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Genome binning of viral entities from bulk
metagenomics data
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Shiraz A. Shah 5, Ling Deng6, Jakob Stokholm 5,6, Hans Bisgaard 5, Dennis Sandris Nielsen 6,

Søren J. Sørensen 7 & Simon Rasmussen 1✉

Despite the accelerating number of uncultivated virus sequences discovered in metage-

nomics and their apparent importance for health and disease, the human gut virome and its

interactions with bacteria in the gastrointestinal tract are not well understood. This is partly

due to a paucity of whole-virome datasets and limitations in current approaches for identi-

fying viral sequences in metagenomics data. Here, combining a deep-learning based meta-

genomics binning algorithm with paired metagenome and metavirome datasets, we develop

Phages from Metagenomics Binning (PHAMB), an approach that allows the binning of

thousands of viral genomes directly from bulk metagenomics data, while simultaneously

enabling clustering of viral genomes into accurate taxonomic viral populations. When applied

on the Human Microbiome Project 2 (HMP2) dataset, PHAMB recovered 6,077 high-quality

genomes from 1,024 viral populations, and identified viral-microbial host interactions.

PHAMB can be advantageously applied to existing and future metagenomes to illuminate

viral ecological dynamics with other microbiome constituents.

https://doi.org/10.1038/s41467-022-28581-5 OPEN

1 Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
2 Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 3 Statens Serum Institut, Viral & Microbial Special
diagnostics, Copenhagen, Denmark. 4 National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark. 5 Copenhagen Prospective
Studies on Asthma in Childhood (COPSAC), Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark. 6 Section of Food Microbiology
and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark. 7 Section of Microbiology, Department
of Biology, University of Copenhagen, Copenhagen, Denmark. ✉email: simon.rasmussen@cpr.ku.dk

NATURE COMMUNICATIONS |          (2022) 13:965 | https://doi.org/10.1038/s41467-022-28581-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28581-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28581-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28581-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28581-5&domain=pdf
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0001-7052-1870
http://orcid.org/0000-0002-6555-2557
http://orcid.org/0000-0002-6555-2557
http://orcid.org/0000-0002-6555-2557
http://orcid.org/0000-0002-6555-2557
http://orcid.org/0000-0002-6555-2557
http://orcid.org/0000-0002-4665-577X
http://orcid.org/0000-0002-4665-577X
http://orcid.org/0000-0002-4665-577X
http://orcid.org/0000-0002-4665-577X
http://orcid.org/0000-0002-4665-577X
http://orcid.org/0000-0003-4989-9769
http://orcid.org/0000-0003-4989-9769
http://orcid.org/0000-0003-4989-9769
http://orcid.org/0000-0003-4989-9769
http://orcid.org/0000-0003-4989-9769
http://orcid.org/0000-0003-4131-7592
http://orcid.org/0000-0003-4131-7592
http://orcid.org/0000-0003-4131-7592
http://orcid.org/0000-0003-4131-7592
http://orcid.org/0000-0003-4131-7592
http://orcid.org/0000-0001-8121-1114
http://orcid.org/0000-0001-8121-1114
http://orcid.org/0000-0001-8121-1114
http://orcid.org/0000-0001-8121-1114
http://orcid.org/0000-0001-8121-1114
http://orcid.org/0000-0001-6227-9906
http://orcid.org/0000-0001-6227-9906
http://orcid.org/0000-0001-6227-9906
http://orcid.org/0000-0001-6227-9906
http://orcid.org/0000-0001-6227-9906
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
http://orcid.org/0000-0001-6323-9041
mailto:simon.rasmussen@cpr.ku.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The human gut microbiota is tightly connected to human
health through its massive biological ecosystem of bacteria,
fungi, and viruses. This ecosystem has been profoundly

investigated for discoveries that can lead to diagnostics and
treatments of gastrointestinal diseases such as inflammatory
bowel disease (IBD) and colon cancer as well as type 2 diabetes
(T2D)1–3. In IBD, multiple studies have compiled a list of
keystone bacterial species undergoing microbial shifts between
inflamed and non-inflamed tissue sites4,5 and there are strong
indications that the gut virome plays a role in disease
aetiology6–8. Now, the influence of bacteria-infecting viruses,
known as bacteriophages, are increasingly studied and their role
in controlling bacterial community dynamics in the context of
gastrointestinal pathologies is slowly being unravelled9. Several
studies have presented evidence of temperate Caudovirales
viruses increasing in Crohn’s disease (CD) and ulcerative colitis
(UC) patients6,8,10,11. However, it has been left unanswered if
this phage expansion was due to alterations in host-bacterial
abundance, thus viral-host dynamics remains another unex-
plored facet of the gut virome in diseases such as IBD12.

Today, the virome is studied through metagenomics where
high-throughput sequencing is computationally processed to
construct genomes of uncultivated viruses de novo. Viral
assembly is a notoriously difficult computational task and is
known to produce fragmented assemblies and chimeric
contigs13 especially for rare viruses with low and uneven
sequence coverage14,15. For better viral assemblies, metaviromes
are prepared with extra size-filtration to increase the con-
centration of viral particles16,17. However, identification of
viruses without enrichment from bulk metagenomics, is
increasingly utilised and overcomes the size-filtration step biases
while enabling identification of primarily temperate but also
lytic viruses18. Currently, several approaches for identifying viral
sequences in metagenomics data exist and have helped in
supersizing viral databases of uncultivated viral genomes
(UViGs) over the last few years19–21. These tools are often based
on sequence similarity22, sequence composition23–28, and
identification of viral proteins or the lack of cellular ones27,28. A
common denominator for these tools is their per-contig/
sequence virus evaluation approach that is not optimal for
addressing fragmented multi-contig virus assemblies.

Therefore, we developed a framework (PHAMB) based on
contig binning to discover viral genome bins directly from bulk
metagenomics data (MGX). For this, we utilised a recently
developed deep-learning algorithm for metagenomic binning
(VAMB)29 that is based on binning the entire dataset of assem-
bled contigs. Altogether, we reconstructed 2676 viral populations
from bulk metagenomes corresponding up to 36% of the paired
metavirome dataset (MVX), based on two independent datasets
with paired MGX and MVX. A key development in our method is
a classifier that can classify non-phage bins from any dataset with
very high accuracy (93–99%) compared to existing virus predic-
tion tools such as DeepVirFinder (69–74%)25, Virsorter2
(30–84%)30 and viralVerify (86–98%)31. Our approach enables
identification and reconstruction of viral genomes directly from
metagenomics data at an unprecedented scale with up to 6077
viral populations with at least one High-Quality (HQ) genome by
MIUViG standards18 in a single dataset. In addition, we show an
increase of up to 210% of HQ viral genomes extracted by com-
bining contigs into viral bins. Using this method to extract viruses
from the microbial metagenomes of the HMP2 cohort we were
able to delineate both viral and bacterial community structures.
This allowed us to investigate viral population dynamics in tan-
dem with predicted microbial hosts for instance identifying 123
and 230 viral populations infecting Faecalibacterium and Bac-
teroides genomes, respectively.

Results
A framework to bin and assemble viral populations from
metagenomics data. To generate the metagenomics bins we used
VAMB that has the advantage of both binning microbial gen-
omes, and grouping bins across samples into subspecies or con-
specific clusters. This has proven useful for the investigation of
bacterial and archaeal microbiomes, but the approach has even
more potential within viromics as viruses are much less con-
served, more diverse, and harder to identify without universal
genetic markers such as those found in bacterial organisms32.
Clusters of conspecific viral genomes would enable straightfor-
ward identification and tracking of populations across a cohort of
samples (Fig. 1a). To develop our framework we used two Illu-
mina shotgun sequencing-based datasets with paired metagen-
ome and metavirome available. The Copenhagen Prospective
Studies on Asthma in Childhood 2010 (COPSAC) dataset con-
sisted of 662 paired samples (refs. 33,34) and the Diabimmune
dataset contained 112 paired samples35. Each of the two datasets
included a list of curated viral species, 10,021 and 328 respec-
tively, that we used here as our gold standard for training and
testing our tool. Compared to COPSAC, Diabimmune metavir-
omes had low viral enrichment (Supplementary Fig. 1), we,
therefore, used the average amino acid identity (AAI) model of
CheckV28 to stratify the genomes of the metaviromes into quality
tiers ranging from Complete, High-Quality (HQ), Medium-
Quality (MQ), Low-Quality (LQ) and Non Determined (ND) to
establish a comparable viral truth.

Viral binning is more powerful compared to single-contig
approaches. The output of binning metagenomic samples can be
hundreds of thousands of bins and we therefore first developed a
Random Forest (RF) model to distinguish viral-like from
bacterial-like genome bins. The RF model takes advantage of the
cluster information from binning and aggregates information
across sample-specific bins to form subspecies clusters. Here, we
found that the RF model was able to separate bacterial and viral
clusters very effectively with an Area Under the Curve (AUC) of
0.99 and a Matthews Correlation Coefficient (MCC) of 0.91 on
the validation set (Fig. 1b and Supplementary Table 1). Compared
to single-contig-evaluation methods, the RF model was superior
as other methods achieved an AUC of up to 0.86 and MCC up to
0.16. This difference in performance is likely explained by the RF
model evaluating on bin-level where one sequence with a low
viral score does not lead to a misprediction of the whole bin. For
instance, we achieved an increase of 200 (190%) and 771 (95%)
HQ bins recovered for the Diabimmune and COPSAC datasets
compared to using single-contig-evaluation according to CheckV
(Fig. 1c, d). Based on the single-contig CheckV evaluations, we
found that 97.7 and 95.3% of HQ contigs were binned into HQ
bins in COPSAC and Diabmmune, respectively. This means that
a small percentage of the HQ contigs, up to 2.3 and 4.7%, are lost
in the binning process at the expense of a net increase in genome
recovery but can be recovered by parallel single-contig evalua-
tions. Finally, we observed a significantly greater number of viral
hallmark genes per virus when using viral bins in both datasets
(T-test, two-sided, t= 16.85, P < 0.0005), while the length and
viral fraction were largely comparable (Supplementary Fig. 2).

High viral binning performance on simulated viromes. We
then investigated the viral binning performance of VAMB and
the prediction performance with simulated datasets including two
pure viral and one mixed dataset containing bacteria, plasmids
and viruses. The two pure viral datasets comprised 80 crAss-like
viruses and 50 small-genome (<6000 bp) randomly sampled from
the MGV database20. To establish the mixed dataset, the crAss-
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like and small-genome datasets were combined with an additional
150 random virus genomes, 8 bacterial genome isolates and 20
plasmids (see methods). On the mixed dataset, VAMB out-
performed MetaBAT2 on bins with high >0.9 recall and >0.9
precision with a total of 144 vs 134 bins, corresponding to just
above 50% (144/280) of all simulated virus genomes (Supple-
mentary Fig. 3a). Furthermore, we found that VAMB binned
increasingly a higher number of bins at lower recall (>0.5) and
increasing precision levels. Regarding plasmids, both tools were
comparable and binned up to 10/20 plasmids with >0.5 recall and
>0.95 precision (Supplementary Fig. 3b). Next, we addressed how
binning performance could be influenced by virus genome size
and highly-similar viruses. For this we sampled smaller virus
genomes (<6000 bp, n= 50) and viruses of the same family
(crAss-like, n= 80). A total of 48/50 and 70/80 genomes were
binned with >0.99 recall and >0.99 precision for the small-virus
and same family-virus set, respectively (Supplementary Fig. 4ab).

The ease of binning small viruses was confirmed in the mixed
dataset where VAMB captured the majority of small viruses with
high recall and precision (F1 > 0.9) (Supplementary Fig. 4c),
indicating that genome size was less confounding to binning
performance. Finally, to further validate the RF model, we com-
pared the performance in predicting if a bin was viral or bacterial
to single-contig viral predictors (Fig. 1e). Using the mixed
simulated dataset the single-contig methods displayed much
lower discriminatory performance compared to the RF model.
For instance, multiple single-contig viral predictors with a high
AUC (up to 0.98) displayed low MCC scores meaning that the
prediction was not very accurate at the given threshold (Fig. 1e
and Supplementary Figs. 5, 6). We then tried to optimise the
decision threshold for each of the single-contig viral predictors
(Supplementary Figs. 5, 6) which improved the MCC slightly. For
instance, viralVerify achieved an AUC of 0.98 on the simulated
data, showing that it was effective in separating bacterial and viral

Fig. 1 A framework to bin and assemble viral populations from metagenomics data. a Illustration of workflow to explore viruses from binned
metagenomes. First, the RF model was trained on binned metagenomes; bacterial bins were identified using reference database tools and viruses were
identified using assembled viruses from paired metaviromes. Viral and bacterial labelled bins were used as input for training and evaluating the RF model.
Bins from any metagenome such as human gut, soil or marine can be parsed through the RF model to extract a space of putative viral bins that are further
validated for HQ viruses using dedicated tools like CheckV. Binned MAGs and viruses can then be associated in a host assignment step. Host-viral
dynamics can be explored in longitudinal datasets to establish temperate phages and the contribution of viruses to Host pangenomes b AUC, F1-score and
Matthews correlation were calculated for prediction results on viral bins from Diabimmune. These performance scores were calculated based on
probability scores from the trained RF model and summarised viral bin-scores of various viral prediction tools. For all tools except the RF model, genomes
were labelled viral if the summarised viral score across all contigs, calculated either as a mean, median or contig-length weighted mean passed a threshold.
The following thresholds used were 7, 0.5, 0.9, 0.9, 0.9 for viralVerify, Seeker, Virsorter2, Virfinder and DeepVirfinder, respectively. c The number of viral
genomes recovered from bulk metagenomes, counted at three different levels of completeness in Diabimmune or COPSAC cohorts, evaluated as either
single-contigs or viral bins from bulk metagenomes. Evaluation of genome completeness was determined using CheckV here shown for MQ ≥ 50%, HQ ≥
90%, Complete= Closed genomes based on direct terminal repeats (DTR) or inverted terminal repeats. d The percentage-increase of viral genomes found
in Diabimmune or COPSAC cohorts using our approach relative to single-contig evaluation. The increase is coloured at three different levels of
completeness determined using CheckV, corresponding to the ones used in (c). e Similar to (b) prediction performance scores were calculated for the
trained RF model and various viral predictors but on prediction results of CAMI simulated viral genomes from the mixed genome set including bacteria,
viruses and plasmids. MAGs metagenome-assembled genomes, HQ high-quality, MQ medium-quality and AUC area under curve.
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genomes, however with an overlap in the bacterial and viral score
distributions. Therefore, even with an optimised threshold, vir-
alVerify displayed an MCC of 0.39. In contrast, the RF model
displayed both high AUC (0.93) and MCC (0.87). Thus, we found
the RF model, followed by viralVerify, to be the best-suited
method on bin-level in mixed-organism assembly datasets. While
the RF model predicts plasmids incorrectly as viral, we found that
the downstream use of CheckV helped in making a final con-
fident evaluation as plasmid bins contain multiple bacterial-origin
genes and are typically classified as ‘NA’ or picked up by the less
precise HMM-model (Supplementary Fig. 7).

Binning the metagenome identifies viral genomes not identi-
fied from the metavirome. When applying our method of binning
with VAMB and the RF model we obtained 4,480 and 916 viral bins
with an MQ or HQ representative bin across the COPSAC and
Diabimmune datasets, respectively. We then considered all VAMB
clusters as ‘viral populations’ and thus obtained 2428 and 534 viral
populations with at least 1 MQ or better viral bin. After comparing
the viral populations obtained from the metagenomics datasets to
the respective metaviromes we recovered 17–36% of HQ viruses
(corresponding to 527 and 2676 metaviromic viral populations)
established in the metaviromes on species (ANI > 95) level and
9–28% on strain (ANI > 97) level (Fig. 2a). The fraction of viruses
in the metavirome recovered in the metagenome was considerably
higher than more recent estimates36, which estimated 8.5–10%.
This was interesting since the deeply sequenced metavirome may
capture multiple low abundant viruses typically not found in
metagenomes. Additionally, we found that 46–69% of the HQ
metagenome viral populations, corresponding to 124 in Dia-
bimmune and 839 viral populations in COPSAC, were not found in
the metavirome, suggesting that a significant part of the virome may
be lost during viral enrichment or not represented in induced forms
as they are integrated prophages (Fig. 2b). However, we also found
that 65–83% of the HQ viral populations in the metavirome were
not found in the metagenome data (total 197 in Diabimmune and
2589 in COPSAC) suggesting the reverse to be true as well. For a
subset of the viruses found in the COPSAC bulk and metavirome,
we estimated higher mean completeness with viral bins (T-test, two-
sided, T= 34.02, CI= 24.4;27.4, P= 2.2e-16) (Fig. 2c). Altogether
we found that a great proportion of the gut viral populations can be
reconstructed from the metagenomics data and retrieved with even
higher completeness compared to the metavirome counterparts.

Viral bins have low contamination. Lastly, we wanted to
investigate the occurrence of technically ‘misbinned’ and con-
taminating contigs that could inflate viral genome size and
influence evaluation and downstream analyses. Based on the
viral bins (n= 1705) that were highly similar to metavirome
viruses in the COPSAC dataset (see Methods), we found in
91.4% of all cases, each bin contained no unrelated contigs
(Fig. 2d). Considering only multi-contig bins (n= 570) we cal-
culated an average bin-purity of 97.4% in base pairs (median
100%), meaning that on average 2.55% of the genome was not
aligning to the corresponding MVX virus. This indicates con-
tamination or, alternatively, a more complete virus in the bulk
metagenomic dataset. We further investigated the extent of
contamination based on simulated data where 87.6% of the viral
bins had a precision of 1 (Supplementary Fig. 8a). For multi-
contig bins, we calculated an average bin-purity of 94.5%
(median 100%) supporting the results on real data that the
majority of bins have low contamination. In summary, our
combined binning and machine learning approach improves
identification and recovery of viral genomes from metagenomics
data and outlines the possibility of binning both fragmented and

complete viruses directly from human gut microbiome samples
with low degrees of contamination.

Reconstructing the virome of the HMP2 IBD gut metage-
nomics cohort. We then applied our method to the HMP2 IBD
cohort consisting of 27 healthy controls, 65 CD, and 38 UC
patients37. These samples were gathered in a longitudinal approach
and consisted of between 1–26 samples per patient. Importantly, no
characterised metaviromics data is available from this cohort and
using our approach we were able to identify bacterial and viral
populations in the cohort and explore their dynamics in IBD using
only metagenomics data. From the cohort, we recovered 577 Com-
plete, 6077 HQ, 9704 MQ (Fig. 3a) and 122,107 LQ viral bins cor-
responding to 263 Complete, 1024 HQ, 2238 MQ and 44,017 LQ
viral populations. We also observed an increase in genome com-
pleteness for larger viruses/jumbo viruses with a genome size
>200 kbp38 compared to a single-contig evaluation (Supplementary
Fig. 9). Across all the datasets we observed 54 binned putative jumbo
viruses (Supplementary Data 1). In addition, we observed that similar
viral length distributions for viruses recovered as a single-contig and
as viral bins, both correlated with CheckV quality tiers (Fig. 3b).

Viral population taxonomy is highly consistent. We then
investigated the taxonomic consistency of our viral populations
and found this to be very high as the median intra-cluster Average
Nucleotide Identity (ANI) for MQ to Complete viral clusters was
97.3–99.3% (Supplementary Fig. 11). Even in clusters with over 100
sample-specific viral bins the intra-cluster median ANI was con-
sistently high (median= 97.1–98.5%) (Fig. 3c). Inter-cluster ANI
was much lower in the 91.7–92.8% range closer to the genus level.
Therefore, our approach was able to identify and cluster near
strain-level viral genomes across samples. For example, in the
HMP2 dataset, we identified 50 different viral populations for a
total of 916 MQ or better crAss-like viral bins. Here, viral popu-
lation 653 corresponded to the prototypic crassphage39 and
accounted for 253 of the 916 crAss-like genomes discovered in the
HMP2 dataset. We then used all of these 916 bins to generate a
phylogenetic tree based on the large terminase subunit (TerL) and
found the highly consistent placement of the viral genomes
according to their binned viral population (Fig. 3d and Supple-
mentary Fig. 12). Viral population 653 formed one monophyletic
clade except for one bin while all the other crAss-like clusters were
monophyletic. The division of the crAss-like genomes into the
binned clusters therefore likely represents actual viral diversity.
Taken together, this shows that our reference-free binning pro-
duces taxonomically accurate viral clusters, thus aggregating highly
similar viral genomes across samples.

The metagenomic virome is personal and highly stable in
healthy subjects. Several metavirome studies have reported the
presence of stable, prevalent and abundant viruses in the human
gut7,40. We found that the gut virome in the HMP2 cohort37 was
highly personal and stable over time in nonIBD subjects, which
was reflected by the lower Bray–Curtis dissimilarity between
samples from nonIBD subjects compared to UC (T-test, two-
sided P= 0.017, t=−2.47, CI=−0.01;−0.13) and CD subjects
(T-test, two-sided, P= 0.023, t=−2.3, CI=−0.12;−0.01)
(Fig. 4a, b). In addition, the dysbiotic samples, as defined by Price
et al. (2019)37, could be clearly separated with a principal com-
ponent analysis (PCoA), where the virome explained 4.2 and
3.4% of the variation (Fig. 4c). This was confirmed with a PER-
MANOVA test on viral (P < 10− 3, R2= 1.6%, F= 9.51, per-
mutations= 999) and bacterial abundance profiles (P < 10− 3,
R2= 3.0%, F= 11.97) and shows dysbiosis affecting both the
virome and bacteriome. Alpha-diversity metrics supported this as
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Shannon-Diversity (SD) was higher in nonIBD subjects com-
pared to both UC and CD (T-test, two-sided, P= 0.000155,
t=−3.79 and P= 7.9e-09, t=−5.81) while dysbiosis affected
every patient group resulting in a significantly reduced SD. In
accordance, viral richness was lower in UC (two-sided T-test,
P= 1.44e-15, t=−8.09, CI=−12.40;−19.80) and CD (two-
sided T-test, P= <2e-16, t=−9.39, CI=−12.91;−19.50)
patients and further exaggerated in dysbiotic samples (Fig. 4d, e).
These viral alpha-diversity trends were also observed in the
bacteriome, suggesting that the viruses follow the expansion or
depletion of their bacterial host during dysbiosis (Supplementary
Fig. 14). Indeed, we identified 250 likely temperate viruses out of
348 differentially abundant viruses that expanded with increasing
dysbiosis (linear-mixed-effect model, adj. P < 0.005, FDR-cor-
rected). This observation acknowledges earlier results showing an
increase in temperate viruses in UC and CD6,10. Further analysis
on the longitudinal abundance profiles of virus and predicted
bacterial host reaffirmed the synchronised expansion theory
(Supplementary Fig. 15).

Viral–host interactions can be explored from viral populations
and MAGs. A unique feature of performing the analysis on
metagenomics data is that both the bacterial and viral populations
are binned simultaneously. Therefore, we were able to estimate
the abundance of both the viral and bacterial compartments of
the microbiome and explore the viral host range in silico using
the MAGs. In total from the HMP2 dataset, we obtained 3130
and 3819 Near-Complete (NC) and Medium-Quality (MQ)
MAGs41. Based on MAG-derived CRISPR spacers we found
spacer hits to 464 (45.3%) to viral populations with at least one
HQ representative. To further expand our viral-host prediction
we conducted an all-vs-all alignment search between the MAGs
and viral populations for prophage signatures. Then by com-
bining the CRISPR spacer and prophage search we connected
93.6, 74.4, 82.5 and 65.0% of MAGs from Bacteroidetes, Firmi-
cutes, Actinobacteria, and Proteobacteria phylum, respectively,
with at least one virus (Supplementary Fig. 16). We estimated
host-prediction purities to be 94.5 and 75.6% on species rank for
the CRISPR spacer and prophage signature (Supplementary

0.00

0.10

0.20

0.30

0.40

0.50

0.60

COPSAC

Diab
im

m
un

e

ANI>97

F
ra

ct
io

n 
re

co
ve

re
d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

COPSAC

Diab
im

m
un

e

ANI>95

0.00

0.10

0.20

0.30

0.40

0.50

0.60

COPSAC

Diab
im

m
un

e

ANI>90

Complete
High Quality
Medium Quality
Low Quality
All

a b

c d

Complete
High Quality
Medium Quality

M
GX in

 M
VX

M
GX n

ot
 in

 M
VX

M
VX in

 M
GX

M
VX n

ot
 in

 M
GX

M
GX in

 M
VX

M
GX n

ot
 in

 M
VX

M
VX in

 M
GX

M
VX n

ot
 in

 M
GX

%
 o

f v
ira

l p
op

ul
at

io
ns

0

10

20

30

40

50

60

70

80

90
COPSAC Diabimmune

MGX MVX

C
om

pl
et

en
es

s

0

25

50

75

100

0

500

1000

1500

0 1 2 3 4 5 6 7 8 9 +10

Additional contigs in MGXbin compared to MVX virus

V
ir a

l b
in

s

Fig. 2 Binning the metagenome identifies viral genomes not identified from the metavirome. a The fraction of metavirome viruses in COPSAC and
Diabimmune coloured at different levels of completeness or all together determined with CheckV, identified in VAMB bins from bulk metagenomics of the
same cohorts. We defined a metavirome virus to be recovered if the aligned fraction was at least 75% and ANI was >90, >95 or >97.5 to a VAMB bin
based on FastANI. b The percentage of viral populations, at different levels of completeness determined with CheckV, identified in both metaviromes
(MVX) and bulk metagenomics (MGX) or unique to either dataset. Shared populations are identified with a minimum sequence coverage of 75% and ANI
above 95%. (1) MGX in MVX: % of Viral populations found in MGX also found in MVX. (2) MGX not in MVX: % of Viral populations unique to MGX i.e.
not found in MVX. (3) MVX in MGX: % of Viral populations found in MVX are also found in MGX. (4) MVX not in MGX: % of Viral populations unique to
MVX i.e. not found in MGX. c Viral genome completeness estimated for n= 2646 viruses found both in metaviromes and bulk metagenomics sharing the
same nearest reference in the CheckV database. d The number of contigs in viral bins from bulk metagenomics that do not align to the closest viral
reference in the metavirome. In the majority of viral bins, all contigs align to the nearest reference. ANI average nucleotide identity.
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Fig. 17B). Therefore, we confirmed that most gut phages have a
primarily narrow host range42. MAGs belonging to the genera
Faecalibacterium and Bacteroides seemed to be viral hotspots
since 99.7 to 98.7% could be associated with a HQ viral bin,
corresponding to 123 and 230 distinct viral populations, respec-
tively (Fig. 5a). For instance, in abundant commensals like Bac-
teroides vulgatus (cluster 216) we observed consistent prophage
signals over time for multiple viruses across several samples
(Fig. 5b). Interestingly, because the host range of crAss phages are
not well understood we investigated CRISPR spacer hits to the
MAGs in our databases. Even though we could host-annotate an
overall of 45.3% of all HQ viral populations to a MAG, only 74 of
the 916 crAss-like bins could be associated with any of the 3306
Bacteroidetes bins in our dataset using CRISPR spacers. This was
despite having assembled CRISPR arrays (with confidently pre-
dicted subtypes) for 998/3306 (~30%) of the Bacteroidetes bins.
When we performed a similar search to a comprehensive CRISPR
spacer database43 of 580,383 bacterial genomes we could annotate
512 of the 916 crAss-like bins to Bacteroidetes bacteria. These
findings suggest that crAss-like phages are not frequently targeted
by CRISPR spacers extracted from Bacteroidetes CRISPR-Cas
systems within the same environment.

The binned viral populations are enriched in proteins found in
temperate phages. Another topic of interest was viral-host
complementarity, in particular, what functions bacteriophages
could provide to the host and how the viral proteome differs with
respect to host taxonomy. Using our map of viral-host connec-
tions and through characterisation of viral protein sequences, we
ranked protein annotations stratified by their predicted host
genera. Overall, the proteins were highly enriched for annotations
related to viral structural proteins such as baseplate, portal, cap-
sid, head, tail/tail-fibre and tail tape measure but also viral inte-
grase enzymes and Lambda-repressor proteins (Supplementary
Data 2). For instance, Lambda-repressor proteins were found in
up to ~60% of all viruses suggesting that our dataset was enriched
with temperate phages (Fig. 6a). Interestingly, we also identified
virally encoded protein domains, which are known to function as
viral entry receptors44, to be enriched within a group of viral
populations infecting Bacteroides and Alistipes such as the TonB
plug and TonB-dependent receptor domains (PF07715 and
PF00593, Fisher’s exact test, adj. P < 0.05, FDR-corrected) (Sup-
plementary Data 3). Furthermore, the TonB domains also encode
an established immunodominant epitope45 suggesting that viral
populations carry immunogenic entry receptors when expressed
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by their host. Finally, Reverse Transcriptase (RT, PF00078) pro-
teins were also highly detected, in agreement with recent results20

and shared by all viral populations irrespective of the predicted
host (Supplementary Fig. 18A). These proteins are known mod-
ules in bacteriophage diversity generating regions that cause
hypervariability in specific viral genes46.

Exploring the dark-matter metavirome. Finally, we investigated
the part of the RF predicted bins that did not resemble any of the
known genomes, i.e. metagenomics ‘dark-matter’. These were
defined as populations without at least one HQ or MQ viral bin.
Such populations, therefore, represent a part of the microbiome
that are not classified as bacterial, archaeal and not alike known
viral genomes. Since dark-matter populations were numerous
(97.6% of all RF predicted VAMB clusters) we suspected many of
these to be fragmented viruses or unknown viruses. Dark-matter
populations larger than 10 kbp with at least one viral hallmark gene
displayed lower viral prediction scores compared to HQ-MQ viral
bins, while bins targeted by CRISPR spacers displayed a sig-
nificantly higher prediction score (T-test, two-sided, CI=
0.05:0.067, P= 2.2e-16), thus we annotated these as ‘viral-like’
(Fig. 6b and Supplementary Fig. 19). When stratifying read

abundance on these groups (HQ-MQ, viral-like, dark-matter) we
found them to explain on average 2.77, 2.04 and 17.7% of total read
abundance across samples, respectively (Fig. 6c). Furthermore, we
found that 5% HQ and 3.7% viral-like populations were detected in
at least 40% of the patients across disease states. For instance, HQ
viral populations cluster 653 were observed in 41% of the cohort
(Fig. 6d). Simultaneously, a viral-like population of 1338 was
observed in 98% of individuals but displayed a low similarity to any
reference genome (Fig. 6e). However, caution should be taken with
labelling dark-matter bins as viruses since these are possibly
incomplete, contaminated or contain other types of mobile genetic
elements that encode proteins shared with viruses such as inte-
grases, polymerases and toxin-antitoxin addiction modules47,48.

Discussion
Because of the current challenges facing the viral assembly pro-
cess, which results in partial and fragmented viral genome
recovery13,15, viral communities have traditionally been notor-
iously difficult to study. Metavirome datasets have been crucial
for identifying a broad scope of viruses, in particular virulent
ones. However, the paucity and difficulties in creating metavir-
ome datasets combined with the fact that bulk metagenomes are

Fig. 4 The metagenomics estimated virome is personal and highly stable in healthy controls. a Longitudinal virome compositions for three nonIBD (green
bar), three UC (yellow bar) and three CD (red bar) diagnosed subjects. Each panel represents a subject where the virome composition was organised according
to the total relative abundance according to the taxonomic viral family, where ‘NA’ populations are coloured grey. b Dissimilarity boxplots based on Bray–Curtis
distance (BC) function between samples from different subjects (first panel inter-patient-distance) and between samples from the same subject (second panel
intra-patient-distance). The BC distances are shown for samples from nonIBD (n= 326), UC (n= 323) and CD (n= 573) diagnosed subjects. Furthermore, BC
distances are coloured according to dysbiosis (blue, UC= 39 samples, CD= 133 samples, nonIBD= 38 samples) or not (green, UC= 284 samples,
CD= 425 samples, nonIBD= 286 samples). c Principal component analysis (PCoA) of Bray–Curtis distance matrix calculated from the viral abundance matrix in
HMP2. Each point is coloured according to diagnosed dysbiosis as in (b). d Shannon-diversity estimates of metagenomics derived viral populations and coloured
according to dysbiosis as in (b). e Per sample viral population richness based on the number of viral populations detected (abundance >0) in the samples.
Coloured according to dysbiosis as in (b). nonIBD: healthy control, UC ulcerative colitis, CD Crohn’s disease.
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produced in abundance, calls for more methods to efficiently
extract the viromes found therein. Here we present an improved
framework for exploring metavirome directly from bulk meta-
genomics datasets.

Using our map of viral and bacterial connections we wanted to
associate and study the human gut virome along highly abundant
gut bacteria such as Bacteroides and Faecalibacterium. Several of
these genera represent not only highly abundant gut commensals
but also hotspots for viruses as we have shown by connecting 230
and 123 viral populations to Bacteroides and Faecalibacterium,
respectively. Viral hotspots could be partially explained by factors
such as their absolute numbers and genome sequencing depth,
which may allow for a more complete assembly of CRISPR-cas
systems. A large part of these connections was also made via
prophage signatures, i.e. shared genomic elements between bac-
teria and phage (Fig. 5). Prophage signatures could be the result
of increased rates of lysogeny and coinfection as higher microbial
densities and phage adsorption rates provide favourable condi-
tions for multiple phages to ‘piggyback’ highly productive hosts
and exchange genetic material49. In agreement with other
results11, we found that F. prausnitzii genomes are rich in pro-
phages and were able to annotate one for 99.7% of the bacterial
bins in HMP2. In the HMP2 cohort, we identified 250 likely
temperate Caudovirales viruses expanding in a synchronised
manner with bacterial hosts following increasing gut dysbiosis6,10.
However, more work is needed to outline the intricate virus-host
dynamics that can explain the degree of viral influence on bac-
terial perturbations observed in IBD related to dysbiosis such as
‘Piggyback-the-Winner’ or ‘Kill-the-Winner’ dynamics50 with
carefully calculated correlations51.

Based on the viral proteomes it is clear that a majority of HQ
viruses extracted in the bulk metagenomes are likely temperate as
we have found integrase proteins in 46% of the viral populations
and Lambda-repressor proteins in 60% of viruses infecting Fae-
calibacterium bacteria. This adds to the expectation that the non-
enriched viromes can be biased toward viruses that infect the
dominant host cells in the sample18. Interestingly, we found
examples of viruses encoding proteins with immunodominant

epitopes such as the TonB plug domain (PF07715) and TonB-
dependent beta-barrel (PF00593)45 in hundreds of viral pro-
teomes extracted from viruses infecting members of Bacteroidetes
such as Bacteroides and Alistipes. A recent study has shown that
common structural phage proteins such as the tail length tape
measure protein (TMP) also harbour immunodominant epitopes
that cross-react to cause antitumour immunity52. It is therefore
interesting to investigate the extent to which viral organisms can
influence the human host-microbiota immune balance through
horizontal transfer and expression of immunogenic proteins.

Metavirome studies have until now been the primary source
for exploring viral diversity in microbiomes. Now, viral popula-
tions are increasingly uncovered in bulk metagenomes and we
showed that more complete viral genomes can be identified via
viral binning across three different cohorts, similar results were
found in a recent paper focused on binning of sequenced viral
particles53. Our approach allowed precise clustering of both viral
and bacterial populations in three cohorts that enabled direct
investigation into viral-host interactions and discovery of new
diversity. We believe that future studies can greatly leverage this
approach to conduct virome analyses and investigate the viral
influence of the intricate microbiome ecosystem that governs
human health.

Methods
Datasets. The Copenhagen Prospective Studies on Asthma in Childhood 2010
(COPSAC) dataset consisted of 662 paired samples obtained at age 1 year from an
unselected childhood cohort (refs. 33,34). The COPSAC study was conducted in
accordance with the guiding principles of the Declaration of Helsinki and was
approved by the Capital Region of Denmark Local Ethics Committee (H-B-2008-
093), and the Danish Data Protection Agency (2015-41-3696). Both parents gave
oral and written informed consent before enrolment. The Diabimmune dataset
contained 112 paired samples from controls and type 1 diabetes patients. The
Human Microbiome Project 2 cohort consisting of 1317 metagenomic samples
were downloaded from https://ibdmdb.org/tunnel/public/summary.html.

Processing of metagenomics and metaviromics datasets. Metagenomic sam-
ples of infants en route T1D recruited to the Diabimmune study were downloaded
from https://pubs.broadinstitute.org/diabimmune (October 2019). Metagenomic
samples were quality-controlled and trimmed for adaptors using kneaddata
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(https://github.com/biobakery/kneaddata) and trimmomatic (v.0.36)54 settings:
ILLUMINACLIP: NexteraPE-PE.fa:2:30:10 LEADING:20 TRAILING:20 SLI-
DINGWINDOW:4:20 MINLEN:100. Each metagenomic sample was assembled
individually using metaspades (v. 3.9.0)55 using the parameters ‘--meta, -k
21,33,55,77,99’ and filtered for contigs with minimum length of 2000 base pairs.
Mapping of reads to contigs was done using minimap2 (v.2.6)56 using ‘-N 50’ and
filtered with samtools (v.1.9)57 using ‘-F 3584’. Contig abundances were calculated
using jgi_summarize_bam_contig_depths from MetaBAT2 (v.2.10.2)58. Metage-
nomic bins were defined using VAMB (v. 3.0.1)29 to cluster the metagenomic
contigs into putative MAGs and viruses. Initially, the contents of all bins were
searched for viral proteins with hmmsearch (v. 3.2.1)59 against VOGdb (v. 95)
(https://vogdb.csb.univie.ac.at/). The presence of bacterial hallmark genes were
determined using both CheckM (v.1.1.2)60 and hmmsearch against the miCom-
plete bacterial marker HMM database (v.1.1.1)61. A viral score of each contig was
computed using DeepVirFinder (DVF v.1.0)25. We initially assessed the metavir-
omes of the COPSAC and Diabimmune datasets using ViromeQC62 and found 5.1
and 0.21 times viral enrichment of the two datasets, respectively (Supplementary
Fig. 1).

Training the random forest to predict viral bins. First we established an initial
viral truth set in the metagenomic assembly for the random forest classification.
For each metagenomics bin, we computed the fraction of contigs mapping to a set
of non-redundant viral sequences (Gold standard) using blastn (v. 2.8.1)63 with a
minimum sequence identity of 95% and query coverage of 50%. Gold standard
viral contigs of the paired metaviromics datasets were provided by the authors of
the Diabimmune and COPSAC studies (https://doi.org/10.5281/zenodo.5821973).
Metagenomic bins with ≥95% of contigs matching with the above criteria were
annotated as Viral bins. For annotating bacterial bins, MAGs were identified using
CheckM (v.1.1.2). MAGs with a completeness score of 10% or above and con-
tamination ≤30% were added to the training and validation set labelled as bacteria.
For training, we used COPSAC and validated using the Diabimmune dataset. Thus
the model was trained to distinguish confidently labelled bacterial and viral bins

produced by VAMB, this provided an RF model highly effective at removing non-
viral bins and providing a highly enriched candidate set of viral bins that could be
further evaluated using dedicated validation tools. In the RF model we included
features such as bin size, the number of distinct bacterial hallmark genes, the
number of different PVOGs in a bin divided by the number of contigs in the bin,
viral prediction DVF score (median DVF score for a bin) defined by DeepVir-
Finder. The Random Forest model was implemented in Python using Random-
ForestClassifier (sklearn v. 0.20.1) with 300 estimators and using the square root of
the number of features as the number of max features. The model was trained on
the COPSAC dataset using 40% of observations for training and 60% for validation.
Subsequently ROC/AUC, recall and precision was calculated using the Dia-
bimmune recovered viruses as an evaluation set. We ran viral predictions on
contigs of minimum 2,000 bp using Virsorter2 (v. 2.2.3)30, viralVerify (v.1.1)31,
Seeker (v.1.0)64, Virfinder (v.1.1)26 and DeepVirfinder (v. 1.0), all on their default
settings. In order to calculate single-contig viral prediction performance, a contig
was labelled viral if the prediction score was above 7, 0.5, 0.9, 0.9 and 0.9 vir-
alVerify, Seeker, Virfinder, DeepVirFinder and Virsorter2, respectively. Genome
level predictions (bacterial or viral) for each of the aforementioned tools were done
with the same cutoffs mentioned above but based on the aggregated bin-score. The
bin-scores were aggregated as a contig-length weighted mean, mean and median.

Virus binning and prediction performance on simulated datasets. We com-
pared the viral binning performance of VAMB and MetaBAT2 using the official
CAMISIM method to create assemblies and metagenome profiles65. To this end we
generated three different metagenome compositions with up to 308 reference
genomes; one mixed with bacteria, plasmids and viruses to test binning in complex
samples i.e. high diversity (1), one with only crass-like viruses to test binning with
highly similar viruses i.e. high relatedness (2) and a set of small viruses (<6000 bp)
including members of the Microviridae family to address the bias of size (3).
Bacterial genomes were pulled from NCBIs refseq genome repository 2021, plas-
mids from the PLSDB database (v. 2021_06_23)66 and viral genomes from the
recent MGV database20 (Supplementary Data 4). Fragmented genome assemblies

Fig. 6 Viral proteins and the dark-matter metavirome. a The percentage of HQ viruses, associated with four bacterial host genera; Alistipes, Bacteroides,
Faecalibacterium and Roseburia, which encode top-20 prevalent PFAM domains. b Virsorter2 viral prediction scores for all viral bins with at least one viral
hallmark gene. Completeness was estimated using CheckV and the bins were grouped as (1) HQ-MQ-ref when completeness ≥50% or high-quality ≥90%
(n= 45,983 bins), (2) bins with less than 50% completeness were annotated as Dark-matter (n= 392,226 bins), and (3) dark-matter bins with confident
CRISPR spacers against a bacterial host were annotated as Viral-like (n= 43,695 bins). c The distribution of sample RPM of bacterial MAGs, HQ-MQ-ref
viral populations, Dark-matter and Viral-like populations as defined in (b). The majority of sample reads were mapped to MAGs but on average 17.7% of all
reads mapped to Dark-matter bins. d The abundance in RPKM of rare and highly prevalent viruses with an HQ genome in HMP2. Each point represents a
viral population coloured according to the viral taxonomic family. The progenitor-crAssphage is indicated as cluster 653. e As in (d) but with viral-like
populations like cluster 1338 showing that many are low abundant, but highly prevalent. RPM read per million, RPKM read per kilobase million.
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were generated for each metagenome composition using CAMISIMs (v.1.1.0)
metagenome simulation-pipeline with default settings for ten samples65. In order
to test genome recovery via binning, abundance of the simulated contigs were
calculated by mapping of reads to contigs with minimap2 (v.2.6) using ‘-N 50’ and
filtered with samtools (v.1.9) using ‘-F 3584’. Then the abundances were calculated
using jgi_summarize_bam_contig_depths from MetaBAT2 and used as input for
VAMB and MetaBAT2 that were run with default parameters on the simulated
contigs of a minimum of 2000. Furthermore, we ran viral predictions on contigs of
minimum 2000 bp using Virsorter2 (v. 2.2.3)30, viralVerify (v.1.1)31, Seeker
(v.1.0)64, Virfinder (v.1.1)26 and DeepVirfinder (v. 1.0), all on their default settings.
In order to calculate single-contig viral prediction performance, a contig was
labelled viral if the prediction score was above 7, 0.5, 0.9, 0.9 and 0.9 viralVerify,
Seeker, Virfinder, DeepVirFinder and Virsorter2, respectively. Genome level pre-
dictions (viral or non-viral) for each of the tools were done with the same cutoffs
mentioned above on the aggregated bin-score. The bin-scores were aggregated as a
contig-length weighted mean, mean and median. The RF model was run as
intended where information about each contig was aggregated and parsed by the
model to produce a viral/non-viral label. Optimised and overfitted bin/genome-
score thresholds were determined by inspection of genome-score distributions
(Supplementary Fig. 5) for each viral prediction method. These thresholds were
−1.3, 0.75, 0.9, 0.5 and 0.5 for viralVerify, Seeker, Virsorter2, DeepVirFinder and
Virfinder, respectively.

Intersection of viruses in MGX and MVX data. In order to identify the number
of viruses assembled and binned in the metagenomic (MGX) datasets we sear-
ched the metavirome (MVX) viruses in all-vs-all search and calculated genome-
to-genome average nucleotide identity (ANI) and genome coverage as an aligned
fraction (AF). Here we defined species level above 95% ANI and strain-level
above 97% ANI. Overlapping or also described as highly-similar viruses between
the paired MGX and MVX datasets were those fulfilling the ANI >95% and >75%
AF criteria. This search was conducted using FastANI (v.1.1, ‘-fragmenlen 500
-minimumfrag 2 -minimum 80% ANI’)67 with genome coverage ≥50% (bidir-
ectional fragments / total fragments). We note that hits with less than 80% ANI
were not included. We expected that we might be able to find fragmented/
incomplete viruses assembled in the metavirome but were more curious about
near-complete viruses, thus we quality controlled all MVX viruses using CheckV
(v0.4.0, default settings, database v. 0.6)28 to achieve a completeness estimate for
each. By labelling the quality of each MVX virus we organised the success of
genome recovery into the four CheckV levels (low-quality ≤50%, medium-quality
≥50%, high-quality ≥90%, Complete= closed genomes based on direct terminal
repeats (DTR) or inverted terminal repeats). Furthermore, we also quality con-
trolled the putative viruses assembled and binned in the MGX to ask the reverse
question, i.e. to what extent do we find complete viruses with no similarity to
viruses in the MVX.

Completeness of viruses recovered in metavirome and bulk metagenomes. To
standardise our viral recovery performance across different datasets, we used the
guidelines on Minimum Information about an Uncultivated Virus Genome
(MIUViG)18. The viral completeness of viruses from metaviromics data was
assigned using CheckV described as above. CheckV was used to conduct a
benchmark on virus genome completeness by evaluating single-contig assemblies
against the use of viral bins (also described as viral MAGs). To this end, we based
our analysis solely on AAI-model predictions. As the authors of CheckV note, the
method was not designed by default to accommodate viral MAGs and may not deal
properly with contaminants from bacterial or viral sources28. This became clear as
we observed a majority of HMM-model predicted viruses consisting of sequences
with close to zero percent viral sequence (Supplementary Fig. 20). We suspect that
this was to be expected since the HMM-model is designed for single-contig viral
assemblies. Thus, the model could not deal properly with cases where a viral
marker gene was identified in a single-contig of the bin and contaminating
sequences inflate the total bin size to randomly fit into the reference size range of
viruses encoding the same viral marker. Hence to avoid including false-positive
viral bins, we defined a viral population as HQ-ref when at least one bin in the
VAMB cluster contained an HQ evaluation based on AAI-evaluation. All viral bins
with a CheckV computed genome copy number ≥1.25 were removed to control for
‘concatemers‘. Finally, viral bins with an estimated completeness >120% (over-
complete-genomes) were removed as well to control for highly contaminated bins.
We found that the frequency of HQ genomes, which according to MIUViG
standards18,19 were 'overcomplete-genomes' (estimated completeness >120%), was
between 7.9–14.2% for the viral bins and 3.8–6.1% for single-contig evaluation
(Supplementary Table 2). Hence, the binning approach generates more over-
complete-genomes, although these can be identified and removed using for
instance CheckV, which we highly advise. We found that after removal of over-
complete-genomes, VAMB mainly produces viral bins with low contamination and
high purity. Contamination and purity in this case was calculated according to a
reference/ground truth. Example: for a viral bin with a total size of 90,000 and
8000 bp not aligned to the corresponding ground truth genome, contamination is
8000/90,000= 8.8% and purity is 100–8.8%= 91.2%. The remaining populations
without a single HQ or MQ bin within their VAMB cluster were described as dark-
matter. For identifying viruses in ‘dark-matter’ populations, we ran Virsorter2

(v.2.0)30 and considered sequences or bins with a prediction score >0.75, at least
one viral hallmark and a minimum size of 10 kbp as a putative virus. In this subset
of putative viruses, we defined ‘viral-like’ dark-matter when they were targeted with
a CRISPR spacer by a bacterial MAG (see ‘Viral-host prediction’).

Viral taxonomy and function. While the databases of viral genomes continue to
grow, taxonomy is still a challenge for viral genomes with little similarity to the
International Committee on Taxonomy of Viruses (ICTV) annotated genomes.
Viral proteins were predicted using prodigal (v.2.6.3)68 using ‘-meta’. All proteins
were annotated using viral protein-specific databases such as VOG (http://
vogdb.org) or viral subsets of TrEMBL used in the tool Demovir (v.1.1.0) (https://
github.com/feargalr/Demovir). Viral taxonomy was assigned to each bin using the
plurality rule described before in Roux et al. (ref. 19): (1) taxonomy was assigned to
genomes with at least two PVOG proteins using a majority vote (≥50% else NA) on
each taxonomic rank based on the last common ancestor (LCA) annotation from
the PVOG entries. (2) The CheckV VOGclade taxonomy was transferred if
available from the best viral genome match in the CheckV database. In order to
annotate ‘crAss-like’ viruses, predicted proteins were aligned using blastp (v.
2.8.1)63 to the large subunit terminase (TerL) protein and DNA polymerase
(accessions: YP_009052554.1 and YP_009052497.1) of the progenitor-crassphage
using already described cutoffs69. When investigating taxonomic annotations,
considering only MQ-Complete viral bins, the most dominant viral family anno-
tated was Siphoviridae accounting for 53.5% of the viral bins (Supplementary
Figure 9). Furthermore, we could assign Myoviridae 14.57%, Podoviridae 8.59%,
Microviridae 8.30%, crAss-like 3.61%, CRESS 2.52%, Herelleviridae 1.37% and
Inoviridae 0.58%. Finally, 6.93% of viruses could not be confidently assigned any
viral taxonomy. Similar distributions of taxonomic annotations were also observed
for Diabmmune and COPSAC (Supplementary Table 3).

For viral proteomes, we utilised CheckV’s contamination detection workflow to
extract proteins encoded only in viral regions to avoid host contamination. These
viral proteins were analysed with interproscan (v. 5.36-75.0)70 using the following
databases: PFAM, TIGRFAM, GENE3D, SUPERFAMILY and GO-annotation. For
each annotated functional domain in viruses predicted to infect a given host genus
enriched proteins were identified using Fisher’s exact test using the function phyper
in base R. P-values were adjusted using false discovery rate (FDR) correction71.
Viral reverse transcriptase enzymes were grouped into DGR-clades by querying
each protein sequence against a database of RT DGR clade HMM models while
DGR target genes were identified using the methods and pipeline provided72.

Phylogenetic tree of crAss-like viruses. A phylogenetic tree was constructed for
crAss-like viruses identified in the HMP2 dataset based on proteins annotated as
the large terminase subunit protein (the TerL gene). First, viral bins annotated as
‘crAss-like’ were determined as described above. ‘crAss-like’ proteomes were
aligned to a terminase large subunit protein (accession: YP_009052554.1) and also
against VOGdb hmmsearch (v. 3.2.1, hmmscore ≥ 30)59 against VOGdb (v. 95)
(https://vogdb.csb.univie.ac.at/). The VOG entries corresponding to the terminase
large subunit:VOG00419, VOG00699, VOG00709, VOG00731, VOG00732,
VOG01032, VOG01094, VOG01180 and VOG01426, were identified using a bash
command on a VOGdb file: ‘grep -i terminase vog.annotations.tsv’. An alignment
file was produced for proteins, annotated as terminase large subunit, using MAFFT
(v. 7.453)73 and Trimal (v. 1.4.1)74 and converted into a phylogenetic tree using
IQtree (v. 1.6.8 -m VT+ F+G4 -nt 14 -bb 1000 -bnni)75.

Viral-host prediction. Viral genomes were connected to hosts using a combination
of CRISPR spacers and sequence similarity between viruses categorised as HQ-ref
and MAGs. CRISPR arrays were mined from COPSAC and HMP2 MAGs using
CrisprCasTyper (v.1.2.3)76 with ‘--prodigal meta’ and all spacers were blasted with
blastn-short (v. 2.8.1)63 against all viral genomes to identify protospacers. CRISPR
spacer matches with ≥95% sequence identity over 95% of spacer length and
maximum of two mismatches were kept. In order to identify the host of viruses,
viral bins were aligned to MAGs using FastANI (v.1.1, ‘--fragLen 5000 --minFrag
1’)67 and blastn megablast (v. 2.8.1)63 with a minimum ANI ≥90% and sequence
identity ≥90, respectively. We followed the approach described by Nayfach et al.
(ref. 42) to calculate host-prediction consensus and accuracy. The viral host was
defined using a plurality rule at each taxonomic rank based on the lineage of
bacteria connected using either CRISPR spacer or alignment to the given virus. The
cutoffs described above were selected after benchmarking the alignment approach
with FastANI and blastn at various thresholds. We observed an increased host-
prediction consensus and accuracy at the species rank using the threshold
described above with FastANI with ANI ≥90% based on at least one 5000 bp
fragment, compared to blastn thresholds described by Nayfach et al. (ref. 42). We
evaluated the agreement of our two host prediction methods and found up to 58%
consensus on host taxonomy on species rank (Supplementary Fig. 11A). We fur-
ther benchmarked host-prediction purity by calculating the most common host for
each viral population according to (1) CRISPR spacer and (2) alignment
independently.

Viruses were annotated as temperate virus if (1) the virus was found to be
integrated into a MAG with ≥80% query coverage and ANI ≥90% or (2) an
integrase protein-annotation could be found in the viral proteome. Integrase
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proteins were determined by searching for integrase in the InterPro entry
description of each interproscan protein-annotation (see Viral taxonomy and
function for details).

Differential abundance of viral populations and MAGs. Sample abundance of
each viral population was calculated as a mean read per kilobase million (RPKM)
of all contigs with at least 75% coverage belonging to a VAMB cluster. Differential
abundance analysis of all viruses was tested using the Linear-mixed-effect model
R-function lmer (lme4 package v. 1.1-26)77. The model used was ‘Virus ~ dys-
biosis_index + diagnosis + sex+ (1|Subject)’. Subjects were included as random
effects to account for the correlations in the repeated measures (denoted as (1 |
subject)) and the log-transformed relative abundance of each virus was modelled as
a function of diagnosis (a categorical variable with nonIBD as the reference group)
and the dysbiosis index (continuous covariate) while adjusting for subjects age as a
continuous covariate and sex as a binary variable.

Definition of boxplots. The lower and upper hinges correspond to the first and
third quartiles (25th and 75th percentiles). Centre corresponds to the median. The
upper and lower whiskers extend from the hinge to the highest and lowest values,
respectively, but no further than 1.5 × interquartile range (IQR) from the hinge.
IQR is the distance between the first and third quartiles. Data beyond the ends of
whiskers are outliers and are plotted individually. This definition is used for all
main and supplementary figures displaying a boxplot.

Data availability
The Diabimmune dataset and HMP2 datasets are available from the European
Nucleotide Archive with the accessions PRJNA387903 and PRJNA398089. The COPSAC
metagenomics and metaviromics datasets are available with the accessions PRJNA715601
and PRJEB46943, respectively. Gold standard virus genomes for COPSAC and
Diabimmune were provided by Shiraz Shah and Tommi Vatanen, respectively, and are
available on Zenodo: https://doi.org/10.5281/zenodo.5821973. A CodeOcean capsule of
PHAMB v.1.0, including a dataset of 3,000 contigs from 5 HMP2 samples, is available at
CodeOcean (https://doi.org/10.24433/CO.4597219.v1). Furthermore, the capsule
includes a Dockerfile encoding required databases, Python modules, Snakemake and
DeepVirFinder dependencies. Genomes used in the viral CAMISIM benchmark have
been uploaded to Zenodo and are available here: https://doi.org/10.5281/
zenodo.5821973. Simulated genomes are listed in Supplementary Data 4, entries were
collected from the PLSDB database (v. 2021_06_23), MGV database (2021), NCBI Refseq
(May 2021). Source data is provided with this paper. Source data are provided with
this paper.

Code availability
The VAMB code is available at https://github.com/RasmussenLab/vamb and the
PHAMB workflow is available at https://github.com/RasmussenLab/phamb.
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