Table 2. Regression results for predicting PSU at T1 and T2 from traced smartphone use on a general day.
Outcomes | ||||
---|---|---|---|---|
Problematic smartphone use at T1 | Problematic smartphone use at T2 | |||
Predictor variables | B (S.E.) | β | B (S.E.) | β |
1.Gender | .038 (.085) | .046 | -.097 (.081) | -.116 |
2.Social desirability | -.269 (.064) | -.455 ** | -.021 (.067) | -.035 |
3.Traced duration of smartphone use | .116 (.055) | .307 * | .050 (.055) | .132 |
4.Traced frequency of smartphone use | -.068 (.079) | -.114 | .036 (.076) | .060 |
5. Δ index | -.053 (.028) | -.232 † | -.062 (.028) | -.267 * |
6.PSU at T1 | .520 (.110) | .494 ** | ||
Intercept | .108 (.28) | .170 (.277) | ||
Adjusted-R2 | .235 | .344 | ||
F | 6.112 | 7.89 | ||
p-value | < .001 | < .001 |
Δ index represents trace duration minus self-report duration
†p < .1
*p < .05
**p < .01.