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Abstract

Neurons in primate lateral prefrontal cortex (LPFC) play a critical role in working memory (WM) 

and cognitive strategies. Consistent with adaptive coding models, responses of these neurons 

are not fixed, but flexibly adjust based on cognitive demands. However, little is known about 

how these adjustments affect population codes. Here, we investigated ensemble coding in LPFC 

while monkeys implemented different strategies in a WM task. Although single neurons were less 

tuned when monkeys used more stereotyped strategies, task information could still be accurately 

decoded from neural populations. This was due to changes in population codes that distributed 

information among a greater number of neurons, each contributing less to the overall population. 

Moreover, this shift occurred for task-relevant, but not irrelevant, information. These results 

demonstrate that cognitive strategies that impose structure on information held in mind rearrange 

population codes in LPFC, such that information becomes more distributed among neurons in an 

ensemble.

eTOC

Strategies are commonly used to improve working memory performance, but whether they change 

the information held in mind is less clear. Using a self-ordered selection task, Chiang et al. show 

that adopting sequencing strategies shifts information from single, highly tuned neurons to more 

distributed population codes in lateral prefrontal cortex.
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Introduction

Higher-order cognitive abilities, such as planning and problem solving, require online 

organization of information. This includes cognitive strategies that impose structure on 

information held in mind, such as creating lists or categories. For example, servers in a 

restaurant might remember customers’ drink orders in a sequence so they can serve the right 

drink to the right person later on (Ericsson and Kintsch, 1995). Organizing information in 

this way allows us to overcome natural constraints on the capacity of working memory 

(WM). WM is the ability to hold information temporarily in mind, allowing it to be 

manipulated for cognitive processes (D'Esposito and Postle, 2015; Miller, 1956), but is 

restricted to approximately four units of stored information (Cowan, 2001; Luck and Vogel, 

1997). Both WM and implementing cognitive strategies are well known to rely on intact 

function of the dorsolateral prefrontal cortex (dlPFC) (Bor et al., 2003; Miller, 2000; 

Nichelli et al., 1994), but the neural mechanisms that organize WM information online 

are not well understood. This is in part because it is challenging to capture the flexible, 

self-generated aspects of cognitive strategies that are most dependent on prefrontal function.

Cognitive strategies are deployed in many cognitive tasks, and a hallmark of prefrontal 

cortex function is flexible neural responses that adapt to encode relevant information under 

varying task demands (Duncan, 2001). Indeed, at the single neuron level, the selectivity 

of prefrontal neurons is not fixed, but changes depending on the task being performed 

(Asaad et al., 1998, 2000; Funahashi et al., 1989; Rao et al., 1997). Dynamic coding is also 

observed at the population level in prefrontal cortex (Meyers, 2018; Rigotti et al., 2013; 

Sigala et al., 2008; Stokes et al., 2013), but how this relates to changing task demands and 

single unit selectivity is not well understood. In some cases, it has been found that task 

information can be decoded from subsets of prefrontal ensembles as reliably as from the 

whole population (Leavitt et al., 2017; Meyers et al., 2008), suggesting that neurons provide 

either unequal or redundant contributions to the overall population code. More recently, 

empirical (Bartolo et al., 2020) and theoretical (Gao et al., 2017) approaches have shown 

low dimensionality of population activity obtained from large-scale recordings, suggesting 

constraints on the diversity of activity patterns generated by a population of neurons. 

However, to date, it remains unclear how these properties of population activity relate to 

adaptive coding commonly observed in prefrontal cortex. One possibility is that the flexible 

changes in single neuron responses are part of larger changes in neuronal ensembles that 

optimize population coding under different cognitive demands. Here, we investigated this 

in a WM task, by examining how ensemble encoding changes when subjects use strategies 

that impose structure on mnemonic information, thus changing the cognitive demands of the 

task.
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Recently, we found that monkeys spontaneously adopt sequencing strategies in a spatial 

self-ordered target selection task that taxes their WM capacity (Chiang and Wallis, 2018b). 

Despite improved task performance, the strength of spatiotemporal tuning among neurons 

in the LPFC decreased with more sequential behavior. Given the involvement of prefrontal 

cortex in strategy implementation, the apparent loss of information from LFPC is not 

intuitive. To assess how changes in single unit selectivity contribute to ensemble coding 

under different cognitive demands, we decoded task information, including target locations, 

orders, and colors, from ensembles of LPFC neurons. We found that, even though the 

individual neurons were less tuned, the accuracy of decoding task-relevant information 

remained the same or increased when subjects performed more sequenced selection patterns. 

Further analyses revealed that the sizes of the neural ensembles that yielded optimal 

decoding increased with sequencing strategies, suggesting that information became more 

distributed within the population, but less efficiently coded at a single neuron level. 

Lastly, behavior that was less stereotyped lead to more diverse activity patterns, with 

higher dimensionality. Together, these results demonstrate that using a cognitive strategy 

to structure behavior systematically changes neural codes in LPFC, shifting information 

from single, highly-tuned neurons to populations. This additionally suggests that online 

adaptations of population-level codes may underlie flexible cognitive abilities.

Results

Single neuron spatial tuning is modified by self-ordered search strategies

When faced with a task that exceeds the capacity limits of WM, humans and animals tend 

to employ mnemonic strategies. For animals, we operationally define ‘strategies’ by patterns 

of behavior that indicate a superordinate organization, which may or may not be deliberately 

selected by the subject. For instance, a previous study showed that monkeys spontaneously 

adopt sequencing strategies to accomplish a target selection task that required them to track 

the self-ordered selections of six identical visual targets (Chiang and Wallis, 2018b). In 

the task, two monkeys were presented with spatial configurations of targets, represented by 

colored circles on a computer screen. Starting from a central fixation point, they had to 

saccade to one target at a time to obtain a juice reward, and then return gaze to fixation 

before the next selections (Figure 1A and 1B). If a target was revisited within a trial, the 

monkey received a time-out and no reward. After each of the six targets were selected once, 

a new trial started after an inter-trial interval, signaled by a change in target color. Therefore, 

to perform well, the monkeys had to use WM to remember which targets had been visited, 

and update this information after each selection.

Each recording session consisted of six blocks of 40 trials, with target configurations held 

constant within a block. This allowed target selection patterns to be quantified within 

each block. Previously, a measure of target sequencing, termed stereotyped index (SI), was 

defined to quantify the similarity of target selection patterns in a given block (see STAR 

Methods). Higher SIs indicated blocks in which targets tended to be visited in the same 

order, and lower SIs indicated blocks with more diversity in selection orders. Using this 

approach, SIs varied block to block, but there was no evidence for systematic changes in SI 

depending on the configuration of targets, the block number within a session, or the session 

Chiang et al. Page 3

Neuron. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number (Chiang and Wallis, 2018b) (Supplemental Table S1). However, behavior patterns 

indicated that sequencing strategies improved WM performance. Revisit errors were not 

equally distributed across six target selections, but occurred predominantly in the last two 

selections. This pattern suggests that monkeys used WM to complete the task (see STAR 

Methods), and the final targets exceeded a limited WM capacity (Chiang and Wallis, 2018b). 

Importantly, employing a sequencing strategy improved both errors and reaction times (RTs) 

in these last two selections, suggesting the strategy augmented WM performance (Figure 

1C and 1D). In addition, it was shown that LPFC neurons encode the spatial and sequential 

information required to perform the target selection task (Chiang and Wallis, 2018b), but the 

amplitude of spatial tuning significantly decreased as target selection patterns became more 

stereotyped (Figure 2). This feature of stable spatial tunning with amplitudes modulated 

by task demands has previously been found in primate dIPFC in another self-organized 

behavioral task (Procyk and Goldman-Rakic, 2006).

No loss of task information in LPFC ensembles with stereotyped behavior patterns

Populations of approximately 40 LPFC neurons were simultaneously recorded during task 

performance (47.27 ± 2.72 for subject R and 36.80 ± 2.14 for subject Q; Supplemental 

Table S1), allowing us to assess how task information is represented at the ensembles 

level. We created three decoders to examine representations of target locations (target A 

to F), saccade orders (correct saccade 1 to 6, excluding revisits), and target colors (green, 

blue, and white). Each variable was decoded from ensembles of simultaneously recorded 

LPFC neurons using linear discriminant analysis (LDA) with leave-one-saccade-out cross 

validation (Supplemental Figure S1, see STAR Methods). Classifier performance was 

assessed separately for each block of 40 trials. The feature matrices used for the three 

decoders were identical, with columns consisting of each recorded unit, and six correct 

saccade responses (revisit errors excluded) x 40 trials comprising the rows. The elements of 

the feature matrix were the mean firing rates in a given epoch.

We found that neural ensembles in LPFC represented both target locations and saccade 

orders (Figure 3B). These were decoded as categorical variables that changed across 

selections within a trial according to the onset time of the 6-target configuration. In Figure 

3B, the posterior probability of the selected target or current saccade number, but not target 

color, increased as the monkey initiated each saccade response. That is, when ‘target A’ was 

selected, the posterior probabilities for A were high, and this pattern switched to B then C, 

et cetera as each was subsequently selected (Figure 3B, top panel). Similarly, the posterior 

probabilities of the current saccade number also increased on each successive saccade 

(Figure 3B, middle panel). Overall, in a 500ms time window after the monkey selected a 

target, the posterior probabilities for the correct target location and saccade order were 0.33 

± 5x10−3, 0.184 ± 3.7x10−3 for subject R, and 0.25 ± 3.7x10−3, 0.183 ± 3.3x10−3 for subject 

Q, respectively (for held-out data), significantly higher than those for the non-selected 

targets or incorrect saccade numbers [0.134 ± 0.001, 0.163 ± 7.4x10−4 for subject R and 

0.15 ± 7.5x10−4, 0.163 ± 6.7x10−4 for subject Q, respectively. Wilcoxon signed-rank test p 

= 1.4x10−86, 0.01 for subject R; p = 1.6x10−58, 3.0 x 10−4 for subject Q]. Therefore, both 

target location and saccade number could be decoded from LPFC ensembles. In contrast, 

posterior probabilities for target colors were close to chance level (Figure 3B, bottom panel) 
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[0.333 ± 1.1x10−3 and 0.334 ± 5.7x10−4 for subject R; 0.348 ± 1.8x10−3 and 0.326 ± 

8.9x10−4 for subject Q, chance = 33.3%]. This is likely because different colors were 

only used to indicate the beginning of a new trial and were not themselves relevant to 

performance of the WM task.

Next, we examined how stereotyped selection patterns interact with our ability to decode 

the three task variables during the epoch of highest decoder performance (hold target epoch, 

500ms following each saccade. Supplemental Figure S2). Based on the earlier finding 

that single neurons were less spatially tuned when behavior was more stereotyped, we 

anticipated poorer decoding of target locations in higher SI blocks. However, this was not 

the case. Figure 3C shows that decoding performance for each variable was unaffected or 

improved in higher SI blocks. To quantify this, we performed a two-way ANCOVA on 

decoding performance with continuous variable SI and categorical variable decoder type. 

There were significant main effects of decoder type [F(2,264) = 1670.55, p < 0.001 for 

subject R; F(2,171) = 87.96, p < 0.001 for subject Q], and SI [F(1,264) = 36.61, p < 0.001 

for subject R; F(1,171) = 11.07, p = 0.0011 for subject Q], with better decoding of target 

locations compared to the saccade orders and target colors in both monkeys. In addition, 

there were significant interactions between SI and decoder type in both subjects [F(2,264) = 

22.59, p < 0.001 for subject R; F(2,171) = 8.76, p < 0.001 for subject Q], with performance of 

the saccade order decoder improving with higher SI, but target location and color decoders 

remaining unchanged. This was confirmed by post-hoc comparisons, showing that target 

location decoding did not depend on SI in either subject [Pearson correlation, r = 0.07, p 

= 0.502, for subject R; r = 0.21, p = 0.108, for subject Q], but saccade order decoding 

improved with higher SI [Pearson correlation, r = 0.74, p < 0.001, for subject R; r = 

0.58, p < 0.001, for subject Q]. More sequenced behaviors did not appear to activate 

multiple target representations simultaneously. When blocks were pooled into high and low 

SI groups by a median split of behavior in each session (HSI, LSI respectively), there was 

consistently better decoding of the current target location or saccade position on HSI blocks, 

but no changes in information about the immediately preceding or following selections 

(Supplemental Figure S3). Finally, there were no correlations between performance of target 

color decoder and SI [Pearson correlation, r = 0.08, p = 0.414, for subject R; r = −0.18, p = 

0.184, for subject Q]. Together, results from both subjects showed equal or better decoding 

of task variables as behavior became more stereotyped, despite loss of spatial tuning among 

single neurons.

Given these results, one possibility is that as SI increases, target identities and saccade 

orders become more correlated so that a decoder for either variable could improve by 

relying on information about both categories rather than just one. Despite this correlation, 

however, the performance of the two task-relevant decoders did not converge at higher SIs, 

suggesting that the representations were not completely overlapping (Figure 3C). Further 

analyses using partial correlations revealed that better saccade order decoding at higher SIs 

was largely accounted for by correlations with target location, but the accuracy of target 

location decoding increased with higher SIs after controlling for the actual X,Y position 

and saccade order (Supplemental Figure S4 and Supplemental Table S3). We also examined 

each unit’s mean firing rate as the independent variable rather than decoder performance and 

found no tendencies toward weaker or stronger relationships between firing rate and saccade 
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order or target identity as SI increased (Supplemental Figure S4), meaning that changes 

in mean firing rate do not explain how decoder performance was maintained during more 

stereotyped performance.

Shared variability among neurons has been shown to impact information decoding, either 

positively or negatively (Ben Hadj Hassen and Ben Hamed, 2020; Cohen and Kohn, 2011; 

Nogueira et al., 2020; Tremblay et al., 2015), so we tested whether there were systematic 

changes in noise correlations in blocks where monkeys’ behavior was more stereotyped. 

We assessed whether the proportion of neuron pairs with correlated variability changed 

across blocks with different SIs, but did not find reliable evidence for consistent effects 

(Supplemental Table S4). Therefore, it’s unlikely that decoding accuracy was impacted by 

systematic changes in noise correlations across blocks.

Finally, because LDA classifiers may have been subject to ceiling effects in target 

decodability (Figure 3C), we assessed a more sensitive measure of spatial information in 

LPFC ensembles that is independent of saccade order. We decoded two-dimensional spatial 

coordinates for each target from the same neural activity feature matrix including all trials 

in a recording session (i.e., across blocks with different SIs) (Astrand et al., 2016). To 

define decoding performance, we found the Euclidean distance between predicted and actual 

target locations. A small distance indicated a prediction that was close to selected target, 

and therefore accurately decoded. We found that performance of the 2-D spatial decoder 

improved as SI increased in subject R, and there was no change with SI in subject Q 

[Pearson correlation, r = −0.049, p < 0.001, for subject R; and r = −0.008, p = 0.399, for 

subject Q] (Figure 4). Therefore, despite reductions in spatial tuning at the single neuron 

level, there was again no loss of accuracy in decoding target locations from ensembles of the 

same neurons.

Single units make different contributions to ensemble codes

To understand how population coding changed when monkeys used sequencing strategies, 

we assessed the contributions of each unit to the ensemble’s decoding performance using 

a neuron dropping procedure (Narayanan et al., 2005; Nicolelis, 1998). First, we found 

the accuracies of LDA classifiers trained and tested on N-1 ensembles, where one unit 

was iteratively removed from a full ensemble of size N. A unit’s unique contribution was 

quantified by the difference in performance between the full and N-1 ensembles, with 

reductions in decoding accuracy corresponding to positive contributions and improvements 

in decoding accuracy corresponding to negative contributions. This approach takes 

interactions between neurons into account, since neurons providing redundant information 

would have approximately zero contribution.

Six exemplar blocks in the top panel of Figure 5A show decoding of saccade order using 

N-1 ensembles, where the horizontal line is the median performance in that block, and 

each circle is performance with a different held-out neuron. These blocks were recorded 

from the same session, so the ensemble remained constant, illustrating how the contributions 

of the same neuron can vary across blocks with different target configurations. In the full 

data set, only rare neurons [16 out of 1077, 1.5%] kept the same type of informative 

contribution consistently across blocks. In addition, there were differences in median 
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decoding performance across blocks within a recording session, implying that decoding 

depends on the target configurations and/or block-wise changes in behavior.

To determine whether some neurons consistently contribute more to population decoding, 

we separated each full ensemble into two sub-ensembles. If a given neuron’s contribution 

was greater than or equal to the median decoding performance in at least 3 out of 6-blocks 

in a session, then that neuron was included in the higher contribution subgroup, and the 

remainder were included in the lower contribution subgroup. Consistent with our earlier 

results, we found that decoding improved in blocks where selection patterns were more 

sequenced, and the higher contribution subgroup performed similarly to the full ensemble 

(Figure 5B). In addition, decoding performance was lower among the low contribution 

group, but still tended to increase with SI [SI x contribution group ANCOVA; main effect 

of SI: F(1, 176)= 151.86, p < 0.001, for subject R; F(1, 114) = 30.4, p < 0.001, for subject 

Q. Main effects of contribution groups: F(1, 176) = 343.6 , p < 0.001 for subject R; F(1, 114) 

= 205.43, p < 0.001, for subject Q; interaction: F(1,176) = 17.02, p < 0.001, for subject R; 

F(1,114) = 2.61, p = 0.109, for subject Q]. In post-hoc comparisons, both contribution groups 

were positively correlated to the SI [Pearson correlations, higher contributions: r = 0.75, 

0.53, both p < 0.001, for subject R and Q; lower contributions: r = 0.57, 0.37, p < 0.001, 

0.004 for subject R and Q]. In comparison to the full ensemble, the higher contribution 

groups achieved similar or higher accuracies, while the lower contribution group performed 

worse [ means ± SEM 0.39 ± 0.008 full, 0.37 ± 0.008 high, 0.27 ± 0.005 low for subject R; 

0.31 ± 0.008 full, 0.34 ± 0.008 high, 0.21 ± 0.006 low for subject Q]. One-way ANOVA on 

decoding performance with post-hoc comparisons confirmed these results [F(2, 269) = 85.83, 

p < 0.001, for subject R; F(2, 176) = 81.63, p < 0.001 for subject Q. Bonferroni corrected 

post-hoc comparisons: Full versus high: p = 0.078, 0.034; Full versus low: both p < 0.001; 

High versus low: both p < 0.001, subject R, Q]. Thus, the neural representations of saccade 

orders could be extracted from subsets of the full recorded population, and removing the 

less informative neurons had little effect on accuracy. We found similar results from the 

target location decoder (Supplemental Figure S6). This emphasizes that there is variability 

and potentially redundancy in the contributions individual neurons make to population codes 

(Hung et al., 2005; Meyers et al., 2008; Narayanan et al., 2005)

Next, we wanted to determine whether the contributions of neurons changed as the 

monkeys’ target selection patterns became more sequenced. To better understand this 

question, we created a standardized contribution index (CI) for each unit in each block, 

defined as the ratio of the difference between the mean decoding performance from the full 

ensemble (N) and the N – i ensemble after removing neuron i (see STAR Methods). Positive 

or negative CIs indicate that neuron i improved or reduced the decodability, respectively, and 

zero CI indicated that the neuron provided redundant information and made no contribution 

to decoding. Using this approach, we found that the proportion of positive or negative CI 

units did not vary with SI (Pearson correlations all p > 0.05), but the magnitude of both 

positive and negative CIs decreased as behavior became more stereotyped (Figure 5C). 

In the target location decoder, this effect was stronger for positive compared to negative 

CIs (Supplemental Figure S6). This was confirmed by significant interactions in two-way 

ANCOVAs (SI x contribution type) predicting CI in both monkeys [F(1, 3677) = 148.67, p 

< 0.001, for subject R; F(1,1878) = 85.56, p < 0.001, for subject Q]. Post-hoc comparisons 
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found that, for the saccade decoder, neurons with positive contributions were negatively 

correlated with SI, while those with negative contributions were positively correlated [n = 

1826, 1016 positive, 1855, 886 negative out of 4254, 2171 neurons for subject R, Q; Pearson 

correlations, positive: r = −0.21, −0.20, both p < 0.001 for subject R, Q; negative: r = 

0.19, 0.22, both p < 0.001 for subject R, Q], and similar results were found for the target 

location decoder (Supplemental Figure S6). Therefore, the contributions of single neurons 

to an ensemble’s decoding performance consistently decreased in magnitude as behavior 

became more stereotyped. This suggests fundamental changes in the population codes for 

task-relevant information in LPFC under different self-generated cognitive strategies. In 

addition, the data indicate that the diversity of contributions among both positively and 

negatively contributing neurons became smaller during the routine behavioral strategies. 

This is consistent with smaller, more homogenous contributions to decoding performance, 

and may reflect loss of strong tuning among single neurons as previously described (Chiang 

and Wallis, 2018b). Together, these analyses show that units make unequal contributions 

to the overall representation, and these contributions can change under varying behavioral 

patterns. With this in mind, we next address the question of why task-relevant decoders 

perform equally well or better when individual neurons make smaller contributions under 

more stereotyped behavioral strategies.

Optimal ensemble sizes varied by behavioral strategy

Our findings so far show that, when decoding task information, some neurons in an 

ensemble are redundant or non-contributing. This means that in a given recorded population, 

the best decoding accuracies can be achieved with less than the full ensemble. To better 

understand ensemble coding and how it changes, we determined the optimal ensemble 

size for maximum decoding in each trial block. We used two approaches: best single-unit 

(BSU) and best ensemble (BE) procedures to assess how decoding performance changes 

as ensemble size gradually increases (Backen et al., 2018; Leavitt et al., 2017). Both BSU 

and BE add units one at a time into the ensemble to build feature decoders (Figure 6A), 

but differ in how they select which neuron to add. The BSU procedure rank orders the 

decoding performance of all single-unit (SU) decoders, and then adds units one at a time 

by descending rank into the ensembles. In contrast, the BE procedure takes all possible 

combinations of units into account and increases the ensemble size by adding whichever 

unit leads to the maximum decoding performance. Both procedures are performed iteratively 

until all units have been added.

Following both BSU and BE procedures, we decoded three variables for each block - 

target location, saccade order, and target color. Decoding was conducted with LDA, and 

accuracies were based on leave-one-out cross validation. Decoding accuracies improved 

and eventually asymptoted as ensemble sizes increased under either the BSU or BE 

procedure (Figure 6B, Supplemental Figure S7). Optimal ensemble sizes were defined as the 

smallest size to achieve maximum (100 percentile, PCT100) decoding performance. Because 

accuracy curves fluctuated slightly around the plateau, we also identified the ensemble sizes 

corresponding to 50th, 75th, and 90th percentile of the maximum decoding performance 

(PCT50, PCT75, and PCT90 respectively) in each block for further analyses. Compared to 

the BSU, BE produced higher maximum performance in all three types of decoders because 
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it takes into account how redundant or complimentary the units in the ensemble are. The 

color decoders performed closest to shuffled baselines, indicating that color information 

is weakly represented compared to the target locations or saccade orders, likely because 

color is less relevant to task performance (Supplemental Figure S7A). Optimal ensemble 

sizes for target location and saccade order tended to be positively correlated (Supplemental 

Figure S7B), indicating that blocks in which more neurons were required to reach maximum 

accuracy in spatial decoding also required more neurons to accurately decode saccade order. 

Interestingly, these co-varying ensemble sizes also appeared to correlate with SI, such that 

lower SI blocks tended to have smaller optimal ensemble sizes. To quantify this observation, 

we performed two-way ANCOVAs with categorical factor PCT and continuous factor SI 

predicting optimal ensemble size, and found that ensemble sizes increased with SI for 

the saccade decoder in both animals (Figure 6B) [significant main effect of SI: F(1, 352)= 

32.77, p < 0.001, for subject R; F(1, 228) = 20.98, p < 0.001, for subject Q], and for the 

target decoder in one animal [F(1, 352) = 33.70, p < 0.001, for subject R; F(1, 228) = 0.10, 

p < 0.76, for subject Q]. In contrast, decoding of color, which was less relevant to the 

working memory component of the task, did not vary with SI in either animal [F(1, 352)= 

0.41, p = 0.52, for subject R; F(1, 228) = 0.02, p = 0.88, for subject Q]. Overall, these 

data demonstrate that optimal ensemble sizes for decoding task-relevant, but not irrelevant, 

information increased as the SI increased, so that more neurons were required to accurately 

decode task-relevant information when behavioral strategies became more stereotyped.

Neural dimensionality varies by behavioral strategy

According to the results above, strategy use in the self-ordered WM task decreased single 

neuron contributions to ensemble coding and increased optimal ensemble sizes for task-

related decoding. In a final analysis, we focused on whether these changes are reflected in 

the dimensionality of LPFC activity under different behavioral strategies. We specifically 

investigated dimensionality over the time course of the six correct saccades in each trial and 

determined how it varied with SI across successive saccades.

Our previous results showed that reaction times increased and success rates decreased across 

saccades (Chiang and Wallis, 2018b), suggesting that WM loads increased as the monkey 

progressed through six target selections and kept track of which had already been selected. 

Thus, dimensionality of neural responses may be affected by WM load as well sequencing 

strategies that impose structure on that information held in mind. Different measurements 

of dimensionality in neural populations have been used in different experimental systems 

(Abbott et al.; Ganguli and Sompolinsky; Gao and Ganguli; Rigotti et al.). Here, we used 

the participation ratio (PR) (Dąbrowska et al., 2021; Gao et al., 2017) that finds the number 

of dimensions needed to explain around 80-90% of the total variance in a population 

covariance matrix (Dąbrowska et al., 2021; Gao et al., 2017). We computed the covariance 

matrices from average firing rates in 20 ms non-overlapping bins that spanned four trial 

epochs around each correct saccade (Supplemental Figure S1). Therefore, the resulting PR 

reflects similarities in the pattern of firing rates across neurons on each saccade, and a low 

PR can be interpreted as a more homogenous firing rate profile.
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To determine how PR varied across saccades, we created a multiple linear regression model 

to predict PR from saccade number (1 to 6) and SI in the corresponding block for each 

monkey. Only correct saccades were included, and PRs within each session were z-scored 

to make different recording sessions comparable. In addition, a third predictor indicated the 

number of simultaneously recorded signals in the corresponding recording session, since this 

can affect PR values (Mazzucato et al., 2016). Overall, this model significantly explained 

dimensionality changes across target selections in both subjects [p < 0.001, for subject R 

and Q]. The PR was positively correlated with saccade number [b1 = 0.027, 0.019, both 

p < 0.001, for subject R, Q], and negatively correlated with SI [b2 = −0.081, −0.088, 

both p < 0.001, for subject R, Q]. Therefore, as the WM load increased across saccades, 

patterns of firing rates become more diverse (i.e., more eigenvectors were needed to capture 

the same amount of variance). Note that this result does not imply that saccade order is 

encoded as dimensionality, but rather that the diversity of firing rate patterns increases as the 

monkey proceeds through six target selections in a trial. On the other hand, when monkeys 

enlist sequencing strategies, this diversity is reduced, consistent with the notion that these 

strategies reduce WM load. Together, these dynamic changes of dimensionality suggest 

that firing patterns in neural ensembles become more diverse when more information is 

needed for successful performance (e.g. remembering selected targets), and return to their 

initial status when a new trial begins and the information held in WM resets. In addition, 

dimensionality was modulated by a cognitive strategy that improved WM performance. 

Therefore, neural dimensionality reflects not only behavior-related states such as motor 

preparation (Churchland et al., 2006) and resting state (Dąbrowska et al., 2021), but also 

task demands such as rule learning (Bartolo et al., 2020; Durstewitz et al., 2010), cognitive 

strategies, and WM loads.

Discussion

When a cognitive task exceeds the limits of our WM abilities, performance can be improved 

with mnemonic strategies that organize the information held in mind. One common strategy 

is to remember lists that arrange items in an arbitrary sequence (Desrochers et al., 2015; 

Desrochers et al., 2010; Ericsson and Kintsch, 1995; Lashley, 1951). This process likely 

relies on the LPFC, an area that plays a role in both WM and the use of mnemonic strategies. 

Supporting this, previous studies have found that LPFC neurons demarcate boundaries of 

well-learned sequences (Fujii and Graybiel, 2003), and BOLD signals in human LPFC 

increased when structured sequences were recognized (Bor et al., 2003). However, little is 

known about how an organizing structure such as a sequence changes coding of mnemonic 

information. In this study, we found that self-generated sequencing strategies reorganize 

ensemble-level coding of task information in LPFC, such that more stereotyped behaviors 

were governed by more distributed codes. Distributed coding that relies less on strongly 

tuned neurons may be more robust and generalizable (Morcos et al., 2018), and our results 

suggest that distributed codes are also used to optimize performance of capacity-limited WM 

networks.

To summarize empirical findings from behavior, single-units, and ensembles in this task, we 

propose a schematic of how representations change with the implementation of sequencing 

strategies (Figure 7). Behaviorally, monkeys appear to use WM to perform the task, making 
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fewer errors on early saccades, when visited targets can be held in mind, but many more 

errors on the last saccades, when the list of visited targets exceeded WM capacity. To 

solve this task, subjects were able to generate flexible or routine (i.e., sequenced) target 

selection patterns, and the latter improved behavioral performance, measured as fewer target 

revisits per trial. This benefit occurred primarily on the final saccades, when WM begins 

to falter, indicating that sequencing behavior allowed the monkeys to overcome capacity 

limits on WM. We found that task-relevant information, including target locations and 

saccade orders, could be decoded from LPFC neural ensembles, and decoding accuracy 

tended to improve when monkeys’ selection patterns were more stereotyped. However, this 

improvement was not intuitively explained by previous work showing that, in the same 

neurons, the amplitude of spatial tuning decreased when the monkeys used more routine 

strategies (Chiang and Wallis, 2018b). To reconcile these seemingly contradictory results, 

we showed that individual neurons made smaller contributions to ensemble decoding when 

the monkey’s behavior was more sequenced, while at the same time the ensemble sizes that 

optimized decoding performance increased. These results explain how decoding accuracy 

was maintained despite reduced spatial tuning among individual neurons. As the monkeys 

followed a more routine sequence, task information at the population level consisted of 

smaller contributions from a greater number of units. Consistent with this, we found 

that dimensionality of firing rates decreased when more routine strategies were adopted, 

meaning that the activity patterns became more homogenous across the population. Overall, 

we conclude that representations of task information become more distributed in LPFC 

ensembles when monkeys use a sequencing strategy. These distributed representations may 

overcome WM constraints, perhaps by increasing the fidelity of information critical for task 

performance.

Our results emphasize how single units and populations provide different views of neural 

coding (Stokes et al., 2013). It is generally, if tacitly, assumed that information encoded 

by an ensemble must be present in the tuning properties of the component neurons when 

they are examined in isolation. However, there is accumulating evidence that classic tuning 

curves do not convey a full picture of the information present at an ensemble level (Pouget 

et al., 1999; Zhang and Sejnowski, 1999). For instance, ensemble codes for WM are affected 

by correlated variability among constituent neurons, with optimal coding commonly relying 

on units that are poorly tuned in a classical sense (Leavitt et al., 2017). Similar population 

interactions also change ensemble representations of visual space, independent of individual 

neuron tuning (Dehaqani et al., 2018). In simulations, the presence of non-classical value-

related responses in a population improves value decoding (Enel et al., 2021), and at 

the level of fMRI, adding non-selective voxels that appear irrelevant to stimulus coding 

nonetheless improves performance of a stimulus decoder (Yamashita et al., 2008). Thus, the 

stimulus-related tuning of individual units does not necessarily dictate their importance to 

population-level codes.

Beyond simply representing information, distributed codes may play other important roles 

in network functions. For instance, artificial neural networks have suggested that distributed 

codes are more robust and generalizable. Compared to networks that used rote memorization 

to recognize images, those that learned generalizable concepts relied less on units that 

were selective for individual features (Morcos et al., 2018). The networks that developed 
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fewer classically tuned units not only generalized better to new images, but were also more 

robust to noise or unit ablation. Therefore, the selectivity of individual units is often a poor 

predictor of network performance, and this is echoed in our finding that monkeys tended to 

perform better in blocks where single units exhibited less spatial tuning.

An open question is what benefit less tuned, more distributed representations might confer 

compared to other possibilities, such as populations that maintain single unit selectivity but 

distribute the information among more tuned neurons. One consideration is that the latter 

coding scheme may be metabolically costly. Theoretical work has emphasized that neural 

codes likely evolved to optimize the trade-off between representational capacity and energy 

expenditure (Levy and Baxter, 1996). Since metabolic costs per bit of information increase 

with bit rate (Laughlin et al., 1998), distributing information across populations should favor 

lower activity among individual neurons, which might manifest as reduced tuning. Another 

possibility is that reduced tuning could arise if neurons increasingly multiplex information 

as behavior becomes more routine. Neurons with mixed selectivity appear less classically 

tuned for single variables (Rigotti et al., 2013), and such mixing of task variables increases 

with task training in LPFC neurons (Dang et al., 2021). In our data, we found no evidence 

that past or future targets or saccades are increasingly represented with routine behavior, 

but it remains possible that other contextual or environmental information could mix with 

target information as selection order becomes more fixed, making neurons appear less tuned. 

Indeed, the context-dependence of habitual behaviors (Thrailkill and Bouton, 2015) suggests 

that task and environmental information could become linked with repetition.

We found that distributed neural codes not only correlated with improved behavioral 

performance, but were also implemented on the fly, as the monkey generated different 

strategies in a challenging task. This emphasizes the adaptability of prefrontal neurons 

under different conditions and goals. Although distributed coding led to better behavioral 

performance, different patterns of behavior, and their concomitant neural codes, are 

desirable under different conditions. Flexibility and exploration are frequently important, 

so we would not want to organize all behavior into structured sequences. If distributed 

coding is part and parcel of more stereotyped behavior, it may be observed more commonly 

when behaviors become routine or overtrained, or when facing familiar situations. Indeed, 

as monkeys were trained on multi-item WM or association tasks over several weeks, more 

LPFC neurons became selective, but with lower average firing rates, suggestive of a more 

distributed code (Asaad et al., 1998; Tang et al., 2019). Different mnemonic strategies may 

also be employed to overcome WM constraints. We commonly group a series of items 

into “chunks” or subgroups (Chiang and Wallis, 2018a), for instance when remembering 

telephone or social security numbers, and it remains to be seen whether these strategies 

also depend on distributed neural codes. Beyond behavioral circumstances that might 

promote more flexible or strategic behaviors, the underlying neuronal responses themselves 

may be constrained by metabolic costs, as discussed above (Levy and Baxter, 1996). 

For instance, increased BOLD signals have been found in human LPFC when subjects 

performed sequenced responses that lowered WM loads (Bor et al., 2003), suggesting 

that imposing structure on mnemonic representations entails an energetic cost. Thus, a 

balance of biological and behavioral benefits may ultimately influence how LPFC codes 

WM information.
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In summary, implementing a cognitive strategy in a self-ordered WM task improved 

performance and shifted information from highly-tuned single units to distributed ensemble 

representations. These results provide a novel view of how WM information is internally 

manipulated, without changes in external stimuli or task requirements. The mechanisms 

that dictate when and how information is distributed among a population remain to be 

investigated further, but could involve online adjustments in synaptic weights, as proposed 

under the “activity-silent” model of WM (Stokes, 2015). The current results provide the 

first step toward such investigations, and reveal important insights into the mechanisms 

underlying advanced cognitive abilities such as implementing mnemonic strategies.

STAR * Methods

Resource Availability

Lead Contact and Materials Availability—Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the lead contact, Erin L. 

Rich (erin.rich@mssm.edu). This study did not generate any new unique reagents.

Data and Code Availability—All data reported in this paper will be available by the lead 

contact upon request.

All original code has been deposited at Zenodo and is publicly available as of the date of 

publication. DOI are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

Experimental Model and Subject Details

All procedures were in accord with the National Institute of Health guidelines and 

the recommendations of the University of California, Berkeley Animal Care and Use 

Committee. Subjects were two male rhesus monkeys (Macaca mulatta), Q and R, aged 5 and 

6 years, and weighing approximately 7 and 9 kg at the time of recording. Monkeys worked 

for diluted fruit juice rewards and daily fluid intake was regulated to maintain motivation. 

Subjects sat head-fixed in a primate chair and viewed a computer screen. MonkeyLogic 

software (Asaad and Eskandar, 2008) controlled the behavior interface and subjects’ eye 

movements were tracked with an infrared camera (ISCAN). Subjects each had two circular 

recording chambers (Crist instrument, Inc.) situated over the bilateral prefrontal cortex.

Method Details

Spatial self-ordered search task—We analyzed data from two monkeys performing a 

spatial self-ordered search task with six identical visual targets. Behavior and single unit 

data were previously reported in (Chiang and Wallis, 2018b). On each trial, subjects were 

presented with a configuration of six targets and were required to saccade to each target, 

one at a time in any order, returning their eyes to the center after each target (Figure 1A 

and 1B). Reward was only delivered the first time each target was selected within a trial. 

Any revisited target resulted in a 500ms time-out with a red square presented on a full 
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screen. Therefore, subjects had to use WM to track and update which targets had already 

been selected and prepare for the next target selection. A trial was completed when all 

six targets had been selected. To avoid frustration, the trial was terminated as incomplete 

if there were 10 consecutive time-outs within a trial. On average, numbers of completed 

trials per block were 38.4 ± 0.2 and 34.8 ± 0.7 for subject R and Q, respectively. For 

each new trial, the target-reward contingency was reset after the inter-trial interval (2s). The 

target color was the same within a trial, but changed in sequence of green-blue-white at 

the onset of a new trial to ensure that subjects realized reward contingencies were reset. 

Target configurations remained the same for blocks of 40 trials (>=240 selections), enabling 

us to quantify selection patterns. The spatial configuration of targets used for each block 

was pseudorandomly chosen from a pool of 20 a priori designed spatial configurations. 

We ensured that targets were distributed relatively evenly across the display so that the 

centroid of each target configuration was located within ± 3° of the window around the 

fixation cue. The same configuration was presented repeatedly within a block but used 

only once per session. Subjects were able to complete 6 blocks per session (240 trials, or 

>=1440 selections). Only one block of data with less than 20 complete trials in subject Q 

was removed from analysis. In total, we analyzed 90 blocks in 15 recording sessions from 

subject R and 59 blocks in 10 recording sessions from subject Q (Supplemental Table S1). 

Only completed trials were included in the analyses.

We calculated SI as previously described (Chiang and Wallis, 2018b) to quantify the 

subject’s target selection patterns. For each block of trials, we counted how often each target 

(target A to F) was selected first, second, etc. and created a matrix of selection frequencies 

(e.g. Figure 2A), with dimensions of six selections by six targets. These matrices were sorted 

according to the most common sequence in which the targets were selected. SI quantified 

the extent to which the subject searched through the targets in the same sequence for all 

completed trials within a block and was defined as:

Sl = ( a − b ) ∕ ( a + b ) Equation (1)

where a is the sum of the entries on the main diagonal of the matrix and b is the off-diagonal 

sum of the matrix. Our previous results had shown that higher SIs significantly improved 

behavioral performance, evident as a reduction in the number of revisited targets for both 

subjects (Chiang and Wallis, 2018b).

We compared behavior between high and low SI blocks, defined by a median split of 

observed SIs within session for each monkey. Common selection patterns were followed 

more frequently on high SI compared to low SI blocks (Two-way ANOVAs: H/LSI blocks, 

p < 0.001 for both subjects), and the pattern is clearly present throughout all 6 selections, 

indicating that high SI’s aren’t exclusively driven by first or last target effects (Supplemental 

Figure S2C). RTs were calculated as the time from configuration presentation to target 

selection. A multiple linear regression model predicted RTs from saccade order, high/low 

SI block, and the order x block interaction. Errors with respect to sequence position were 

previously analyzed by determining the difference between observed and expected success 

rates (Chiang and Wallis, 2018b). Expected success rates were calculated by assuming that 

errors are a linear function of the number of potentially incorrect saccades that are possible. 
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That is, it’s impossible to make a mistake on the first target selection, and highly unlikely 

on the second (1/6, or 16.7% chance), etc., so that success rates should show a linear decline 

with each target selected if errors are randomly distributed. The other possibility is that 

monkeys use WM and memory strategies, so that they perform better than the expected 

success rates when WM loads are low, but performance suffers when WM capacity is 

exceeded. Therefore, the expected success rates were calculated by fitting a linear function 

to the average success rate across all target selections, such that there is a consistent decrease 

at each target selection. This calculation assumes that there is a baseline error rate and the 

only factor distributing these errors is task statistics that change the probability of selecting a 

correct target by chance.

Neurophysiological Procedures—Our methods for neurophysiological recording have 

been reported in detail previously (Chiang and Wallis, 2018b). In brief, both subjects were 

implanted with a titanium head positioner and recording chambers over each hemisphere. 

Chamber position was determined from previously acquired 1.5-T MRI scans to target the 

dorsal and ventral banks of the principal sulcus. Neurons were recorded from bilateral 

LPFC with 12–16 tungsten microelectrodes (FHC Instruments), advanced with custom built, 

manual microdrives in each recording session. Electrodes were placed in the target area 

by mapping the position of sulci and gray and white matter boundaries during recordings. 

Within the target area, we randomly sampled neurons and did not attempt to filter neurons 

based on selectivity. In total, 1077 units were collected from both monkeys (Subject R: 709; 

subject Q: 368), the majority of which were within the principal sulcus. The number of 

recording units per session are listed in Supplemental Table S1. Waveforms were digitized 

(Plexon Inc.) and stored for offline spike sorting (Offline Sorter, Plexon Inc.) and analysis.

Quantification and Statistical Analysis

We conducted all statistical analyses using custom MATLAB (Mathworks) scripts. Data 

included in the analyses were from six correct saccades in completed trials. For each neuron, 

we calculated its mean firing rate (FR) during the hold target epoch, which comprised the 

500ms period of fixation required to select a target, or during the sliding epochs of 200ms 

windows stepped forward by 10ms. The size of the neural ensembles corresponded to the 

number of neurons recorded per session (Supplemental Table S1). In decoding analyses, we 

treat each simultaneously recorded ensemble as independent and do not pool neurons into a 

pseudo-population.

Spatial tuning—Responses of single neurons are described in detail in Chiang and Wallis 

(2018b). Briefly, the firing rate of each neuron was computed in a 500 ms window during 

the hold-target epoch, and fit with a linear model that included the following predictors: 

X and Y coordinates of the selected target, saccade order position, target distance from 

fixation, SI in the block, X and Y coordinates of the previous target selected, X and Y 

coordinates of the next target selected, and target color (Supplemental Table S2). To quantify 

changes in spatial tuning across the population, we used the same analysis windows and 

converted target locations to polar coordinates to compute the magnitude and direction of the 

resultant vectors for standardized firing rates in response to each target selection. Changes in 

spatial tuning were quantified by splitting each session into high and low SI blocks (median 
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spit), and calculating one resultant vector for each block type, then finding the change in 

direction (d’) and magnitude (m’) of these vectors (Figure 2).

Categorical Decoders—We used LDA with leave-one-out cross validation to decode task 

features, as implemented by the Matlab function classify. A diagram in Supplemental Figure 

S1 illustrates the decoders we used to classify target locations, saccade orders, and target 

colors, separately. The feature matrix consisted of average firing rates in a given epoch 

observed during each correct saccade (rows) from each neuron (columns), and labels were 

target identity, as determined by its spatial location (e.g. target A, B, etc.), saccade number 

(e.g. saccade#1, #2, etc.), or target color (green, blue, and white). Classifiers were separately 

trained and tested on each block of 40 trials (<= 240 correct saccades). Performance was 

quantified as either the percent of saccades accurately classified when held out from the 

training set, or the decoding accuracy of the correct category for the held-out observation 

(Supplemental Figure S2). Mean decoding performance was calculated as the mean number 

of held-out trials classified correctly from all saccades. To examine whether decoding was 

affected by SI, we performed two-way ANCOVAs on mean decoding performance with 

continuous variable SI and two categorical variables: target location and saccade order. 

Significance was evaluated at p < 0.05 unless otherwise specified.

Two-dimensional Spatial Decoder—The LDA tested whether neural activity 

distinguished different targets categorically, but cannot determine whether these codes are 

based on spatial coding or other distinctions. To examine how well target locations could 

be predicted, we used a regularized general linear model with 10-fold cross validation as a 

continuous variable decoder to predict the locations of selected targets (Astrand et al., 2016). 

A diagram in Supplemental Figure S1 illustrates the data structure. The feature matrices 

were the same as those of categorical decoders, and labels were either X- or Y-coordinates 

corresponding to each selected target. Regularization was implemented with the Matlab 

function ridge. Ridge regression is a regularization method to prevent overfitting (James et 

al., 2013). In order to find the optimal ridge parameter, k, we calculated the mean square 

error (MSE) between predicted and actual values (Supplemental Figure S5). We used a 

2-step grid search procedure for optimization. First, we searched a wide parameter space 

that was coarsely sampled (k = 10t, t = −8:1:8), to find the parameter that most frequently 

minimized MSE in 100 iterations, each using 10-fold cross validation. We used these results 

to narrow the search space and sample more precisely. We repeated the above procedure 

with 100 evenly spaced parameters t’, where k = 10t’, and 10t−2 ≤ t’ ≤ 10t+2. Optimal k was 

again based on the minimum MSE. Accuracies were quantified as the Euclidean distance 

between actual and predicted targets in 2-D space (Supplemental Figure S5).

Noise Correlations—Noise correlations are defined as shared variability among neurons 

that can be detected across repeated presentations of identical stimuli (Cohen and Kohn, 

2011). Our task design is somewhat unconventional for calculating noise correlations, since 

there is variability in both saccade order and target location so there are few repeated 

presentations of stimuli that could be considered both perceptually and cognitively identical. 

Therefore, we approximated noise correlation measures separately for each selected target 

location or sequence position, as if it were repeated measures of an identical stimulus. To 
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calculate correlated activity at each sequential position, we performed pair-wise Pearson 

correlations separately on all first saccades, second saccades, etc. across all trials with 

each block. These analyses removed signal correlations due to saccade order, since each 

saccade was examined separately, and shuffled signal correlations due to target location, 

since the data were sorted with respect to saccade number, not target. Likewise, to calculate 

correlated activity across saccades to the same target location, we performed pair-wise 

Pearson correlations separately on all selections target A, B, etc., across all trials within 

each block. These analyses removed signal correlations due to target location, since each 

selection was examined separately, and shuffled signal correlations due to saccade order, 

since the data were sorted with respect to target, not saccade number. Further, we minimized 

the risk of falsely inflating the correlation values by excluding correlations between units 

on the same electrode from analysis (Leavitt et al., 2013). After applying this exclusion 

criterion for each recording session, on average we had 1118.1 ± 131.1 and 658.2 ± 

71.1 pairs of noise correlation from 47.3 ± 2.7 and 36.8 ± 2.1 simultaneously recorded 

neurons on subject R and Q, respectively. Fisher’s r-to-z transformation was applied to the 

correlation coefficients in order to normalize variance for hypothesis testing. As previously 

reported (Leavitt et al., 2013; Tremblay et al., 2015), we found different pairs of neurons 

had positively and negatively correlated activity. We reasoned that positive and negative 

noise correlations may be differentially related to sequencing strategies, so we separately 

calculated the proportion of neurons with significant positive or negative noise correlations 

as a function of SI in each block (Pearson correlations). This was carried out in four 

different epochs: early and late fixation (500ms non-overlapping bins from the 1s fixation 

window), the hold target epoch, and the reward delivery epoch (Supplemental Table S4).

Neuron Dropping Procedure—To determine the contribution of each neuron to 

ensemble decoding, we reran the LDA analyses with a neuron dropping procedure 

(Narayanan et al., 2005). We removed one neuron at a time from the whole neural ensemble 

(N), ran the classifier with the remaining ensemble (N-1), and found the change in decoding 

performance between ensembles N and N-1. Performance was quantified by calculating 

the decoding accuracy between actual and predicted classes across saccades in a given 

block. Thus, removing an informative neuron will decrease decoding performance, but 

removing a noisy or redundant neuron will have little effect or even increase performance. 

A median baseline performance was also calculated from all N-1 ensembles in a block 

(Figure 3A), and used to define high and low contribution subgroups of neurons as those that 

produced performance drops below or above the median respectively. To further quantify 

each neuron’s contribution, we created a standardized contribution index for each unit in 

each block.

Contribution index = [ Prob(N) − Prob(N‐i) ] ∕ Prob(N) Equation (2)

The contribution index of the i-th neuron is defined as the ratio of the difference between 

the mean decoding accuracy from the full ensemble (N) and the remaining ensemble (N 

− i) after removing neuron i. In Eq. 2, Prob(N) denotes the mean decoding performance 

from the full ensemble, Prob(N-i) denotes the same mean decoding performance from the 

N-i ensemble. If the contribution index was positive, the N-i ensemble had lower decoding 
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accuracy compared to the full ensemble, and the i-th single neuron improved decoding. 

More positive CIs indicated a bigger drop in performance, so that the neuron made a larger 

contribution to the ensemble. On the other hand, if the CI was negative, then neuron i 

reduced decoding, and if it equaled 0, there was no difference between the full and reduced 

ensemble. In the latter case, the i-th unit either provided redundant information or made no 

contribution. CIs were calculated separately for each block, resulting in 4254 data points 

for subject R and 2171 data points for subject Q. We then excluded data points with zero 

contribution indices [573 out of 4254 for subject R; 289 out of 2171 for subject Q] for the 

further analysis.

Optimal Ensemble Size Measures—To assess the optimal ensemble size for each 

decoder in trial blocks, we adopted BSU and BE procedures from previous work (Backen et 

al., 2018). First, we decoded each feature (target identity, saccade number, target color) from 

each single unit within a block, and sorted the neurons according to descending accuracy. 

Then, for the BSU procedure, we iteratively added each neuron to an accumulating ensemble 

in the sorted order, starting with the most informative, and ran the LDA as previously 

described to determine accuracy at each step. The BE procedure was similar, starting with 

the most informative neuron, but considered all possible combinations of neurons with each 

new addition, keeping the unit that yielded the highest accuracy for that ensemble size. 

After either BSU or BE, the optimal ensemble size was defined by how many neurons were 

included in the neural ensemble to reach the maximum decoding accuracy (PCT100), or 

90%, 75%, or 50% of maximum (PCT90, PCT75, PCT50).

Dimensionality Measurement—Dimensionality can be quantified by different 

measurements in different tasks and neural systems (Abbott et al., 2011; Ganguli and 

Sompolinsky, 2012; Gao and Ganguli, 2015; Rigotti et al., 2013). Here, we used the PR, 

calculated as a continuous measurement of dimensionality by using the population activity 

patterns from every correct saccade in each trial, to assess variability. The PR is closely 

related to the concept of explained variance from principal component analysis (Dąbrowska 

et al., 2021; Gao et al., 2017) and is defined as:

PR =
∑i = 1

M μi
2

∑i = 1
M μi2

Equation (3)

Where μi are the eigenvectors of a covariance matrix for i = 1 to M simultaneously recorded 

units. To calculate PR, we first created spike-count arrays from simultaneously recorded 

units, consisting of 20ms non-overlapping bins in four 500ms epochs (early fixation, 

late fixation, hold target, and reward epochs), for each correct saccade in a given trial 

(Supplemental Figure S1). Then, we calculated the covariance (COV) for each array, which 

indicated how the population covaries across epochs (Gao, et al., 2017), and calculated the 

vector μ containing the eigenvalues of the square matrix COV. The size of the square matrix 

COV is equal to M simultaneously recorded units. Lastly, we created a vector of PR values 

for each correct saccade in blocks of complete trials to assess changes in dimensionality 

across saccades. In general, the PR corresponds to the number of dimensions required to 
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explain about 80% ~ 90% of the total population variance (Gao et al, 2017). In other words, 

the diversity of firing patterns in the neural ensembles increased with PR. To compare 

PR values across recording sessions, we normalized vectors of PR within a session before 

further analyses. The linear model was calculated for each monkey as follows:

PR ∼ b1.Saccades + b2 . Sl + b3.nSigs Equation (4)

where Saccades is the saccade number within a trial, SI is calculated from behavior in each 

block, and nSigs is the number of neurons in each ensemble (Supplemental Table S1).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Sequencing strategies improve performance in a self-ordered working 

memory task

2. Strategies distribute information from tuned LPFC neurons to population 

codes

3. Less routine behavior and higher memory loads increase neural 

dimensionality
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Figure 1. 
Spatial self-ordered search task. (A) On each trial, monkeys fixated a yellow point in the 

center of the screen and were shown a configuration of 6 identical targets (white circles). 

They made a selection (dashed line) by saccading to and holding fixation on one target. 

If the target had not been visited on that trial, a reward was delivered, and the monkey 

had to move his eyes back to the central fixation point before making another selection. 

This continued until all targets were visited once, at which point the trial ended and was 

followed by an intertrial interval (ITI). (B) An example trial with the target selection pattern. 

Gray trajectories indicate saccade paths starting from fixation to each target. S1 to S6 

indicates target selection order. (C-D) Blocks were divided into high and low SI groups 

by a median split of each session. (C) A multiple linear regression model predicted RTs 

from saccade order, high/low SI block, and order x block interaction. In both subjects, RTs 

increased across saccades, suggesting later selections were more difficult (main effect of 

order p < 0.001 for both). For subject R, RTs during high SI blocks were faster than low SI 

blocks (main effect of SI block p < 0.05), and for subject Q, there were faster RTs during 

high SI blocks on the last two saccades (order x SI block interaction p < 0.001, post-hoc 

comparisons, *p < 0.05, **p < 0.01). (D) Monkeys make more errors than expected later 

in selection sequences. Expected success rates were calculated as a linear function of the 

number of potentially incorrect saccades possible at each selection (see STAR Methods), 

and observed rates were the number of correct selections divided by the total number 
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of trials (Chiang and Wallis, 2018b). Monkeys performed better than the expected when 

WM loads were low, but performance declined precipitously when capacity was exceeded 

(binominal tests, **p < 0.01, ***p < 0.001). Performance was enhanced on high SI blocks 

specifically during later target selections, when WM began to falter (Chi-square tests, dashed 

lines indicate p ≤ 0.01).
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Figure 2. 
Sequencing strategies decrease spatial tuning among single neurons. (A) Two single-neuron 

examples, recorded from subject R (left) and Q (right), showing the effects of the sequencing 

strategies on spatial tuning. The x-axis refers to the angle, in polar coordinates, of the 

selected target on the screen. Filled circles are from the three blocks in an exemplar session 

with higher SIs. Empty circles are from the three blocks in the same session with lower 

SIs. Flatter tuning curves were observed when the animal was searching through the targets 

using a more stereotyped strategy (Chiang and Wallis, 2018b). (B) Changes in spatial tuning 

were quantified by the change in direction (d’) and magnitude (m’) of resultant vectors for 

standardized firing rates in high and low SI blocks. The first circular plot shows standardized 

firing rates for one example neuron. The second shows the end points of the resultant vectors 

for each group (triangles), with m’ and d’ measures. Histograms show d’ and m’ for each 

single unit, grouped according to when they exhibited spatial selectivity: in both high and 

low SI blocks (green), low SI only (teal), high SI only (blue), or neither (gray). The direction 

of spatial tuning shifted slightly in the high SI group (deviation from zero degrees t124 = 

−2.51, p = 0.013), when directional tuning was weak. Other groups showed no shift in 

tuning direction (p > 0.05). In contrast, there was consistently stronger tuning in low SI 

blocks (positive m’) among neurons that exhibited spatial tuning in low SI only or both low 

and high SI blocks, constituting the majority of recorded neurons. Those with spatial tuning 

in high SI blocks only had significantly negative m’ distributions, and those with no tuning 

had distributions centered at zero. **p < 0.01. ***p < 0.001.
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Figure 3. 
Target location and saccade order, but not target color, can be decoded from LPFC 

ensembles. (A) Two sample target configurations with saccade frequency matrices from 

two subjects. Targets at unique locations were arbitrarily assigned a letter for analysis. The 

matrices show the proportion of trials within a block that each target was selected first, 

second, etc. These example blocks show strong sequencing behavior, with high frequencies 

on the main diagonal. (B) Posterior probabilities calculated for each of six target selections, 

across 40 trials from the same blocks shown in A. Top and middle panels show posterior 

probabilities of target locations and saccade orders from both subjects, and the bottom panel 

shows target color. Dotted lines indicate the onset time of the target configurations, and 

gray line indicates the chance level. The common saccade order was defined by the sorted 

saccade frequencies in A. Color labels indicate different targets or target colors. (C) The 

decoding performance during the hold target epoch for target location (pink circles), saccade 

order (blue circles) and target color (empty circles) decoders, as a function of SI in each 

block. Person correlation, ***p < 0.001. Left panel: subject R (n = 90 blocks). Right panel: 

subject Q (n = 59 blocks).
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Figure 4. 
Two-dimensional spatial decoding. (A) Example target configurations, in which each target 

(circles) is color-coded, to show the corresponding locations of the predicted targets 

(squares). Different color labels were used for visualization only; targets in the task were 

identical. Note that the decoder was trained and tested across blocks with different SIs 

and target configurations, but the same neuron ensemble. (B) Decoding performance was 

quantified for each target selection as the Euclidean distance between actual and predicted 

targets and plotted as a function of SI. Performance improved with SI in subject R and 

was unaffected subject Q, demonstrating no loss of spatial information at the population 

level with more stereotyped behaviors. For data visualization, the original scatter plots 

(Supplemental Figure S5) were binned by SI into 7 subgroups with an equal number of 

observations in each. The SI value on x-axis for each bar is the mean of SIs within the 

subgroup.
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Figure 5. 
Units make smaller contributions to the ensemble when behavior is more sequenced. (A) 

Diagram of the neuron dropping procedure in a sample recording session. Six blocks 

from the same session are labeled by different colors. Average performance from a 

saccade order decoder (y-axis) varied across blocks. In the neuron dropping procedure, 

the same decoder was run while iteratively removing one unit from the ensemble (bottom 

schematic). (B) Scatter plots show block-wise mean saccade order decoding as a function 

of SI for the full ensemble (+), higher contribution (magenta), and lower contribution 

(cyan) subgroups. Decoding performance corresponds to the proportion of target selections 

accurately classified. Bar plots show the overall means, collapsed across SI. (Pairwise t-tests, 

***p < 0.001, *p < 0.05). (C) Population data showing CI as a function of SI. Each point 

is the contribution of one neuron to one block. Neurons making positive contributions 

(magenta) improved decoder performance, while those making negative contributions 

(cyan) reduced it. The contributions of the positive groups decreased as SI increased, and 

contributions of the negative groups increased as SI increased.

Chiang et al. Page 29

Neuron. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Optimal ensemble sizes increase with SI. (A) Schematic of BSU and BE procedures adapted 

from (Backen et al., 2018; Leavitt et al., 2017). In the BSU procedure, the information 

carried by each neuron is determined by a single-unit decoder, and the ensemble size is 

gradually increased by iteratively adding units based on their information rank. The BE 

procedure starts with the most informative neuron then tests all possible combinations of 

neurons to iteratively select one that produces the maximum decoding performance at that 

step. (B) Performance of the target location decoder from subject R in an example block. 

Black symbols show ordered single-unit decoders. Filled circles show BSU (Blue) and 

BE (Green) accuracies as neurons are added to the ensemble. Red and magenta circles 

indicated the ensemble size with maximum decoding accuracies for each approach. The 

same procedures were also used on shuffled data sets (BSU in blue, BE in green, and 

single unit in black lines, see STAR Methods). Note that BSU and BE procedures selected 

ensembles optimized to decode real or shuffled data, so that shuffled accuracies are slightly 

above theoretical chance, as observed in other studies (Backen et al., 2018; Leavitt et al., 

2017). The chance level for target location and saccade order decoders was 16.6%, and 
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for target color decoder was 33.3%. (C) Optimal ensemble sizes increase with sequencing. 

Optimal ensemble sizes at each PCT as a function of SI for target location, saccade order, 

and target color decoders from two subjects. Ensemble sizes were higher with high SI for 

task-relevant (location and order), but not irrelevant (color) information.
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Figure 7. 
Sequencing strategies shift information from single units to populations. (Top) Self-

generated strategies varied across blocks, from flexible to routine. Selection frequencies 

for example blocks are similar to Figure 2, with warm colors on the diagonal indicating that 

selections frequently occur in the same order. (Bottom) Schematic of neural ensembles from 

the extremes of the flexible-routine spectrum. Triangle size indicates the amplitude of each 

neuron’s contribution. When strategies are more routine, larger group of units with smaller 

individual contributions are recruited; otherwise, task information is represented by smaller 

groups of units with larger individual contributions.
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Key Resources Table

REAGENT or RESOURCE

Experimental models: Organisms/strains SOURCE

Non-human primate (Macaca mulatta) California National Primate Research Center

Software and algorithms SOURCE IDENTIFIER

MATLAB The Mathworks https://www.mathworks.com/products/matlab.html

The Multichannel Acquisition Processor (MAP) Neurophysiology 
System Plexon http://plexon.com/

Offline Sorter Plexon http://plexon.com/

MonkeyLogic Toolbox for MATLAB NIH https://www.brown.edu/Research/monkeylogic/

Custom analysis code This paper https://doi.org/10.5281/zenodo.5708963

ISCAN ISCAN http://iscaninc.com/home.html

Adobe Illustrator Adobe Inc. https://www.adobe.com/
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