid species were quantified in FVB RBCs within 24 h of collection (fresh) and after 7 

days of storage (stored) by targeted mass spectrometry. Average fold changes (stored/fresh) 

of three independent experiments are presented scaled by log2 with observed standard 

deviations presented with error bars. Specific lysophosphatidylcholine (LPC), lyso-platelet 

activating factor (LPAF), lysophosphatidylethanolamine (LPE), and lysophosphatidylserine 

(LPS) species with different acyl chain lengths are represented
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FIGURE 3. 
CD1D-deficient mice have similar levels of circulating total IgM and lower levels of 

circulating total IgG compared to WT controls prior to transfusion. Serum was collected 

from unimmunized 8-week-old WT and CD1D-KO mice. (A) Total IgM and (B) total IgG 

were measured by ELISA. Each dot represents one mouse. Bars on scatter plots represent 

median values. Figure shows a representative experiment out of 4. *p < .05, **p < .01, ***p 
< .001, ****p < .0001, ns p > .5. IgG, immunoglobulin G; IgM, immunoglobulin M; ELISA, 

enzyme-linked immunosorbent assay; WT, wild type
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FIGURE 4. 
CD1D-deficient mice generate similar anti-RBC IgM alloantibody levels compared with WT 

mice in response to transfused stored RBCs. WT and CD1D-KO mice were transfused with 

stored HOD RBCs. Serum was collected 7 dpt and the levels of anti-HOD alloantibody 

generation were measured by (A) flow cross-match presented as adjusted MFI and (B) 

limiting dilution ELISA presented as IgM titer. Each dot represents one mouse. Bars on 

scatter plots represent median values. Figure shows a representative experiment out of 4. *p 
< .05, **p < .01, ***p < .001, ****p < .0001, ns p > .5. dpt, days post-transfusion; IgM, 

immunoglobulin M; ELISA, enzyme-linked immunosorbent assay; MFI, mean fluorescence 

intensity; WT, wild type
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FIGURE 5. 
CD1D-deficient mice generate similar anti-RBC IgG alloantibody levels compared with 

WT mice in response to transfused stored RBCs. WT and CD1D-KO mice were transfused 

with stored HOD RBCs. Serum was collected 7 and 14 dpt and the levels of anti-HOD 

alloantibody generation were measured by (A) flow cross-match presented as adjusted MFI 

and (B) limiting dilution ELISA presented as IgG titer. Each dot represents one mouse. Bars 

on scatter plots represent median values. Figure shows a representative experiment out of 4. 

*p < .05, **p < .01, ***p < .001, ****p < .0001, ns p > .5. dpt, days post-transfusion; IgG, 

immunoglobulin G; ELISA, enzyme-linked immunosorbent assay; MFI, mean fluorescence 

intensity; WT, wild type
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FIGURE 6. 
CD1D-deficient mice generate similar anti-RBC IgG subclass alloantibody levels compared 

with WT mice in response to transfused stored RBCs. WT and CD1D-KO mice were 

transfused with stored HOD RBCs. Serum was collected 7 and 14 dpt and the levels 

of IgG1, IgG2b, and IgG2c anti-HOD alloantibody levels were measured by (A) flow 

cross-match presented as adjusted MFI and (B) anti-HEL ELISA presented as OD measured 

at 1:1000 dilution. Each dot represents one mouse. Bars on scatter plots represent median 

values. Figure shows a representative experiment out of 4. *p < .05, **p < .01, ***p 
< .001, ****p < .0001, ns p > .5. dpt, days post-transfusion; IgG, immunoglobulin 

G; ELISA, enzyme-linked immunosorbent assay; MFI, mean fluorescence intensity; OD, 

optical density; WT, wild type
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FIGURE 7. 
CD1D-deficient mice generate similar anti-RBC alloantibody levels compared with WT 

mice in response to transfused fresh RBCs. WT and CD1D-KO mice were transfused with 

fresh HOD RBCs. Serum was collected 7 and 14 dpt. (A) The levels of anti-HEL IgM and 

IgG generation were measured by limiting dilution ELISA and presented as IgM or IgG titer. 

(B) The levels of IgG subtypes were measured by single dilution ELISA at 1:100 dilution 

and presented as OD. Each dot represents one mouse. Bars on scatter plots represent median 

values. Figure shows a representative experiment out of 2. *p < .05, **p < .01, ***p < 

.001, ****p < .0001, ns p > .5. dpt, days post-transfusion; IgG, immunoglobulin G; IgM, 

immunoglobulin M; ELISA, enzyme-linked immunosorbent assay; OD, optical density; WT, 

wild type
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