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Brain metastasis (BrM) is the most common form of brain cancer, characterized by neurologic 

disability and abysmal prognosis. Unfortunately, our understanding of the biology underlying 

human BrMs remains rudimentary. Here we present an integrative analysis of >100,000 

malignant and non-malignant cells from 15 human parenchymal BrMs, generated by single-cell 

transcriptomics, mass cytometry, and complemented with mouse model- and in silico- approaches. 

We interrogated the composition of BrM niches, molecularly defined the blood-tumor interface, 

and reveal stromal immunosuppressive states, enriched with infiltrated T cells and macrophages. 

Specific single-cell interrogation of metastatic tumor cells provides a framework of 8 functional 

cell programs that coexist or anticorrelate. Collectively, these programs delineate two functional 

BrM archetypes, one proliferative and the other inflammatory, that are evidently shaped through 

tumor-immune interactions. Our resource provides a foundation to understand the molecular basis 

of BrM in patients with tumor cell-intrinsic and host environmental- traits.

Graphical Abstract

In Brief

Single cell analysis on human brain metastases from multiple cancer types, highlights the 

conserved cell types of immune and non-immune populations, and reveals two functional 

archetypes of metastatic cells that coexist in each tumor.
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INTRODUCTION

Brain metastases (BrM) are the most common intracranial tumors in adults, approximately 

20 to 40% of cancer patients will develop BrM (Kamp et al., 2018; Shojania et al., 2003). 

Currently, despite aggressive therapies, BrM is incurable with medians of 8.1 and 2.4 per 

cent overall survival, for 2- and 5-years respectively (Achrol et al., 2019; Hall et al., 2000). 

Further, BrM diagnosis is associated with extreme deterioration of quality of life.

Despite the urgency implicated by the high incidence, high morbidity, and poor prognosis 

of BrM, our current understanding about colonization of the human brain by metastatic 

tumor cells (MTCs) remains rudimentary. It has been proposed that MTCs may reside 

in a specialized ecosystem in patients that sustains their survival, termed brain metastatic 

niche (Lambert et al., 2017). As a function of this niche, MTCs may orchestrate functional 

programs that foster the colonization process. However, we lack detailed information 

about the specific composition of brain metastatic niches, their cellular diversities, and the 

functional programs adopted by MTCs in human tumors, remain speculative.

Recent studies applying high-dimensional, single cell analyses to primary tumors have had 

a profound impact on cancer biology (Rozenblatt-Rosen et al., 2020). Similar studies in 

human metastases are rare, largely due the clinical-, logistical- and technical- challenges 

inherent to collecting and profiling metastases at single cell level (Bova, 2017). Instead, 

studies thus far have either used experimental mouse models or bulk analyses of human 

tumors (Valiente et al., 2014; Zeng et al., 2019; Zhang et al., 2015).

Here, we extensively profiled MTCs and BrM-associated stromal cells from parenchymal 

human BrM tumors at single cell resolution using transcriptomics, mass cytometry, 

corresponding single cell analytical methods and complementary approaches. Our broad 

cancer type focus and deep analysis improves on existing knowledge of BrM biology.

RESULTS

Brain Metastases from Different Cancer Types Reveal Comparable Metastatic Niches

We obtained fresh parenchymal BrM specimens from fifteen patients with diagnosis of 

melanoma (n=3), breast cancer (n=3), lung cancer (n=3), ovarian cancer (n=2), colorectal 

cancer (CRC) (n=1), renal cell carcinoma (n=1), unknown primary carcinoma (n=1) and 

a case of adult rhabdomyosarcoma. All cases were located predominantly in brain cortex 

(Figure 1A) (clinical characteristics are listed in Table S1). Dissociated tumors were 

profiled by single cell RNA sequencing (scRNAseq) with the 10× drop-seq platform (10× 

Genomics). We achieved a median of 6,798 cells per tumor, with a mean of 79,609 read 

counts and a median of 2,865 genes per cell. For each sample we detected a median 23,525 

total genes. In parallel, 11 of these 15 samples were analyzed by mass cytometry using 

an immune panel (Figure 1A). Single cell transcriptomes were analyzed using a custom 

computational pipeline based on the Seurat package (Butler et al., 2018) and visualized onto 

uniform manifold approximation and projection (UMAP) (Becht et al., 2018).
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Stromal cells from different tumors formed shared and well-separated clusters that allowed 

us to annotate cell types by cluster specific markers. In contrast, MTCs formed independent 

clusters without overlap between cases, revealing a high inter-patient transcriptional 

heterogeneity among MTCs (Figure 1B). We took advantage of carcinoma and melanoma 

markers, absent in brain tissue, to accurately identify MTCs in all analyzed cases and 

confirmed the annotations of malignant cells by evaluation of chromosomal aberrations 

estimating copy-number variations (CNV) in each tumor (STAR Methods). From carcinoma 

and melanoma BrMs, 80,377 single cell transcriptomes were analyzed, including 49,488 

cells annotated as MTCs and 30,889 non-malignant BrM-associated cells. For downstream 

analyses, unless specified, we sought to reveal the commonalities across BrM tumors, with 

an emphasis on inflammatory immune and malignant cell states.

The cancer cell contribution of this BrM set ranged from 3.6% (Lung-3) to 98.1% 

(Melan-2), with a median of 56.6% across biopsies (Figure 1C), which was confirmed and 

further illustrated by single BrM sample clustering (Figure S1A) and immunostaining for 

KRT19 or MELAN-A to mark cancer cells (Figures 1D and S1B).

The unbiased clustering of non-malignant cells (STAR Methods) revealed a structure of the 

brain metastatic niche with UMAP clouds of vascular cells (endothelial and mural vascular 

cells), inflammatory immune cells, and mesenchymal progenitors (Figure 1E). Only very 

few astrocytes were detected in BrM lesions (Figure S1C). We observed comparable niche 

composition when clustering melanoma and carcinoma BrMs separately (Figures S1D and 

S1E).

We identified twenty distinct clusters that we assigned on the basis of marker gene 

expression as endothelial cells (EC-1, EC-2 and EC-3 clusters) with marker genes CLDN5 
and PECAM1, mural vascular cells including pericytes (PC) and vascular smooth muscle 

cells (vSMCs) (PC-1, PC-2, PC-3 and vSMCs) with marker genes RGS5 and ACTA2, 

mesenchymal stromal cell-like cells (MSC-like-1 and MSC-like-2) with marker genes ISLR 
and CTHRC1 (Figures 1E and 1F). T cells (T:CD8+:EM, T:CD4+:CM1, T:CD4+:CM2, 

Tregs and T:CM) were identified with marker genes CD3D and IL7R, B cells (B-c1 

and B-c2) with marker genes JCHAIN and MZB1, metastasis-associated macrophages 

(MAMs:APOE+ and MAMs:S100A8+) with marker genes AIF1 and LYZ, and dendritic 

cells (DCs) (cDC2:CD1C+/CLEC10A+) with marker genes CD1C and CLEC10A. We also 

identified one cluster of reactive astrocytes with marker genes GFAP and S100B (Figures 

1E and 1F). Two ambiguous clusters characterized by mural cell markers and immune cell 

markers, detected in the Breast-1 and Unknown Carc. samples, were excluded from further 

analysis (Figure S1F). All markers and curated gene signatures used for annotations are 

listed in Table S2.

Our analysis of stromal composition indicates that human brain metastatic niches are 

comparable across multiple patients and cancer types (Figures 1E and S1A) but displays 

major differences at the immune composition level. Profiling of 6,325 cells from adult 

rhabdomyosarcoma BrM resected from brain cortex and unbiased clustering identified a 

stromal structure that mirrored the stroma in melanoma and carcinoma BrMs (Figure S1G). 
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This well-annotated dataset of human parenchymal BrMs allowed us to next perform a deep 

characterization of the metastatic niche and malignant populations.

Molecular Definition of the Blood-Tumor-Interface in BrM

The blood-tumor-interface (BTI) is of relevance and problematic with chemotherapy in BrM 

patients (Arvanitis et al., 2020; Sprowls et al., 2019), but understanding of its cellular 

composition and properties remains incomplete. Here, we characterized the BrM-BTI 

through the capture of 12,521 endothelial and mural vascular cells (Figure 2A). RNAscope 

in situ hybridization confirmed the perivascular location of RGS5+ mural vascular cells 

(Figure S2A). Across tumors, the proportion of vascular cells ranged from 5% to 77%, 

with a median of 40% of the total stromal fraction (Figure 2B), we also confirmed by 

immunostaining for CD31 (PECAM1) (Figure S2B).

Mural vascular cells were composed by three types of pericytes (PC) and a single cluster 

of vascular smooth muscle cells (vSMCs) (marked by ACTG2 and ACTA2 expression) 

(Figure 2A). Most marker genes are associated with tumor-associated processes, such as 

angiogenesis (e.g., MMP9) and extracellular matrix (ECM) remodeling (e.g., TINAGL1 and 

TGFB3) (Figure S2C) (Kessenbrock et al., 2010; Shen et al., 2019). In close relation to 

mural vascular cells, MSC-like cells upregulated the multifunctional secreted Wnt modulator 

CTHRC1 (Yamamoto et al., 2008) and the stem cell marker ISLR (Maeda et al., 2016) 

(Figure S2C), but expressed low levels of RGS5; RNAscope in situ hybridization for 

CTHRC1 reveals a perivascular location for these cells (Figures S2D and S2E). MSC-like 

cells were enriched for ECM related genes (e.g., POSTN, COL1A1 and PDGFRA).

The three endothelial clusters (EC-1, EC-2 and EC-3) encompass 3,292 cells. UMAP 

trajectories reflect a gradual progression along an arteriovenous axis (Figure S2F), in which 

cells with higher expression of arterial markers (e.g., EFNB2 and GJA5) or venous markers 

(e.g., ACKR1 and NR2F2) (Hirashima and Suda, 2006; Vanlandewijck et al., 2018) occupy 

more peripheral positions in the UMAP projection, consistent with a pattern of continuous 

phenotypic change (zonation), and confirmed using the molecular atlas of brain vasculature 

(Vanlandewijck et al., 2018) (Figures 2C and S2G). 60% of the total endothelial cells were 

assigned to a dominant EC-1 cluster EC-1 with tip cell markers APLNR and ESM1 (tip-like 

ECs) (Zhao et al., 2018) (Figures S2H and Table S2) and characterized by the enrichment 

of processes such as angiogenesis and collagen deposition. EC-2 (venous-like) expressed 

genes related to hypoxic, inflammatory and antigen-presentation related processes (Figures 

S2I and S2J), pointing to the role of the local intra-metastatic microenvironment in the 

phenotypic states of ECs.

Disappointing results in multiple clinical trials for BrM tumors, compared to extracranial 

metastases (Achrol et al., 2019), may stem from retention of blood-brain barrier (BBB) 

efflux properties by BrM-associated BTI. We explored gene expression that could relate 

to drug resistance and detected 6 multi-specific ATP-binding cassette (ABC) transporters 

expressed by BrM-ECs (Figure 2D), including ABCB1 (or multidrug resistance protein 1 

(MDR1)) and ABCG2. Both transporters, crucial players in normal BBB, are expressed 

along the arteriovenous axis, with prominence in the zone where vein-like and tip-like ECs 

converge (Figure 2E).
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scRNAseq of BrM-Infiltrated Immune Cells Reveals Heterogeneous T Cell Responses

Metastasis-associated innate- and adaptive- immune cells play major roles in determining 

the fate of MTCs in experimental mouse models of metastasis (Gonzalez et al., 2018a; 

Gonzalez et al., 2018b). Detailed information on cell types and states that integrate host 

immune responses in distant human metastases remains scarce (Friebel et al., 2020; Klemm 

et al., 2020). By annotating 14,499 single immune cell transcriptomes based on marker 

genes and curated gene signatures (Table S2), we identified five major T cell clusters, 

two macrophage clusters, one DCs cluster and two B cell clusters. All melanomas and 

carcinomas BrMs displayed mixed immune cell compositions and, thus, each immune 

cluster was comprised of cells from multiple tumors (Figures 3A and 3B). High frequencies 

of T cells and macrophages dominate the immune landscape of BrMs (Figure 3B), 

consistent with recent evidence (Friebel et al., 2020). Analysis of immune frequencies 

by cancer types, suggests that BrMs from different breast cancer patients display higher 

frequencies of macrophages. By contrast, lung cancers exhibited higher frequencies of T 

cells, while higher frequencies of B cells were observed in melanomas and ovarian cancer 

(Figures 3B and S3A). We postulated that BrM specific therapies could impact the observed 

immune clusters and immune frequencies but found no evidence for this (Table S1).

The abundance and functional states of tumor infiltrated T cells are prognostic in several 

cancer types (Binnewies et al., 2018), and can impact cancer dissemination and metastatic 

outgrowth (Gonzalez et al., 2018a). Here, T cells showed the greatest degree of phenotypic 

heterogeneity among immune infiltrates in our BrM set. The 8,266 analyzed T cells 

were composed of CD8+ effector memory T cells (T:CD8+:EM), central memory T cells 

(T:CD4+:CM1, T:CD4+:CM2 and T:CM) and regulatory T cells (Tregs) (Figure S3B). 

Functionally, the T:CD8+:EM cluster was enriched in cytotoxic molecules (e.g., GZMA 
and IFNG) (Figure S3C). Markers for immunomodulation (e.g., LTB and IL32) and stress 

response (e.g., HSPA1A), defined similar but not identical T cell states (Figures S3C and 

S3D). For instance, the T:CD4+:CM cluster represented an activation state enriched of 

LTB, IL32 and IL7R, whilst the T:CM cluster that expressed low levels of CD4 and 

CD8A, displayed a similar state (LTB+ and IL32+) but differentiated by the enrichment 

of interferon related genes like ISG15 and MX1.

To better understand the functional transitions of these T cell states, we used diffusion 

maps, a non-linear dimensionality reduction technique that captures geometric structure and 

functional states in high dimensional data (Coifman et al., 2005; Haghverdi et al., 2015). 

This analysis revealed that the five T cell clusters are organized in a phenotypic variation 

coherently ordered by DC1 (diffusion component 1) (Figure 3C). Among the top 50 genes 

positive correlated with DC1 are molecules associated with lymphocyte activation (e.g., 

CORO1A and LCK) and chemotaxis and migration (e.g., CCR7 and CXCR4) (Figure S3E 

and Table S2). There is a strong correlation between expression of these top 50 DC1 genes 

and a curated T cell activation gene signature (GO:0042110) (Figure 3D), further supporting 

the notion that the activation state drives the observed diversity of T cell clusters.

To understand the context-dependent role of each T cell state, we evaluated expression 

of microenvironmental and metabolic gene signatures (Table S2). We observed variable 

expression for processes related to hypoxia, type-I and -II interferon responses, and 
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inflammation (Figure 3E). The enrichment of interferon signature was most dominant in 

cluster T:CM. In contrast, enrichment in exhaustion signature associated with high T cell 

activation programs was most present in clusters T:CD8+:EM and T:CD4+:CM. Those T 

cell clusters with lower DC1 score (T:CD4+:CM2, Treg and T:CM) exhibited a strong 

anergic signature (Figure 3E). Interestingly, this phenotypic transition from activated to 

anergic T cell, coincides with a switch in metabolic signatures to lipid metabolism from 

glycolysis and the tricarboxylic acid (TCA) cycle (Figure 3E). Recent data supports the 

notion that impairment in TCA metabolism induces defective effector T cell function 

(Vardhana et al., 2020). Unexplored markers identified in the anergic T cell states included 

SERPINE1, PMP22 and NDRG1 (Figure 3F). In sum, our analyses revealed a spectrum of 

functional T cell states ranging from activated/exhausted to anergic, associated at single cell 

level with a concomitant metabolic and microenvironmental reprogramming.

Myeloid Composition of Brain Metastases

Myeloid cells, including MAMs (metastasis-associated macrophages) and DCs (dendritic 

cells) have been identified as important players in formation of the metastatic niche, either 

sustaining or restricting the metastatic outgrowth (Gonzalez et al., 2018a; Hagerling et al., 

2019; Headley et al., 2016; Qian and Pollard, 2010). Here, we identified two major subsets 

of MAMs in our collection of BrMs; APOE+/C1QB+/TREM2+ MAMs (MAMs:APOE+) 

and IL1B+/FCN1+/S100A8+ MAMs (MAMs:S100A8+) (Figure 3G). MAMs:APOE+ 

express a core set of immunomodulatory molecules, including complement C1Q chains, 

SPP1 and HLA-related molecules, resembling TAMs (tumors associated macrophages) 

programs enriched in lung, liver and CRC tumors (Lavin et al., 2017; Zhang et al., 2020; 

Zhang et al., 2019). MAMs:S100A8+ express an inflammatory program characterized by 

high expression of S100A family genes, CXCL8, FCN1 and low expression of HLA-related 

genes (Figure 3G), resembling inflammatory FCN1+ myeloid-derived suppressor cells 

(MDSC) (Zhang et al., 2019). Thus, as previously reported in primary TAMs (Azizi et 

al., 2018), the identified BrM MAMs states are more complex than the classical M1/M2 

polarization paradigm.

Functionally, a Gene Ontology (GO) analysis using the top 50 differentially expressed 

(DE) genes between MAMs subsets revealed a strong enrichment of antigen processing and 

presentation (P < 10–22, hypergeometric test) in MAMs:APOE+ versus an enrichment of 

cytokine-mediated signaling (P < 10–12, hypergeometric test) and response to interleukin 1 

(P < 10–8, hypergeometric test) in MAMs:S100A8+ (Figure S3F). UMAP projection and 

diffusion map trajectories suggest that these two MAMs clusters represent differentiated 

cell states across a continuum of phenotypes (Figures 3A and 3H). For instance, expression 

of HLA-DQA1 gradually decreased across the DC1 dimension from MAMs:APOE+ to 

MAMs:S100A8+ (Figure 3H). RNA velocity analysis (La Manno et al., 2018) supported this 

notion and suggested a putative trajectory from MAMs:APOE+ to MAMs:S100A8+ (Figure 

3I), thus MAMs:APOE+ and MAMs:S100A8+ subsets can scale across this continuum in a 

dynamic manner. Moreover, each MAMs program expressed distinctive transcription factors, 

for instance CREG1 and EGR2 were preferentially expressed in MAMs:APOE+, while 

ZFP36 and MAFF were preferentially expressed in MAMs:S100A8+ (Fig. 3J).
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Finally, our myeloid compartment analysis identified one predominant DC cluster 

characterized by conventional type-2 DCs markers (CD1C and CLEC10A) (Figure 3G). 

Within this cluster, DCs with high expression of the migratory receptors (e.g., CXCR4 
and GPR183) and high expression of the transcriptional regulators JUNB and NR4A2 
downregulated most of the antigen processing and presentation molecules (e.g., CD74 and 

HLA-DPB1) and vice versa (Figure 3K). These DCs may exhibit mutually exclusive intra-

metastatic migratory and antigen presenting properties.

CyTOF Analyses of Immune Cell Protein Markers in Brain Metastases

To extend our analysis with an orthogonal approach, we used high-dimensional mass 

cytometry (cytometry by time-of-flight, CyTOF) analysis to quantify 30+ protein parameters 

simultaneously in single cells (Table S3), for 11 of the 15 BrM biopsies with sufficient 

tissue. Distinct cell populations were projected in two dimensions with UMAP, representing 

a total of 20,900 cells from the 11 BrM biopsies (Figure 4A). Supervised analysis of 

abundance and activity state of the major immune cell subsets confirmed that T cells and 

macrophages are the dominant immune infiltrates in BrMs (Figure 4B). Proliferation of 

CD45+ cells, as evaluated by Ki67 expression, was modest in all samples, indicating a 

predominantly indolent immune microenvironment in BrMs (Figure 4B).

In depth analyses of T cells by UMAP and FlowSOM (Van Gassen et al., 2015) (STAR 

Methods), identified 6 clusters of CD8+ and CD4+ T cells on the basis of protein markers. 

Most CD8+ T cells (~69%) displayed a CD45ROhigh:CD45RAlow:CCR7neg:CD27high 

effector memory phenotype Figures 4C, 4D and 4E). CD4+ T cell clusters were 

phenotypically heterogenous, existing in a continuum across effector memory and central 

memory phenotypes (CD45ROhigh:CD45RAlow:CCR7pos:CD27low) (Figures S4A, S4B and 

S4C). Comparing both approaches, by and large, the T cell type annotations by single cell 

transcriptomics (Figures 3 and S3) are in line with T cell annotations observed by CyTOF. 

Similarly, gating on CD11b+/CD14+ cells (monocytes/macrophages) revealed two major 

subpopulations of cells, HLA-DRhigh and HLA-DRlow (Figure 4F), supporting the notion of 

the co-existence of two monocytes/macrophages states in each BrM tumor differentiated by 

antigen presenting properties.

Encouraging studies suggest that immune checkpoint inhibitors cross the blood-tumor-

barrier and be effective to treat BrMs (Nieblas-Bedolla et al., 2021). We analyzed PD1 and 

its receptor (PD-L1), two of the most common targets for cancer immunotherapy (Sharma 

and Allison, 2015). PD1 expression was elevated in CD8+ and CD4+ T cell effector memory 

clusters (Figures 4D and S4B), associated with medium/low expression of activation marker 

HLA-DR and proliferation marker Ki67, and we also detected moderate expression of PD-

L1 (Figures 4D and S4B). Increased PD-1 levels and PD-L1 co-expression likely represent 

increasingly exhausted T cell states (Wherry and Kurachi, 2015). Across all CD45+ T- and 

myeloid- cells, ~20% of T cells expressed PD1 and ~28% of myeloid cells expressed PD-L1 

with significant correlation between PD-1+ T cells and PD-L1+ myeloid cells (Pearson’s 

r = 0.77, P = 0,005) across patients (Figure 4G), indicating a coordinated intra-metastatic 

pattern of immune checkpoint molecule expression.
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Eight Functional Metaprograms in MTCs Define Brain Metastases

Successful metastasis depends on functional programs that allow metastatic tumor cells 

(MTCs) to survive, modify and ultimately dominate the parenchyma of distant organs 

while interacting with host-specific characteristics of the stroma (Lambert et al., 2017). 

Elucidating these programs has been challenging (Robinson et al., 2017).

We next performed a systematic analysis of MTC populations in BrMs to explore and 

characterize such potential programs. We first evaluated inter-patient heterogeneity by 

UMAP and transcriptional variance. As previously observed in Figure 1B, MTCs from 

all patients formed discrete individual clusters (Figure S5A), revealing a significant inter-

patient heterogeneity (72% of transcriptional variance explained by the first 10 principal 

components) (Figure S5B). Moreover, 3D diffusion map analyses and unsupervised 

clustering of MTCs, pointed out a rich functional diversity within individual tumors. 

Examples are proliferation, ECM deposition, inflammation, or response to stress (Figures 

5A, S5C and S5D).

Next, to define coherent gene sets (programs) within single cell populations and to explore 

the existence of common programs that define MTCs among different patients, we applied 

non-negative matrix factorization (NMFs) (Puram et al., 2017). Hierarchical clustering based 

on shared genes of 150 transcriptional programs (10 programs of each patient) identified 

8 metaprograms (P1–P8) recurrent in multiple or all BrMs (Figure 5B). The observed 

metaprograms were functionally annotated using their top-50 genes ranked on the basis of 

NMF scores (metagenes) (Table S4). Metaprograms P1 and P2 were classified as cell cycle 

programs; the P1 program was enriched for genes of the DNA replication (e.g., MCM7, 

FEN1 and RFC4), whilst P2 was characterized by G2/M phase genes (e.g., BIRC5, CDK1 
and AURKB) that were highly similar across samples, defining conserved proliferation 

programs in BrMs (Figure 5C). Metaprogram P3 was enriched by structural ribosomal 

proteins (RPs) of the 60S ribosome (e.g., RPL37, RPL29 and RPL12) and identified 

in 14 out of 15 samples. P4 was present in 12 out of 15 samples and characterized 

by stress response genes (e.g., ATF3, DUSP1 and CYBA). P5 represents markers of 

developmental processes, for example transcription factors such as MEIS2, PAXBP1, SOX4 
and HOXB3 and was identified in 5 carcinoma BrMs. Metaprogram P6 encompasses pre-

mRNA maturation and core spliceosome genes (e.g., DDX5, HNRNPA1 and SRSF3). P7 

represents ECM components such as COL1A1, COL3A1, MMP2 and SPARC, and was 

enriched for epithelial-to-mesenchymal transition (EMT) markers (e.g., VIM, MYL9 and 

FN1) (Figure 5C and Table S4). The final metaprogram (P8) was present in all 15 analyzed 

samples and defined by inflammatory and interferon related genes (e.g., IFI6, HLA-A and 

S100A11). Of note, we also examined the genetic heterogeneity of MTCs in all samples, by 

estimation of large-scale copy number variations (CNVs) (Tirosh et al., 2016b). Consistent 

with recent evidence (Reiter et al., 2020), we observed that BrM lesions are predominantly 

composed by genetically homogeneous populations of MTCs (Figures S5E and S5F). In 

sum, the selective analysis of MTC populations revealed eight recurrent metaprograms (P1–

P8) associated with highly specialized, functional processes.
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Two Archetypes of MTCs Support Brain Metastases

Deeper analysis of the 8 metaprograms (STAR Methods) revealed that these are not utilized 

in random fashion, instead, they delineate two well-defined functional archetypes (Figure 

5D); For instance, P3 (ribosome biogenesis / translation program) positively correlated with 

P7 (ECM deposition and EMT program) (Pearson’s r = 0.61, p < 2.2e–16). Interestingly, 

P3 and P7 followed a strong pattern of co-exclusion with P1 (p < 2.2e–16; p < 2.2e–16) 

and P2 (p < 2.2e–16; p < 2.2e–16) cell cycle metaprograms (Figure 5D). Furthermore, there 

was a striking positive correlation between P1 and P2 (proliferation) and P6 (pre-mRNA 

splicing program) (p < 2.2e–16; p < 2.2e–16) and concomitant mutual exclusivity with P4 

(stress) (p < 2.2e–16) and P8 (inflammatory) (p < 2.2e–16), either in combined analyses or 

across individual BrMs (Figures 5D and 5E). Our analyses of the eight metaprograms put 

forth the model that there are two underlying single-cell archetypes that co-exist in BrMs, 

one high in proliferation and pre-mRNA splicing (P1, P2 and P6), the other high in stress, 

inflammation, translation, and ECM deposition (P3, P4, P7 and P8). In addition, plotting 

single cell data by P1 score showed a continuum of intermediate states between these two 

archetypes (Figure 5E). These results imply that those MTCs that are not proliferating, may 

get reprogramed into the other archetype (enriched in P3, P4, P7 and P8). Importantly, 

scoring bulk transcriptomes from 868 multi-organ metastatic tumors or 24 BrMs available 

in the MET500 cohort dataset (Robinson et al., 2017) through our 8 metaprograms, showed 

similar patterns of metaprogram co-expression and anti-correlation (Figure 5F).

Next, we interrogated the two MTCs archetypes in terms of immune and stromal phenotypes 

described in this study. Expression of the inflammatory metaprogram (P8) by MTCs 

was positively associated with the percentage of immune cells (r=0.55, p = 0.042), 

and negatively associated with non-immune stroma (r= −0.55, p = 0.042) (Figure 5G). 

Among immune cells, the T cell clusters with higher activation and low anergic signatures 

T:CD8+:EM, T:CD4+:CM1 (See Figure 3E), and B-c1, showed positive associations with 

P8 expression by MTCs. In contrast, MAMs:APOE+, Treg, and the highly anergic cluster 

T:CM2 (See Figure 3E), exhibit negative associations with the expression of P8 by MTCs 

(Figure S6A and S6B). These observations suggest a correlation between the composition of 

the stromal niche and the generation of the two described MTCs archetypes.

Finally, we interrogated the specificity of the P1–P8 metaprograms in publicly available 

single cell datasets of primary breast cancer, lung cancer, melanoma, and glioblastoma 

(Kim et al., 2020; Neftel et al., 2019; Tirosh et al., 2016a; Wu et al., 2021), by analyzing 

the expression of the top 30 genes of each program. We observed that programs such 

as P1/P2 (Cell Cycle), P3 (Protein Synthesis) and P6 (pre-mRNA Maturation / Core 

Spliceosome) were clearly identified in primary tumors (Figure S6C). In contrast, a 

fragmented expression of programs P8, P5 and P4 was observed. The most striking 

difference was the scarce expression of metaprogram P7 (ECM deposition / EMT) in 

primary tumors. More importantly, the co-expression patterns of programs differ between 

primary tumors and MTCs. For instance, the co-expression of P6 and P1/P2 metaprograms 

observed on MTCs appears absent in primary tumors. We made similar observations related 

to P8 and P3 with cell cycle programs P1 and P2 (Figure S6C). These comparisons suggest 
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that the expression of the MTCs metaprograms, and their coordinated pattern of expression 

are a specific characteristic of human metastatic cells.

Testing Our Metaprograms of Metastasis with Two Experimental BrM Models

As functional exploration of our BrM metaprograms, we investigated if experimental mouse 

models of BrM can recapitulate these programs. Here we used the breast cancer cell (human 

MDA-MB-231Br) as case study, a model widely used to study BrM formation (Bos et 

al., 2009; Chen et al., 2016; Gril et al., 2018; Priego et al., 2018; Valiente et al., 2014; 

Zeng et al., 2019; Zhang et al., 2015). 3,194 high quality single cell transcriptomes from 

sorted metastatic MDA-MB-231Br cells were profiled (STAR Methods). We uncovered 

6 mouse transcriptional programs (NMF programs (mP1-mP6)) in this experimental MDA-

MB-231Br model (Figures S7A, S7B and Table S4). mP4 and mP6 reflected proliferation 

processes, mP2 a hybrid program was defined by developmental processes and collagen 

biosynthesis, mP1 represented a developmental program, mP3 reflects a translation and 

ribosome biogenesis process, and mP5 reflects an angiogenic program (Figure S7B). The 

mP1, mP2 and mP3 programs partially recapitulated the functional counterpart of P5, P7 

and P3 metaprograms in breast cancer BrM patients (Figure 5H). On the other hand, the 

MDA-MB-231Br experimental model lacked inflammatory and stress response programs, or 

a discrete ECM / EMT remodeling program as observed in patients.

Secondly, we explored the 4T1Br breast cancer model that is immunocompetent (STAR 

Methods). Single cell profiling of 1,472 sorted metastatic cells and NMF pipeline analysis 

revealed 6 transcriptional programs (mP1_4T1Br to mP6_4T1Br) (Figures S7C, S7D, S7E 

and Table S4). As in the MDA-MB-231Br model, we identified cell cycle programs, 

developmental growth program, translation, angiogenic programs, and new program 

associated with oxidative phosphorylation (Figure S7E and Table S4). We did not observe a 

discrete inflammatory, stress or ECM remodeling / EMT programs. Staining for metastatic 

cells and immune cells on mouse brain sections at endpoint (Figure S7F) suggests that 

the absence of inflammatory and stress programs stems from lack of anti-tumoral immune 

response in metastatic lesions.

An Immune Evasive Program in MTCs Supports Tumor Cell Proliferation

The anticorrelations in the P1-, P2-, and P6- metaprograms with those in P4, P3, P7 

and P8, prompted us to understand the mechanistic underpinnings of the anticorrelated 

archetypes. Combined principal component analysis (PCA) revealed two predominant 

functional trajectories; cells with high PC1 score (proliferative processes) and cells with 

low PC2 score (inflammatory processes) and a continuum of states in between (Figure 6A). 

Immunostaining for Ki67 protein confirmed the existence of heterogeneously distributed, 

proliferating MTCs and with variable levels of proliferating cells across samples (Figures 

6B). We derived a conserved core signature (excluding cell cycle genes, see STAR Methods) 

that specifies the transition (or reactivation) from quiescence to active proliferation. This 

core signature contains 190 genes in cycling MTCs among patients, 89 downregulated 

and 101 upregulated genes (Table S5). Downregulated genes in actively cycling MTCs 

reflected processes related to inflammatory stress such as major histocompatibility complex 

(MHC) class I molecules (e.g., HLA-A and B2M), inflammation (e.g., S100A6 and IFI6), 
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macro-autophagy genes (e.g., NUPR1 and SQSTM1) and the exosome marker CD63 
(Figure 6C). Among the genes specifically upregulated in cycling cells were members of 

the core spliceosome and MYC targets (Table S5). Of note, two known imprinted genes 

were identified among the top hits, MEST (Mesoderm-Specific Transcript) and PEG10 
(Paternally Expressed Gene 10), both previously implicated in poor prognosis in multiple 

cancer types (Ishii et al., 2017; Li et al., 2016; Pedersen et al., 1999; Shapovalova et al., 

2019; Vidal et al., 2014) (Figure 6C). We confirmed these patterns by immunostaining 

for PEG10 and S100A6 in cycling (Ki67+) MTCs (Figure 6D). The core signature 

has 12 transcriptional regulators that distinguish these two cell states. For instance, the 

transcriptional repressor HES1 and its repressor HES6 (Bae et al., 2000) followed a pattern 

of mutual exclusion. Interestingly, the DNA methyl transferase DNMT1 that was found to be 

upregulated in cycling MTCs (Figure 6C and Table S5); further, the enrichment of DNMT1 
has been recently causally associated to immune evasion by cancer cells (Luo et al., 2018; 

Peng et al., 2015).

We interpreted the core signature as a reflection of the immune effector response imposed on 

MTCs and their ability to adapt and escape of such control. In support of this idea, when we 

inferred the magnitude of leukocyte infiltration from bulk RNAseq in the MET500 cohort 

by Mimmscore estimation (Robinson et al., 2017), we found that leukocyte infiltration was 

positively correlated with genes downregulated in cycling MTCs, while genes upregulated 

in cycling MTCs were negative correlated with immune infiltration (Figure 7A). In addition, 

the estimation of immune cell types in the MET500 cohort (Newman et al., 2019) revealed 

that metastatic tumors expressing higher level of genes downregulated in cycling MTCs 

were enriched of monocytes/macrophages and T cells (Figure 7B). We therefore assessed the 

level of tumor proliferation, immune infiltrates, and selected markers of the core signature 

by immunostaining in an independent cohort of 13 patients diagnosed with melanoma- (n:5), 

lung cancer- (n:5) and breast cancer BrMs (n:3). We confirmed the negative correlation 

between proliferating metastatic cells and immune infiltrates (Spearman’s rank correlation 

coefficient, r= −0.69, P = 0,009) (Figures 7C and 7D). Furthermore, in this cohort, biopsies 

with higher proliferation score and lower grade of immune infiltrates, upregulated PEG10 

(up in cycling MTCs) and downregulated CD63 (down in cycling MTCs) at protein levels. 

The inverse correlation was observed in biopsies with low proliferation and high immune 

infiltrates (Figure 7E). In sum, we identified a conserved core gene signature, that we 

believe illustrates escape from control imposed by effector immune response and allows the 

proliferation of MTCs in patients.

DISCUSSION

Here, we generated and analyzed a comprehensive catalog of the functional cell types 

and cellular states present in human parenchymal BrMs as a resource for the research 

community.

In the first part we focused on immunoprofiles of BrM. We identified two macrophages 

states, MAMs:APOE+ and MAMs:S100A8+, in BrM. Recent evidence from melanoma 

and carcinoma patients suggests that BrM-associated macrophages may be derived from 

both, resident microglia cells (~ 10–50%) and infiltrated monocytes (~ 25–75%) (Friebel 
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et al., 2020). The MAMs:APOE+ population expresses SPP1 and SPP1+ TAMs have been 

described as macrophages in CRC linked to therapy resistance and angiogenesis (Zhang 

et al., 2020). Relevant to the MAMs:S100A8+ we describe here, enrichment of S100A8+/

S100A9+ TAMs is associated with immunosuppression and shorter survival in patients with 

head and neck cancer (Kwak et al., 2020) and poor response to checkpoint inhibitors in 

patients with metastatic melanoma (Wagner et al., 2019). T cells are a dominant immune cell 

type in BrM and we uncovered correlations between functional T cell states and metabolic 

and microenvironmental signatures. Recent evidence points to the role of hypoxic and acidic 

tumor microenvironments in sustaining immunosuppressive T cell states (Watson et al., 

2021) and promoting dysfunctional effector T cells (Scharping et al., 2016). Continuous 

antigen stimulation coordinated with hypoxia results in impaired mitochondrial function and 

promotes terminal T cell exhaustion in melanoma (Scharping et al., 2021).

In the second part, we revealed two well-defined cellular archetypes by the selective 

characterization of MTCs that resulted in a framework of the P1–P8 metaprograms. Previous 

pan-cancer transcriptomic analyses identified two major categories of metastases in patients: 

highly proliferative or highly inflammatory (Robinson et al., 2017). Our observations 

support and expand this notion by identifying that proliferative and inflammatory processes 

coexist as opposite major cell states, and suggest that immune scape and proliferation act 

as concerted events in MTCs. Our work here, and that of others, supports the theory that 

distant metastases are formed by genetically homogeneous populations (Priestley et al., 

2019; Reiter et al., 2020). Our study with single-cell resolution analysis of MTCs, stromal, 

and immune cell types puts forth testable hypotheses to understand the interplay between 

tumor cell-intrinsic traits and host environment traits in human metastasis.

LIMITATIONS OF THE STUDY

Our study suggests that our findings may not be driven by recent therapies. However, we 

have not definitely determined the impact of previous therapies. It is common for cancer 

patients to develop distant metastases long after treatment and removal of primary tumors. 

Likewise, we have not determined the prognostic impact of our findings for BrM patients. 

Future efforts assembling single cell datasets with clinical information from larger cohorts 

will be required to infer clinical outcomes, and to study the impact of the therapies aimed to 

treat primary cancer, on the programs observed in metastases.

Although our single-cell transcriptomic dataset exceeds the scale of previous efforts to 

systematically characterize BrM tumors, or any other distant metastases for that matter, 

our study does not have a large enough sample size to demonstrate unique features for 

cancer type, cancer subtypes, or BrM specificity due a lack of comparisons with matched 

primary tumors or extracranial metastases. Much remains to be gained by further increasing 

the sample size. Metastatic biopsies remain rare and small specimens, the poor patient 

prognosis makes it difficult to collect them, and those that are obtained often are not profuse 

enough to offer multiple layers of information (Bova, 2017). Future efforts in collecting 

and biobanking fresh resected specimens will facilitate cancer specific studies at single cell 

resolution, especially in metastatic biopsies from less studied metastatic cancers such as: 

ovarian, renal, colorectal or sarcomas.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be 

directed to and will be fulfilled by the Lead Contact, Hugo Gonzalez Velozo 

(Hugo.GonzalezVelozo@ucsf.edu).

Material Availability—This study did not generate new reagents.

Data and Code Availability

• Raw mapped counts from patients, raw mapped counts and FASTQ data from 

experimental mouse models, and normalized expression data with cell type 

annotations can be found in the National Center for Biotechnology information 

Gene Expression Omibus (GEO) (accession number GSE186344).

• We did not generate original codes in this study. Codes used are available upon 

request without restrictions.

• Any additional information required to reanalyze the data reported in this paper 

is available from lead contact upon request.

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human Specimens—Human specimens from fifteen patients who were pathologically 

diagnosed with brain metastases, were enrolled in this study after approvals by the Ethics 

Committee of University of California San Francisco, IRB Number 10–01318. Resources 

were provided by the UCSF Brain Tumor SPORE Biorepository NIH/NCI 5P50CA097257–

18 (J.J.P.). The sample R.C.C. (renal cell carcinoma) brain metastasis was collected and sent 

from UCSD by Dr. Clark Chen. All patients in this study provided written informed consent 

for sample collection and data analyses. Their ages ranged from 42 to 76, with a median age 

of 63 years. Eleven of the cases were women and four men. With the exception of patients 

Breast-1 and Breast-3 that received gamma radiation 24hrs before surgery, none of the 

patients was treated with chemotherapy or radiation aimed to treat brain metastasis prior to 

surgery. The time to brain metastasis progression since initial cancer diagnosis ranged from 

0 months (7 cases) to 171 months (Ovarian-1). Anatomically, fourteen cases were located 

in brain cortex and one (Breast-3) in the cerebellum. The available clinical characteristics of 

these patients are summarized in Table S1. Fresh tumor sizes ranged from 10–200mg.

Formalin-fixed and paraffin-embedded of 13 cases of brain metastases from melanoma 

and cancer patients diagnosed at Skåne University Hospital, Sweden, were used for 

immunohistochemical staining. The ethical permit was obtained from the regional ethical 

committee at Lund University (Dnr 2019-04998).

Experimental brain metastasis—Female athymic nude or BALB/c mice (4–6 weeks 

old) were obtained from Charles River (Wilmington, MA, USA) and maintained under 

specific pathogen-free conditions. The University of California, San Francisco Institutional 

Animal Care and Use Committee (IACUC) reviewed and approved all animal experiments. 
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MDA-MB-231Br cells were kindly donated by Dr. Patricia S. Steeg (National Cancer 

Institute, Maryland). We expanded a single clonal MDA-MB-231BR cells expressing 

luciferase and the mCherry marker (Addgene, Plasmid #29783), cells were harvested, 

washed and re-suspended in sterile phosphate buffered saline (PBS). 0,25×106/100ml cells 

were injected into the left ventricle of the heart of each mouse under anesthesia. To stablish 

a syngeneic brain metastasis model, 0,1×106/100ml cells of parental breast cancer 4T1 

cells expressing luciferase and mCherry (Addgene, Plasmid #29783), were intracardiac 

inoculated in female BALB/c mice, after reaching endpoint, 4T1Br cells were isolated from 

brain lesions by mCherry expression, grown in culture (4T1Br P1), and again inoculated 

in mice. This procedure was repeated 3 times. To monitor the growth of brain metastases, 

mice were intraperitoneally injected with D-luciferin (100 mg/kg), and then imaged and 

analyzed using the IVIS Spectrum imaging system (Caliper Life Sciences) twice a week 

after the injection. Following these protocols, mice reached human endpoint (20% body 

weight, seizures or paralysis) 4–5 weeks for MDA-MB-231BR and 12 days for 4T1Br 

models. At endpoint, mice were euthanized and perfused with 40 ml of saline buffer via 

left ventricle to eliminate blood and circulating tumor cells. To mimic the treatment used 

with human BrM biopsies, fresh brains were dissected and maintained in cold RPMI-1610 

medium (Invitrogen), cut into approximately 0.5 mm3 pieces and stored by freezing in 90% 

FBS and 10% dimethylsulfoxide (DMSO) in liquid nitrogen, the period since euthanasia and 

cryopreservation ranged from 10 to 15 minutes.

METHOD DETAILS

Sample collection and single cell RNAseq library preparations—Fresh tumor 

samples were maintained in cold RPMI-1610 medium (Invitrogen) after surgery, cut 

into approximately 0.5 mm3 pieces and stored by freezing in 90% FBS and 10% 

dimethylsulfoxide (DMSO) in liquid nitrogen, the period of time since surgical resection 

to cryopreservation ranged from 30 to 60 minutes. Briefly, the day of single cell 

RNAseq processing, tissues were washed in cold RPMI to eliminate the remanent DMSO, 

mechanically chopped with scalpels, placed in culture medium (RPMI with 2% FBS, 5 μg 

ml−1 insulin (UCSF Cell Culture Facility), 50 ng ml−1 gentamycin (UCSF Cell Culture 

Facility) containing 0.2 mg ml−1 collagenase-1 (Sigma) and supplemented with 2 U μl−1 

DNase for 45 mins. After washing with cold PBS, samples were dissociated into single 

cells by a gentle treatment with trypsin at 0.0025% (dilution in PBS of original stock) 

supplemented with 2 U μl−1 DNase for 2 min. After dissociation, residual erythrocytes 

were lysed with red blood cell lysis buffer for 1 min at room temperature. All samples 

were filtered through a 70 μm cell strainer. Prior to scRNAseq processing, the dead cells 

were removed using dead cell removal kit (Miltenyi). Samples were washed twice and 

resuspended in PBS with 0.05% BSA at a concentration of 1,000 cells per ul. Single-cell 

libraries were generated via the Chromium Controller and the Single Cell Reagent Kit 3’ 

v2 (10× Genomics, Pleasanton, CA) according to the manufacturer’s instructions. For each 

patient, 25,000 cells or the total number of cells from smaller biopsies, were loaded for 

encapsulation aiming to capture ~10,000 cells. After sequencing, Cell Ranger count (Version 

3.0.2) was used to map the FASTQ files to the human genome GRCh38. We achieved a 

median of 6,798 cells per tumor, with a mean of 79,609 read counts and a median of 2,865 
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genes per cell. Per sample we detected a median 23,525 total genes. All sequencing metrics 

are deposited with the corresponding scRNAseq dataset in Gene Expression Omibus (GEO).

Single cell sorting of metastatic cells from experimental models and library 
preparation—On the day of scRNAseq processing, mouse brain tissues were washed in 

cold RPMI to eliminate the remanent DMSO, mechanically chopped with scalpels, placed 

in culture medium (RPMI with 2% FBS, 5 μg ml−1 insulin (UCSF Cell Culture Facility), 

50 ng ml−1 gentamycin (UCSF Cell Culture Facility) containing 0.2 mg ml−1 collagenase-1 

(Sigma) and supplemented with 2 U μl−1 DNase for 45 mins. After washing with cold 

PBS, samples were dissociated into single cells by a gentle treatment with trypsin at 

0.0025% (dilution in PBS of original stock) supplemented with 2 U μl−1 DNase for 2 

min. Afterward, the homogenate was filtered through a 70 mm cell strainer and washed 

in cold PBS for 5 mins at 300 g. Myelin was removed by gradient centrifugation with 

20% / 80% Percoll (Sigma-Aldrich) in PBS (1,200 × g for 30 minutes at 4C; without 

brakes during deceleration). The middle transparent layer (containing mononuclear cells 

including tumor cells) was collected and washed in cold PBS for 5 mins at 300g and 

processed for fluorescence-activated cell sorting (FACS) staining. Briefly, for mouse lineage 

(Lin) antigens, mCD45 (FITC, eBioscience), mTer119 (FITC, eBioscience), mCD31 (FITC, 

eBioscience) were used. To detect human cells, hCD298 (PE, Biolegend) was used. The 

antibody staining for FACS was performed in DMEM/2% FBS. After 30 min on ice, stained 

cells were washed of excess unbound antibodies and resuspended in DMEM/2% FBS. 

Viable (Ghost Dye negative) MDA-MB-231Br (hCD298+, mCherry+, mCD45-, mTer119-, 

mCD31-) cells were sorted by FACS into RPMI with 2% FBS. Similarly, Viable (Ghost Dye 

negative) 4T1Br cells (mCherry+, mCD45-, mTer119-, mCD31-) were sorted by FACS into 

RPMI with 2% FBS. After sorting, cells were washed twice and resuspended in PBS with 

0.05% BSA at a concentration of 1,000 cells per ul. Single-cell libraries were generated via 

the Chromium Controller and the Single Cell Reagent Kit 3’ v2 (10x Genomics, Pleasanton, 

CA) according to the manufacturer’s instructions. For each replicate, we aimed to capture 

~5,000 cells. After sequencing, Cell Ranger count (Version 6.1.1) was used to map the 

FASTQ files to the human GRCh38 or mouse mm10 genomes. All sequencing metrics, 

mapped counts and raw FASTQ data from experimental models are deposited in Gene 

Expression Omnibus.

Mass cytometry staining

Cell preparation and viability staining:  Single-cell suspensions (see above) were washed 

with PBS + 5mM EDTA and re-suspended 1:1 with PBS + 5mM EDTA and 100 mM 

cisplatin (Enzo Life Sciences) for 60s before quenching 1:1 with PB + 5mM EDTA + 

0.5% BSA to determine viability as previously described (cite PMID 22577098). Cells were 

centrifuged at 500g for 5 min at 4 °C and re-suspended in PBS/EDTA/BSA at a density 

between 1 × 106 and 10 × 106 cells per ml. Suspensions were fixed for 10 min at room 

temperature using 1.6% paraformaldehyde (PFA) and washed twice with cell-staining media 

(CSM, PBS with 0.5% BSA and 0.02% NaN3).

Mass-tag cellular barcoding:  Mass-tag cellular barcoding was performed as previously 

described (Zunder et al., 2015). Briefly, cells from each sample were barcoded with distinct 
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combinations of stable Pd isotopes in 0.02% saponin in PBS. Cells were washed once with 

cell-staining media (PBS with 0.5% BSA and 0.02% NaN3) and once with 1× PBS and 

pooled into a single fluorescence-activated cell sorting (FACS) tube (BD Biosciences). After 

data collection, each condition was deconvoluted using a single-cell debarcoding algorithm 

(Zunder et al., 2015).

RNAscope—RNA in situ hybridizations were performed according to the manufacturer’s 

instructions, using the RNAscope Multiplex Fluorescent kit (Advanced Cell Diagnostics) 

for paraffin fixed tissue. Following probes with suitable combinations were used (indicated 

with gene target name for mouse and respective channel, all Advanced Cell Diagnostics): 

hs-CTHRC1, hs-RGS5 and hs-CLDN5. All sections were mounted with Prolong Diamond 

Antifade Mountant (Thermo Fisher Scientific).

Histology, Immunohistochemistry, and Immunofluorescence—Human BrM tissue 

were fixed overnight in 4% paraformaldehyde (PFA) and processed for paraffin embedding 

tissue sections of 5um were used. Following deparaffinization and rehydration, antigen 

retrieval was performed by submerging the slides in Antigen Unmasking Solution, Tris-

based (Vector Laboratories).

For immunohistochemistry (IHC), endogenous peroxidase activities were inactivated in 

3% H2O2 for 5 min at room temperature. Tissue sections were blocked with 1% BSA, 

2% goat serum in PBS- 0.2% Triton X-100 for 1 h at room temperature and incubated 

with primary antibodies for 1 h in blocking buffer. After washes with PBS, biotinylated 

secondary antibodies were applied for 1 h, followed by treatment with avidin/biotinylated 

enzyme complex and substrate/chromogen incubation (Vector laboratories). Slides were 

counterstained with hematoxylin. For immunofluorescence, tissue sections were stained 

with primary antibodies overnight. After washes with PBS, fluorescently labelled secondary 

antibodies were used. Nuclei were counterstained with DAPI. Mouse immunofluorescence 

for mCherry and CD45 were performed in frozen brain sections (20 μm) as described before 

(Gonzalez et al., 2013). Images were obtained using Keyence BZ-X800 microscope at 20× 

resolution. Primary antibodies used and dilution ratios are: KRT19 (1:500), MELAN-A 

(1:200), PECAM1 (1:500), PEG10 (1:200), CD63 (1:250), S100A6 (1:200), anti-hCD45 

(1:300), anti-mCD45 (1:200), anti-mCherry (1:100) and anti-Ki67 (1:50).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Pre-processing with Seurat Package—The Seurat pipeline was applied to each 

sample and for combined analyses (Butler et al., 2018). Genes that were expressed in less 

than 5 cells and cells that expressing less than 500, or more than 9,000 genes (outliers), 

or with a percentage of mitochondrial genes higher than 10% were excluded from further 

analyses. To accurately separate tumor cells and stromal cells in each sample, we merged 

datasets from different biopsies, this strategy outperforms single sample clustering and 

efficiently separates stromal cells in samples with higher tumor purities and low stromal 

fractions (e.g., Melan-2, Breast-3, Lung-1 and Ovarian-1) and also improve the identification 

of rare cell types (e.g., astrocytes). Following identification with known marker genes, we 

extracted all stromal cells for each patient.
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To reveal the shared sources of biological variation (conserved sub-structures) between 

BrM-associated stromal cells, we used the integration tool for scRNAseq data sets provided 

by Seurat package. The top 2,000 highly variable genes of each sample were detected 

by variance stabilizing transformation method in FindVariableFeatures. Anchors across 

the 14 datasets were then identified and the datasets were integrated using the default 

parameters. Before clustering, the number of counts and percentage of mitochondrial genes 

were regressed out using a negative binomial model (function vars.to.regress). We did not 

regress cell cycle genes because we did not observe cell cycle genes driving clusters in 

the stroma. Principal component analysis (PCA) was performed with PCA function and 

dataset dimensionality kept for downstream analysis was determined heurustically with 

Elbowplot and ScoreJackStraw functions. A UMAP dimensional reduction was performed 

on the scaled matrix using the first 18 PCA components to obtain a two-dimensional 

representation. For clustering, we used the function FindClusters that implements SNN 

(shared nearest neighbor) modularity optimization-based clustering algorithm on the first 

18 PCA components with resolution 0.5 – 1.5. A resolution of 1.3 was chosen for the 

analysis, in our hands the most informative resolution but the result was generally robust to 

hyperparameter choices.

For clustering of individual samples, a UMAP dimensional reduction was performed on 

the scaled matrix using the first 10 PCA components and a FindClusters function was 

set at resolution of 0.5. For clustering of all combined MTCs, normalized counts of 

annotated MTCs of all samples were merged, centered, and scaled, dataset dimensionality 

for downstream analysis was determined heurustically with Elbowplot and ScoreJackStraw 

functions, finally the UMAP dimensional reduction was performed using the first 20 PCA 

components.

Identification of Cluster-Specific Genes in Stromal cells and Marker-Based 
Classification—To identify marker genes, the FindAllMarkers function was used with 

likelihood-ratio test for single cell gene expression. For each cluster, only genes that were 

expressed in more than 25% of cells with at least 0.25-fold difference were considered (Top 

30 genes per cluster can be found in Table S2). To characterize clusters, we used marker 

genes and curated gene signatures (Table S2).

CNV analysis—CNV was estimated using R package CONICSmat (Muller et al., 2018). 

Count matrix was normalized by taking log2(CPM/10+1) and genes expressed in very 

few cells (< 5) were excluded from the analysis. A normalization factor for calculated 

for each cell by taking the mean expression of the cell. The average expression in each 

cell was centered using the previously calculated normalization factor. Then, the z-score 

of the centered gene expression across all cells was calculated. To quantitatively determine 

the CNV of cells, we fitted a Gaussian mixture model based on the mean z-scores of 44 

chromosome arms (sex chromosomes were not included). Each cell was assigned a posterior 

probability of belonging to one of the copy number group of each chromosome arm.

To infer subclones in each tumor, we first identified candidate chromosome arms that 

showed a clear bimodal expression pattern in the cancer cell populations. Chromosome arms 

were chosen if more than 1000 cells or 20% of the cancer cells belonged to the minor copy 
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number group (posterior probability > 0.95). Then we assigned a genotype of each candidate 

chromosome arm for each cancer cell using the posterior probabilities. Cancer cells were 

grouped into clones based on genotypes and clones with more than 1000 cells or 20% of the 

cancer cells were identified.

For visualization purpose, a sliding window approach was used as previously described 

(Patel et al., 2014). Briefly, a window of 121 genes within each chromosome was applied 

to calculate the mean expression of genes sorted by genomic coordinates. Genes with 

average expression larger than 0.4 were included in the analysis. To limit the influence 

of any particular gene on the moving average, we limited the relative expression values 

to [−1, 1] by replacing all values above/below this threshold (x>1/x<(−1)) to 1 /−1. The 

plotChromosomeHeatmap function was used in heatmap visualization.

Definition of single-cell gene signature scores—Given a set of genes (Gj), for 

each cell i, a score SCj(i) reflecting the level of expression of Gj in cell i was calculated 

similar to previously described (Tirosh et al., 2016a) (Seurat AddModuleScore function) 

(Butler et al., 2018). Briefly, a control gene set is defined by first binning all analyzed 

genes into 24 bins of aggregate expression levels and then, for each gene in Gj, randomly 

selecting 100 genes from the same expression bin. The expression score is defined as the 

average expression levels of Gj subtracted by the aggregated expression of control gene set: 

SCj(i)=average[ER(Gj,i)] – average[ER(Gjcont,i)].

Diffusion component analysis—We used diffusion map (Coifman et al., 2005), a 

nonlinear dimensionality reduction approach, to identify the major components of variation 

across tumor cells. The count matrix of each tumor was first normalized using global 

scaling log normalization followed by PCA on the highly variable genes selected by 

mean variability plot method in FindVariableFeatures. We then computed the diffusion 

components in each tumor using the first 10 principal components as input of the 

DiffusionMap function of R package destiny 2.14.0 (Angerer et al., 2016). Uninformative 

components representing isolated clusters with very few cells were not included in the 

visualization. To identify genes associated with each diffusion component, we calculated 

the Pearson correlation coefficient between diffusion components and the scaled expression 

of each gene and retained the top 50 positively/negatively correlated genes. Biological 

processes and pathways were annotated based on Metascape annotation (Zhou et al., 2019) 

of the top correlated genes and manual inspection.

Identification of recurrent expression programs in human brain metastases 
with Non-Negative Matrix Factorization (NMF)—For tumor cells in each sample, 

Non-Negative Matrix Factorization (Matlab nnmf function, with number of factors set to 10) 

was applied to the scaled and centered expression data (Seurat ScaleData function), after 

converting all negative values to zero. For each of the resulting 10 factors, 50 genes with the 

highest NMF scores were defined as a signature. In order to identify recurrent expression 

programs across human brain metastasis, we aggregated 150 signatures from 15 samples 

and did hierarchical clustering using 1 minus Jaccard index as the distance metric. This 

revealed the 8 meta-programs described in this study. For each meta-program, we calculated 

the expression score using genes in the meta-program and ranked all the genes by their 
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correlation with the expression score. Each meta-program was then redefined using the top 

30 correlated genes. To infer the co-occurrence of programs, Pearson correlation coefficients 

were calculated between the single-cell gene signature scores of NMF programs.

Principal component analysis—We performed principal components analysis (PCA) 

on the normalized count data (Seurat NormalizeData function) of all cancer cells. To identify 

common features across samples and minimize the impact of intertumoral variability, we 

scaled and centered the data within each sample as previously described (Venteicher et al., 

2017). PCA was then performed on the top 2000 highly variable genes selected by Seurat’s 

variance stabilizing transformation method in FindVariableFeatures. Biological processes 

and pathways associated with each PC were annotated based on Metascape annotation 

(Zhou et al., 2019) of genes with top weights and manual inspection. Alternatively, to 

study the level of interpatient heterogeneity of MTCs, we first merged the cancer cells from 

all samples, then we scaled and centered the combined normalized counts data, PCA was 

performed on the top 2000 highly variable genes selected by Seurat’s variance stabilizing 

transformation method in FindVariableFeatures. Variance explained was calculated for the 

first 50 PCs using R as follow: variance explained equals to square of standard deviations 

(SD2) divided by sum of SD2. Standard deviations for all 50 PCs were collected from the 

Seurat object. Similarly, for individual samples, variance was calculated using the top 50 

PCs.

NMF program interrogation on primary tumors—scRNAseq data of primary tumors 

(Kim et al., 2020; Neftel et al., 2019; Tirosh et al., 2016a; Wu et al., 2021) were downloaded 

from Single Cell Portal (https://singlecell.broadinstitute.org/single_cell) or Gene Expression 

Omnibus (https://www.ncbi.nlm.nih.gov/geo/). Raw counts of annotated cancer cells were 

normalized and scaled as described in “Data Preprocessing with Seurat Package”. The 

expression of the top 30 genes of each NMF metaprogram described in this study was then 

visualized in heatmaps using R.

Cell cycle analysis—Cell cycle phases of cancer cells were inferred based on G1/S 

and G2/M expression signature using Seurat’s CellCycleScoring function. The Cycling 

Score was defined as the mean of G1/S and G2/M score. To identify transcriptome 

difference between cycling and non-cycling cancer cells shared by brain metastasis samples, 

we utilized a “leave-one-out” approach. Excluding one sample at a time, we performed 

differential expression analysis 15 times on cycling and non-cycling cells in the remaining 

samples (Seurat FindMarkers function). Genes expressed in at least 50% of the cycling 

and non-cycling cells were included in the analysis. We took the intersection of significant 

genes (LFC > 0.25, Bonferroni corrected p-val < 0.1) of the 15 tests as the final list of 

shared differentially expressed genes between cycling and non-cycling cells. This approach 

minimized the impact of specific samples with very large or small number of cycling cells. 

For the list of shared highly expressed genes in cycling cells, we removed genes annotated as 

R-HSA-1640170 Cell Cycle genes by Metascape (Zhou et al., 2019).

Correlation analysis in MET500 cohort—We downloaded the log2(fpkm) RNAseq 

data of MET500 from UCSC Xena (Goldman et al., 2020). We calculated the MimmScore, 
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an aggregate measure of immune infiltration, of all samples in MET500 as described in 

the original publication (Robinson et al., 2017). Briefly, inverse normal transformation 

was applied to the 141 immune signature genes (Yoshihara et al., 2013). The MimmScore 

was calculated by summing the normalized expression of these genes. Pearson correlation 

coefficients were calculated between the inverse normal transformed expression of the 

mentioned signatures and the MimmScore.

We used the CIBERSORTx tool (Newman et al., 2019), an updated version of the 

CIBERSORT tool used by the original publication, to estimate the relative proportions 

of 22 types of infiltrating immune cells in MET500 samples. CIBERSORTx uses a set of 

reference gene expression values representing each cell type (signature matrix). We used 

LM22 downloaded from CIBERSORTX, a 547 gene expression matrix distinguishing 22 

human hematopoietic cell phenotypes, as the signature matrix. B-mode batch correction 

was applied to minimize the platform difference. We ran CIBERSORTx using the default 

setting with 1000 permutations. Only samples with high immune composition estimation 

confidence (empirical p-val <0.05) were included in the correlation between the expression 

of mentioned signatures.

Single cell RNAseq analysis of experimental brain metastasis—The Seurat 

pipeline was applied to each experimental metastasis sample (Butler et al., 2018). Genes 

that were expressed in less than 5 cells and cells that expressing less than 500, or more than 

9,000 genes (outliers), or with a percentage of mitochondrial genes higher than 10% were 

excluded from further analyses. For the model 4T1Br (syngeneic BrM model), the count 

matrix of cells that passed the quality control was then normalized using global scaling 

log normalization followed by PCA on the variable genes selected by mean variability plot 

method in FindVariableFeatures. UMAP dimensionality reduction (Becht et al., 2018) was 

used to visualize cells in the 2D space with the first 10 PCs as input, this step allows the 

identification and exclusion of contaminating residual immune or non-immune stromal cells 

before proceed with NMF pipeline.

As previously described in human data analysis, for both experimental models, Non-

Negative Matrix Factorization (Matlab nnmf function, with number of factors set to 10) was 

applied to scaled and centered expression data (Seurat ScaleData function), after converting 

all negative values to zero. For each of the resulting 10 factors, 50 genes with the highest 

NMF scores were defined as a mouse program, followed by functional annotation evaluated 

by Metascape (Zhou et al., 2019), gene lists with no significant biological processes were 

excluded.

RNA velocity analysis—We used scVelo 0.2.2 (Bergen et al., 2020) to subpopulation 

kinetics in myeloid cells with the default setting. ScVelo is a more robust and scalable 

inference of the original RNA velocity (La Manno et al., 2018). Briefly, we used the 

loom files prepared by the Cell Ranger, filtered lowly expressed genes with less than 30 

counts, and kept top 2000 highly variable genes for downstream analysis. RNA velocities 

were inferred and projected as field onto the pre-computed diffusion map embedding for 

visualization. This pipeline was implemented in Python 3.6.9.
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Mass cytometry analyses

Cell staining and preparation:  Cells were resuspended in cell-staining media (CSM, 

PBS with 0.5% BSA and 0.02% NaN3), and human Fc block (Biolegend) was added for 

5 min at room temperature on a shaker to block Fc receptors. Surface marker antibodies 

were then added, and cells were stained in a final colume of 400 ul of CSM for 30 min 

at room temperature on a shaker. After staining, cells were washed two times with cell-

staining media and then permeabilized with transcription factor permeabilization solution 

(eBioscience, Thermo Fisher). Cells were then stained with intracellular antibodies in a 

final volume of 400 ul of transcription factor permeabilization solution for 30 min at room 

temperature on a shaker. Cells were washed once in transcription factor permeabilization 

solution and once in CSM and then stained with 1 ml of 1:4,000 191/193Ir DNA intercalator 

(Fluidigm) diluted in PBS with 1.6% PFA overnight. Cells were then washed once with 

cell-staining media and then two times with double-deionized (dd) water. Care was taken 

to assure that buffers preceding analysis were not contaminated with metals in the mass 

range above 100 Da. Mass cytometry samples were diluted in dd water containing bead 

standards (see below) to approximately 106 cells per ml and then analyzed on a CyTOF 2 

mass cytometer (Fluidigm) equilibrated with dd water.

Mass cytometry bead standard data normalization:  Data normalization was performed 

as previously described (Finck et al., 2013). Briefly, just before analysis, the stained and 

intercalated cell pellet was resuspended in freshly prepared dd water containing the bead 

standard (Fluidigm). The mixture of beads and cells was filtered through filter cap FACS 

tubes (BD Biosciences) before analysis. All mass cytometry files were normalized together 

using the mass cytometry data normalization algorithm (same citation as above), which uses 

the intensity values of a sliding window of these bead standards to correct for instrument 

fluctuations over time and between samples.

Mass cytometry gating strategy and analysis:  After normalization and debarcoding of 

files, singlets were gated by Event Length and DNA. Live cells were identified as cisplatin-

negative cells. All positive and negative populations and antibody-staining concentrations 

were determined by titration on positive and negative control cell populations. Gating was 

performed using CellEngine software, and downstream analyses performed in R.

Clustering:  Manually gated CD4 and CD8 T cells were downloaded as FCS files from 

CellEngine. The R package Premessa (https://github.com/ParkerICI/premessa/) was used to 

harmonize panels between experiments and flowCore (Hahne et al., 2009) was used to 

import FCS files into R. The FlowSOM clustering algorithm (Van Gassen et al., 2015), 

available through the CATALYST R/Bioconductor package (Chevrier et al., 2018), was used 

to generate clusters based on CD4 and CD8 T cell specific markers. Plots were produced 

with the R packages CATALYST and ggplot2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Single-cell analysis of human BrMs, reveal conserved features across multiple 

cancers.

• Metastasis-associated macrophages, exhibit two well defined states.

• Eight metaprograms define two coexisting archetypes of metastatic tumor 

cells (MTCs).

• An immune evasive program supports MTCs proliferation.
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Figure 1. Cellular Census of Human Brain Metastases Using scRNAseq Analysis
(A) Experimental approach. (B) Visualization of 80,377 malignant (MTCs) and non-

malignant single cells. Cells are colored by sample and number of cells per sample are 

shown. Right panel displays feature plots for selected markers. (C) Pie charts illustrating the 

tumor purity of each BrM biopsy. (D) IHC staining showing the expression of KRT19 or 

Melan-A in selected carcinoma or melanoma BrMs (Scale bars, 60 μm). (E) Projection of 

30,889 BrM-associated stromal cells including immune and non-immune fractions. (F) Dot 

plots of conserved and cell-type specific markers in BrM-associated stromal cells. See also 

Figure S1 and Table S2.
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Figure 2. Uncovering the BrM-associated Blood-Tumor-Interface (BTI)
(A) Visualization of 3,292 endothelial cells and 9,229 mural vascular cells using UMAP 

embedding. (B) Pie charts illustrating the endothelial and mural vascular cell frequency 

per sample. Number of cells and percentage of the stromal fraction per sample are shown. 

(C) Zonal expression of arterial and venous transcripts across endothelial cells sorted by 

the UMAP-2 coordinate, with clusters and sample distribution shown above. Right panel 

illustrates feature plots for selected endothelial markers. (D) Expression of multi-specific 

ATP-binding cassette (ABC) transporters detected in BrM associated endothelial cells. (E) 

Expression of ABCB1 (MDR1) and ABCG2 across the arteriovenous axis sorted by the 

UMAP-2 coordinate. See also Figure S2.
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Figure 3. Immune Cell Types and Activation States Enriched in Human BrMs
(A) UMAP plot of immune clusters. Bottom panel displays feature plots for selected 

markers. (B) Frequencies of immune clusters per sample, indicating the number of cells. 

(C) T cell clusters ordered by the diffusion component 1 score, visualized with density 

ridgeline plot. (D) Scatterplot showing the co-expression of the diffusion component 

1 genes and a curated T cell activation signature (GO:0042110). T cell clusters are 

labeled colors. (E) Heatmap reporting the average expression of microenvironmental and 

metabolic gene signatures in each T cell cluster. (F) Boxplots displaying the normalized 

expression of known and new T cell anergic markers. (G) Heatmap of myeloid clusters, and 

representative markers. (H) 2D projection of the diffusion map analysis on macrophages 
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clusters, which shows a continuum phenotypic change between two macrophages states. 

Bottom panel shows the normalized expression of selected markers. (I) RNA velocity 

analysis embedded in 2D diffusion map plot for samples Breast-1 and Melan-2. (J) Boxplots 

of transcriptional factors differentially expressed between macrophages clusters, with t-test 

statistics. (K) Heatmap showing the normalized expression level for selected markers 

for antigen presentation, inflammatory and migratory related processes in cDC2:CD1C+/

CLEC10A+ cluster (879 cells). See also Figures S3, 4, S4 and Table S2.
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Figure 4. Mass Cytometry Analysis of BrM-associated Immune infiltrates
(A) UMAP projection of 20,900 immune cells showing the major immune cell populations. 

Cells are colored by sample. (B) Frequencies of major immune cell populations. (C) CD8+ 

T cell population clustered by FlowSOM and visualized by UMAP (see STAR Methods). 

(D) Functional and phenotypic median expression profiles for each CD8+ T cell clusters. 

(E) CD8+ T cell cluster proportions by patients. (F) Frequency of HLA-DR-high and HLA-

DR-low cells within the CD11b+CD14+ population. (G) Scatterplot showing the correlated 

expression of PD-L1 by myeloid cells and PD-1 by T cells. See also Figure S4 and Table S3.
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Figure 5. Metastatic Cells Acquire Two Well-Defined Functional Archetypes
(A) Intra-tumoral diversity of metastatic cells in two selected samples evaluated by diffusion 

map analysis and clustering. Right panel shows the normalized expression of selected 

markers. (B) Hierarchical clustering of pairwise similarities between NMF programs 

identified across metastatic cells from all the analyzed samples. Bottom panel displays the 

NMF scores of signature genes (rows) for each metaprogram (columns). (C) Annotation 

and selected top genes for each metaprogram. (D) Heatmap displays the Pearson correlation 

coefficients calculated between the single-cell gene signature scores of NMF metaprograms. 

(E) Heatmap showing the expression of selected metaprograms. Cells were plotted by 

cancer type (breast, lung, and melanoma) and ordered by the P1 score. (F) Correlation 

coefficients calculated by scoring the 868 samples from MET500 cohort for the NMF 

metaprograms. Samples were plotted including all (n: 868) metastatic samples (left) and just 

BrM (n: 24) (right). (G) Scatter plot comparing the median score value for inflammatory 

(P8) or proliferative (P2) metaprograms on MTCs, and the composition of the stromal 

fraction in each sample. (H) Interrogation of the functional equivalence of human vs mouse 

BrM programs. Top panel shows the schematic illustration of the murine brain metastasis 

and scRNAseq analysis approach. Scatterplots display the co-expression of human NMF 

metaprograms scores (x axis) and mouse programs scores (y axis) in single cells from the 3 

breast cancer BrM samples. See also Figure S5, Figure S6 and Table S4.
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Figure 6. Reconstruction of the Transition from Quiescence to Proliferation in Metastatic Cells
(A) Principal component analysis (PCA) of all metastatic cells colored by patient. (B) 

Immunohistochemical staining of the proliferative marker Ki67 in two selected samples. 

Two representative images per sample are shown. Scale bars, 100 μm. (C) Heatmap 

showing the conserved core signature that describes the transition from cell cycle arrest 

to proliferative reactivation in metastatic cells. Cells are ordered from left to right by 

cycling score (CS). (D) Validation at protein level of the patterns observed in scRNAseq. 

Images of dual immunofluorescent staining of Ki67 and PEG10 or S100A6 in multiple BrM 

samples. DAPI denotes nuclear staining. For each field, representative cells that denote the 

differential expression of S100A6 and PEG10 in cycling and non-cycling cells-are indicated 

by arrowheads. Scale bars, 50 μm. See also Figure 7 and Table S5.
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Figure 7. Immune Evasive State of Proliferating Metastatic Cells
(A) Scatterplots showing the correlation of the expression of genes downregulated and 

up-regulated in cycling metastatic cells (y axis) with the magnitude of immune infiltration 

(MimmScore) across 868 metastatic tumors (MET500 cohort) (x axis). (B) Relative 

proportions of immune infiltrates in MET500 samples with high immune composition 

evaluated by CIBERSORT with the estimation confidence (empirical p-val <0.05). 

The color represents the Spearman correlation coefficients between estimated cell type 

fractions and the expression of a signature called “genes down in cycling MTCs”. (C-D) 

Immunohistochemical staining and quantification of the proliferative marker Ki67 and the 

immune marker CD45 in an external cohort of 13 BrM samples (Lung = 5, Melanoma = 5, 

Breast = 3). Scale bars, 100 μm. Bottom panel shows the correlation between the percentage 

of proliferation (x axis) and immune infiltration (y axis). (E) Immunohistochemical staining 

of the proliferative marker Ki67, immune marker CD45, markers down-regulated (CD63) 

and up-regulated (PEG10) in cycling metastatic tumor cells. Two BrM cases patients are 

shown. Scale bars, 100 μm. See also Figure 6 and Table S5.
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Full list of CyTOF antibodies This paper Table S3

Mouse CD45-FITC Biolegend Cat# 103108

Mouse Ter119-FITC eBioscience Cat# 11-5921-82

Mouse CD31-FITC eBioscience Cat# 11-0311-85

Human CD298-PE Biolegend Cat# 341704

Human KRT19 Sigma-Aldrich Cat# HPA002465

Human PECAM1/CD31 Invitrogen Cat# MA5-16337

Human PEG10 Proteintech Cat# 14412-I-AP

Human CD63 Sigma-Aldrich Cat# HPA010088

Human S100A6 Proteintech Cat# 10245-I-AP

Human CD45 DACO Agilent Cat# GA75161-2

Human Ki67 DACO Agilent Cat# GA62661-2

Human Melan-A Invitrogen Cat# MA5-14168

Mouse CD45 Thermo Fisher Cat# BDB550539

Anti-mCherry Abcam Cat# Ab167453

Biological samples

Fresh Human Brain Metastases This Study Table S1

Critical commercial assays

Chromiun Controller and the Single Cell 
Reagent kit 3’ v2

10X Genomics Cat# PN-120237

RNAscope Fluorescent Mutiplex Assay ACD Cat# 320850

Deposited data

Raw and analyzed data This paper GSE186344

MET500 Cohort Dataset (Robinson et al., 2017) http://met500.path.med.umich.edu

Glioblastoma (Neftel et al., 2019) GSE131928

Primary Breast Cancer (Wu et al., 2021) GSE176078

Primary Lung Cancer (Kim et al., 2020) GSE131907

Primary Melanoma (Tirosh et al., 2016a) GSE72056, GSE77940

Experimental models: Cell lines

MDA-MB-231BR (Zhang et al., 2015) NA

4T1 ATCC CRL-2539

Experimental models: Organisms/strains

Female Nude mice Charles River Strain Code: 088

Female BALB/c mice Charles River Strain Code: 028

Recombinant DNA

PLKO-mCherry-Luc Addgene Cat# 29783

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Seurat version: 4.0.0 (Butler et al., 2018) https://satijalab.org/seurat/index.html

R version: 4.0.3 NA https://cran.r-project.org/

Cell Ranger version 3.0.2 10X Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/using/tutorial_ov

CONICSmat (Muller et al., 2018) https://github.com/diazlab/CONICS

Destiny Package version 2.14.0 (Angerer et al., 2016) https://github.com/theislab/destiny

CIBERSORTx tool (Newman et al., 2019) https://cibersortx.stanford.edu/

PRINSEQ-lite 0.20.4 NA https://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi

STAR 2.7.5a NA https://github.com/alexdobin/STAR

GSVA (Hanzelmann et al., 2013) https://bioconductor.org/packages/release/bioc/html/
GSVA.html

scVelo 0.2.2 (Bergen et al., 2020) https://pypi.org/project/scvelo/

CellEngine NA https://cellcarta.com/cellenginesoftware/
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