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Introduction

Posttraumatic stress disorder (PTSD) is a psychiatric disorder or mental illness that can 

develop upon exposure to or witnessing of a traumatic event. PTSD was first officially 

recognized in the Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.(DSM 

III) in 1980 as an anxiety disorder (American Psychiatric Association, 1980). Since then, 

a wealth of knowledge has assembled regarding symptoms, epidemiology, assessment, 

subtypes, and treatment of this disorder. This has led to the transition in the fifth edition 

of the DSM (DSM-5), of PTSD to a trauma- and stressor-related disorder (American 

Psychiatric Association, 2013). The revised criteria reflect four symptom clusters of 

intrusive reexperiencing (i.e., flashbacks, unwanted memories), avoidance (i.e., avoiding 

reminders of the trauma), negative alterations in cognition and mood (i.e., thoughts of self-

blame, difficulty experiencing positive emotion) and arousal (i.e., hyperarousal, difficulty 

sleeping)(American Psychiatric Association, 2013). The individual must experience all of 

these symptom clusters for duration of at least one month following direct or indirect 

exposure to actual or threatened death, serious injury, or sexual violence and be associated 

with distress or impairment in one or more areas of functioning to meet diagnostic criteria 

for PTSD. For Veterans, deployment for an extended period of time itself is a stressor and, 

coupled with high rates of combat exposure that are likely to occur, is a high-risk factor for 

PTSD. This disorder is frequently observed with other psychiatric diagnoses and traumatic 

brain injury (TBI) along with other comorbid symptoms like depression, particularly in 

military populations (Jaffee and Meyer, 2009; Tanev et al., 2014; Moore et al., 2014). 

Underscoring a need for future study in military and Veteran populations, servicemembers 

from the most recent conflicts show a prevalence of PTSD 2.5x greater than the general 

population (Fulton et al., 2015) and are less likely to benefit from first line treatments 

(Straud et al., 2019).
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PTSD prevalence rates have been reported to be 13.8% among Operation Iraqi Freedom 

(OIF) and Operation Enduring Freedom (OEF) Veterans (Tanielian and Jaycox, 2008), 

12.1% in Gulf War Veterans (Kang, 2003) and 15.2 % in male Vietnam War Veterans (Kulka 

et al 1990), which is greater than the 12-month prevalence in the US of 4.7% (Kilpatrick et 

al., 2013). Importantly, it is noted that the symptoms may not appear for several months to 

years after trauma exposure (Seal et al., 2008; O’Toole and Catts, 2017). Moreover, PTSD is 

associated with a host of other comorbidities including hypertension (Howard et al., 2018), 

cardiovascular disease (Dyball et al., 2019), cardiometabolic disease (Levine et al., 2014), 

suicidal thoughts, etc. (Millner et al., 2019) in addition to chronic pain (Toblin et al., 2014). 

Further elucidation of these comorbidities suggests poor long‐term outcomes through several 

interacting pathways, including alteration in mental health, sociodemographic adjustments, 

health behavior, etc. (Ramsey et al., 2017). Consequences of PTSD for Veterans include 

increased healthcare utilization, decreases in functioning and increased risk for suicide 

(Marshall et al., 2000; Asnaani et al., 2014; Lutwak, and Dill, 2017), underscoring a 

need to understand the mechanisms of PTSD and inform effective interventions. Numerous 

predictors of PTSD have been identified, with peritraumatic factors (i.e., dissociation, life 

stress) being stronger than pre-trauma factors (e.g., education, prior trauma; Ozer et al., 

2003, Brewin et al., 2000). More recently, biological factors have been associated with 

PTSD onset and treatment response. As examples, the inflammatory protein C-Reactive 

protein has been shown to prospectively predict PTSD among recently deployed marines 

(Early et al., 2014), and cortisol levels in response to waking predicted PTSD treatment 

response (Rauch et al., 2020). Thus, investigation of novel biomarkers is warranted to stretch 

our knowledge in PTSD and provide novel insights into possible biological mechanisms.

Pathophysiology of PTSD

The pathophysiology of PTSD is complex as it covers vast functional aspects including 

noradrenergic, serotonergic, opioid, cannabinoid and hypothalamic-pituitary-adrenal (HPA) 

axis. PTSD is a neuropsychiatric condition derived from maladaptive alterations in neural 

plasticity including synaptic connection, dendritic remodeling, and neuronal growth which 

impacts neurocircuitry function and behaviors (Apfel et al., 2011). Functionally, the 

amygdala is the nodal point of fear regulation, and PTSD may evolve from hyperactivity 

of neurons in impaired amygdala (Helmuth L, 2003). In this review, we will briefly touch 

base of each aspect of pathophysiology in PTSD.

The adrenoreceptor (AR) system is important in PTSD as it influences amygdala functioning 

(Strawn and Geracioti., 2008). The AR system primarily activates CNS activity and 

simulates sympathetic autonomic response in prefrontal cortex (PFC) and limbic systems 

resulting in the fear response (O’Donnell et al., 2004). Similarly, serotonergic receptors 

like 5-HT1A, 5-HT1B, 5-HT3, a group of G-protein-coupled receptors, are engaged in 

emotional and behavioral modulation (Cools et al., 2008). The opioid receptors (δ, κ an μ), 

a superfamily of G protein-coupled receptors, are implicated in etiology of PTSD (Dhawan 

et al., 1996). The κ-opioid receptor is particularly relevant to PTSD due to its expression in 

the PFC and cortex- hippocampal-limbic regions as well as associations with fear or anxiety 

related behavior (Bruchas et al., 2009). The endogenous cannabinoid receptors (CB1 and 

CB2) play a pivotal role in development of PTSD (Sbarski B., Akirav L., 2020). Among 
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the two receptors, CB1 is well-studied at preclinical level and is of interest in PTSD. 

as it is distributed throughout the forebrain limbic structure (Leo and Abood, 2021) and 

modulates various behavioral issues including fear. Physiologically, PTSD affects multiple 

systems, including the HPA-axis, cortical function, and the immune system (Parsons and 

Ressler, 2013; MacNamara et al., 2016). A recent genome-wide association study of PTSD 

underscored the likelihood of genetic risk with schizophrenia, depressive-disorder, or bipolar 

depression (Duncan et al., 2018). It is suggested that three specific regions of the brain 

- amygdala, hippocampus, and PFC - are linked to fear memory or responsiveness in 

preclinical models and play a major role in the development of PTSD symptomatology 

( Haubensak et al.,2010; Dieter, Engel, 2019; Andrewes et al., 2019; Henigsberg et al., 

2019). The brain consists of several interrelated neural systems that activate and deactivate 

in response to different stimuli in a closely regulated way. Imaging studies showed patterns 

of dysregulation of both hippocampus and the medial PFC in patients with PTSD (Andrewes 

et al., 2019; Henigsberg et al., 2019; Bremner, 2007). Therefore, the neurobiology of PTSD 

is a complex process as exposure to traumatic events change neuronal morphology, function 

and neurochemistry (Cacciaglia et al.; Weiss, 2007).

In pursuit of biomarkers and a deeper understanding of PTSD pathophysiology, the role of 

micro ribonucleic acid (miRNAs), a class of non-coding RNAs, are emerging in psychiatric 

and neurological disorders, including schizophrenia, PTSD, anxiety, and major depressive 

disorder (Bartel, 2004). Deregulation of miRNA can impact the expression of multiple genes 

and their associated biological networks. Therefore, if it is supported that this is a novel 

molecular mechanism underling the pathogenesis of PTSD, the study of miRNA opens up a 

new area of investigation for novel therapeutic targets in PTSD. Therefore, investigating the 

role of miRNAs in the pathophysiology of PTSD using blood may provide a quick and an 

easy novel insight correlating the presence of disease. In this review article, we will describe 

miRNA biogenesis, miRNAs signature in Veterans with PTSD, HPA axis-FKBP5-miRNA-

PTSD, epigenetic modification in PTSD, and conclude with future directions for study of 

miRNAs in PTSD.

miRNA Biogenesis

Biogenesis of miRNA is an endogenous cellular process to generate mature and functional 

miRNA destined to target a specific messenger RNA (mRNA) for modulation. The miRNAs 

are a class of short noncoding regulatory RNAs, 21 to 23 nucleotides in length, that 

negatively regulate gene transcription through binding to the 3′ untranslated region (UTR) 

of target mRNAs (Michlewski and Caceres, 2019; Alural B, Genc, 2017). The miRNA 

biogenesis pathway generates hundreds of unique miRNAs in mammalian cells. Each 

miRNA is capable of targeting hundreds of genes, thus simultaneously controlling multiple 

biological processes. It is thought that miRNAs regulate up to 60% of the protein‐coding 

genome (Ruegger and Grosshans, 2012; Gregory et al., 2004). The biogenesis of miRNA 

starts in the nucleus. The miRNA is transcribed as a precursor molecule called primary 

transcript (pri-miRNA) by RNA polymerase III which turns it into a hairpin-like structure 

(Han et al, 2006). The nuclear event is catalyzed by a microprocessor complex that include 

a RNase III enzyme, Drosha, cofactors such as DGCR8 (DiGeorge syndrome critical region 

8 gene) and associated proteins (Han et al, 2006; Ha M, Kim; Bohnsack et al., 2004). The 
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microprocessor complex cleaves the pri‐miRNA into a 70‐nucleotide‐stem-loop precursor 

miRNA (pre‐miRNA), which is subsequently exported to the cytoplasm by exportin‐5 

(Bohnsack et al., 2004; Hutvágner et al., 2001). Once in the cytoplasm, pre-miRNAs 

undergo a final processing by another RNase type III enzyme, DICER, to give rise to 

miRNA duplexes (Kobayashi and Tomari, 2006; Kwak and Tomari, 2012). Next, with 

another RNA binding protein like Argonaute 2(Ago2), the pre-miRNA is incorporated 

into the miRNA‐induced silencing complex (miRISC), while the “passenger” strand is 

degraded with the formation of a mature, single-stranded ~21-nt-long miRNA (Han et al., 

2006; (Kobayashi and Tomari, 2006; Michopoulos et al., 2017). The strand recognition 

event is followed where the guide strand is recognized by “seed” sequence in the mature 

miRNA. The guide strand binds target gene and initiate mRNA degradation and translational 

repression. The mRNA degradation can be achieved by many mechanisms like binding to 

the 3′UTRs or the open reading frames (ORFs) of target genes leading to the degradation of 

target mRNAs or repression of mRNA translation (Fig. 1).

miRNAs Signature in PTSD among Veterans

Since the discovery of miRNA, it has been established that the tiny molecule 

is highly conserved and suggested to be a key regulator in diverse physiological 

processes, including functioning of the nervous system. A large body of evidence 

elucidate the critical role of miRNA in psychiatric diseases (Issler and Chen, 2015), 

however, evaluation of the specific role of miRNA in Veterans with PTSD has 

more recently started emerging. On July 19 of 2021, a literature search using key 

words; miRNA, posttraumatic stress disorder, veterans (https://pubmed.ncbi.nlm.nih.gov/?

term=mirna+posttraumatic+stress+disorder+veterans&sort=date&size=50) resulted in only 

13 articles relevant to miRNA. Of these, 7 studies were original data articles examining 

miRNA in a sample of Veterans with PTSD. Currently, with the limited amount of scientific 

information available, we will illuminate the recent progress in miRNA dysregulation in 

Veterans with PTSD.

The first non-coding RNA snapshot was revealed in the peripheral blood mononuclear 

cells (PBMC) of OIF and OEF Veterans with and without mild traumatic brain injury 

(mTBI), approximately two thirds of whom also screened positive for PTSD (Pasinetti et al., 

2012). Using Affymetrix Human gene 1.0 ST Array chip, authors have identified thirteen 

downregulated candidate small RNA biomarkers along with one miRNA, the miR-671–5p, 

in PBMCs of mTBI subjects (Pasinetti et al., 2012). Unsupervised clustering analysis further 

narrowed down to three small nucleolar biomarker panel; HBII-289, ENSG199411 and 

U35A which accurately selected mTBI from non-mTBI Veterans (Pasinetti et al., 2012). 

However, as both groups included Veterans with PTSD, no firm conclusions can be drawn 

about miRNA and PTSD. Presumably, the first miRNA landscape in combat Veterans with 

clinically diagnosed PTSD was reported in 2014 (Zhou et al., 2014). The study used a 

sample of combat Veterans returning from Persian Gulf, Iraq, or Afghanistan war who 

also had PTSD. Previous research has suggested that immune components contributed a 

pivotal role in PTSD (Kawamura et al., 2001; Jiang, 2008; Breen et al., 2015; Jones KA, 

Thomsen C., 2013); therefore, this study was aimed to determine the role of miRNA 

in immune dysfunction linked with PTSD. Using high-throughput miRNA microarray 
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hybridization analysis, the study investigated 1163 miRNAs in PBMC. Compared to control 

subjects, the PTSD group showed 7 upregulated miRNAs and 64 down-regulated miRNA 

(Zhou et al., 2014). The finding suggested significant alterations in miRNA expression 

corroborating with immunological changes, specifically enhanced pro-inflammatory Th1 

and Th17cytokine profile and decreased the regulatory T cells (Tregs) (Zhou et al., 2014). 

Together, the analysis showed that there was significant association between alterations in 

miRNA expression and immunological changes in combat Veterans with PTSD. Further, 

using the same Veteran cohorts, RNA-Seq on RNA samples from PBMCs of PTSD was 

performed by the same group. The study revealed 326 mRNA and 40 non-coding RNAs 

which were significantly altered in samples of those with PTSD compared to controls (Bam 

et al., 2016). Furthermore, a panel of downregulated miRNAs were identified associated 

with DNA methylation and immune deregulation (Bam et al., 2016). The study is interesting 

as the authors showed evidence of association between miRNA and DNA methylation 

and suggested that they play a critical role in immune system modulation in PTSD. 

Epigenetic changes in DNA methylation is an emerging concept and is associated with 

PTSD (Hammamieh et al., 2017). The authors have used extensive bioinformatic tools to 

dissect molecular signaling or pathways involved in PTSD pathology. Although promising, 

these findings need to be validated experimentally and in other cohorts.

Elevated level of pro-inflammatory cytokines has been observed in war Veterans with PTSD. 

suggesting a link between PTSD and inflammation (Gill et al., 2009). To determine the 

association between miRNA-mediated inflammatory response in PTSD, Bam M et al used 

PBMC samples from War Veterans of either 1991 Persian Gulf war, or Iraq or Afghanistan 

wars with PTSD, and age matched healthy controls. The authors showed that 183 miRNAs 

were downregulated that target several inflammatory genes in a first set of 4 control and 5 

Veterans with PTSD (Bam et al., 2017). The observation was validated in an independent 

sample of 7 controls and 3 Veterans with PTSD by RT-PCR analyses and showed that JAK2, 

STAT1, IL23A, TGFB1, TGFB2, TGFB3, T-BET and CXCL3 were the predicted target for 

downregulated miRNAs. Furthermore, using healthy and PTSD patients’ PBMCs, authors 

confirmed PTSD patients elicits more CD4+T cells that contribute to lowering miRNA 

expression (Bam et al., 2017). Mechanistically, authors demonstrated that inflammation in 

PTSD is partly due to the reduction of Argonaute 2 (AGO2) and Dicer1 (DCR1) elicits 

lowering the miRNA abundance and attenuation of STAT3 transcript (Bam et al., 2017). 

The findings suggest that inflammation in PTSD could be the result of alteration in miRNA 

biogenesis components (AGO2 and DCR1) and depletion of Stat3 mRNA. An extensive 

study is warranted for targeting miRNA biosynthesis component(s), which may in turn 

inform therapeutic management in PTSD and inflammation.

Another study used peripheral blood samples of 24 returned military personnel from 

OEF/OIF conflicts with and without PTSD, to test for miRNA alteration (Martin et al., 

2017). The miRNA sequencing analysis showed four upregulated miRNAs (miR-19a-3p, 

miR-101–3p, miR-20a-5p, and miR-20b-5p) and four downregulated miRNAs (miR-15b-3p, 

miR-125b-5p, miR-128–3p and miR-486–3p) expression in PTSD samples compared to 

those without PTSD (Martin et al., 2017). Furthermore, Kyoto Encyclopedia of Genes 

and Genomes (KEGG) analysis predicted that these miRNAs are associated with axonal 

guidance and Wnt signaling in addition other physiological pathways at functional 
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standpoint (Martin et al., 2017). The Wnt or Wnt/β-catenin signaling, a highly conserved 

biological pathway involved in cell development, proliferation and fate and recently 

implicated to synaptic plasticity (Moon et al., 2004; Murase, Mosser and Schuman, 2002; 

Maguschak and Ressler, 2011; Maguschak and Ressler, 2012). Alteration of miRNA and 

Wnt signaling may provide a link to neurological process in the development of PTSD, but 

more studies are required to validate the findings.

An association between miRNA and Wnt signaling was further demonstrated in the PBMCs 

of Gulf war Veterans with PTSD. The authors demonstrated using RNA-seq and miRNA 

array analysis that an Wnt signaling component, the Wnt10b was upregulated (Bam et al., 

2020). Wnt10b, a glycoprotein of Wnt family is known to contribute in cancer development 

(Milovanovic et al., 2004; Kharaishvili et al., 2011; Benhaj, Akcali and Oztuk, 2006). In the 

study, the authors showed that the miR-7113–5p was upregulated in the PBMCs, a bonafide 

candidate for epigenetic modification and inflammation (Bam et al., 2020). Interestingly, 

Wnt10b was shown to be associated with enhancing the proinflammatory response in 

PBMCs. Mechanistically, miR-7113–3p was found to be a target for Wnt10b and was 

significantly downregulated indicated an epigenetic modification and likely contributing the 

inflammatory response in PTSD (Bam et al., 2020).

Cell-free miRNAs circulating in the bloodstream have been found to be enclosed into 

extracellular vesicle (EV), called exosome (Raposo and Stoorvogel, 2013). Exosomes are 

emerging as a new communicating cellular vehicle in diverse biological processes including 

neuroinflammation and TBI (Raposo and Stoorvogel, 2013; Brites and Fernande, 2015; 

Andjus et al., 2020; Harrell et al., 2021; Guedes et al., 2020). Critically, exosomes transport 

miRNA. There is only one study that showed alteration of miRNA in the exosome of combat 

Veterans in EV and EV-depleted (EVD) plasma separately. Study showed that pattern 

of miRNAs was different between EV and EVD plasma among male OEF/OIF combat 

Veterans with and without PTSD (n = 12 each group) (Lee et al., 2019). Interestingly, 

the report showed a concentration dependent alteration of miRNA in PTSD group (Lee 

et al., 2019). The concentration changes of two miRNAs from EV (miR-203a-3p) and 

EVD plasma (miR-339–5p) were validated in an independent cohort of 20 Veterans (Lee 

et al., 2019). This may suggest EV as possible biomarkers to identify PTSD in Veterans. 

More studies are warranted to validate the finding in diverse cohorts. The observation may 

highlight the benefits of EV as a treatment module.

In summary, a growing literature has started to include miRNA in the study of PTSD 

among Veterans. The extant literature on miRNA and PTSD shows several miRNAs that 

are dysregulated in Veterans with PTSD compared to no PTSD control groups. The most 

common medium for sample utilization has been PMBCs, with other samples using serum 

or plasma. Though limited by small samples in many studies, data showed a spectrum 

of altered miRNA, consistent with system dysregulation seen in PTSD. Further, miRNA 

linked to immune function and inflammation were consistently associated with PTSD. 

However, the studies reviewed varied on several domains, including the use Veterans of 

different eras, inclusion of combat related and non-combat related PTSD as well as the 

use of control groups (i.e., some used trauma exposed Veterans while others used civilian 
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healthy volunteers). These differences, as well as examination of different miRNAs limit 

conclusions that can be drawn. However, there are several directions for future research.

Future Perspectives of miRNAs in PTSD

In this review article, we have discussed and presented evidence that miRNAs hold a 

key role in PTSD among Veterans. There is a prospect in future of using miRNAs as 

circulatory biomarker in detection of PTSD. Below we discuss directions for future research, 

particularly as it relates to epigenetic modification and the HPA axis, as well as treatment 

implications.

Epigenetic modification in PTSD

Recent research has indicated an epigenetic modification in the central nervous system 

that may influence alterations in neurological diseases (Provencal and Binder, 2015). The 

term ‘epigenetics’ signifies chemical modifications to the chromatin structure that alter 

gene transcription while the DNA sequence remains un-altered. The alteration includes 

DNA methylation, DNA hydroxy-methylation, histone modifications and the processes are 

designated as methylation, acetylation, and phosphorylation, respectively. Other epigenetic 

modulators are non-coding RNAs like miRNAs which act as translational repressors (Auger 

and Auger, 2013; Bam et., 2016, Roth, 2014; Martin et al., 2018). The war Veterans are 

no exception in this epigenetic modification. There were reports that DNA methylation 

contributed significant role in the pathophysiology of PTSD as the process is essentially 

connected with gene regulation (Mehta et al., 2017; Uddin M et al., 2010; Rusiecki 

et al., 2012). Using a sample of OEF/OIF Veterans, Rusiecki J et al (Rusiecki et al., 

2012) showed two repetitive elements, the long-interspersed nucleotide element 1 (LINE-1) 

and the interspersed Alu were hypomethylated in post-deployment situation. The authors 

suggested their findings as highlighting potential resilience or vulnerability factors (Rusiecki 

et al., 2012). The study reviewed above using Gulf War Veterans showed a link between 

Wnt signaling pathway and miR-7113–5p in PBMCs of PTSD subjects, which suggests both 

miRNA dysregulation and histone modifications (Bam et al., 2020). The miRNA modulation 

in epigenetic modification is intriguing as miRNA can regulate a set of gene expression at 

post-transcriptional level.

miRNA-FKBP5-HPA axis-PTSD

A dysfunctional HPA-axis is a hallmark in PTSD (Speer et al., 2019). Further, 

recent research has posited that unique aspects of Veterans’ history, their deployment 

characteristics and their readjustment to civilian life may uniquely impact HPA axis 

functioning in ways that make them more vulnerable to maladaptive coping, such as alcohol 

use (Szabo Y et al., 2020). The HPA-axis is designed to respond to stress. Physiological 

stimuli and stress activate it, ultimately leading to the release of cortisol from the adrenal 

cortex (Olff et al., 2006; Yehuda, 2009; Carrasco and Van de Kar, 2003). Essentially, 

corticotropin‐releasing factor is released from the hypothalamus and stimulates the synthesis 

and release of ACTH from the pituitary. The ACTH binds to receptors in the adrenal 

cortex and promotes the release of glucocorticoids (GCs) from the adrenal cortex (de 
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Kloet, 2003). The circulating GCs, including cortisol, are counter regulated by negative 

feedback mechanism within the HPA and is critical for stress response maintenance. GCs 

mediate their effect through glucocorticoid receptor (GR) and mineralocorticoid receptors 

(MR) (Castro-Vale, 2016). FK506-binding protein 5 (FKBP5), a co-chaperon, is a critical 

modulator in GR signaling and has been implicated in the development of PTSD (Fries, 

Gassen and Rein, 2017; Hawn et al., 2019). Previous research has shown an association 

between FKBP5 and the development of PTSD including studies of Veterans (Binder et al., 

2008; Fani et al., 2016; Young et al., 2018). As miRNA emerges as a circulating biomarker 

in PTSD, it would be interesting to assess the role of miRNA in the regulation of FKBP5. 

Using both Fkbp5 knock-out (KO) mouse model and human PTSD subjects, a panel of 

miRNA was identified which correlated with serum marker and miRNA expression in the 

pathology of PTSD at molecular and behavioral levels (Kang et al., 2020). The candidate 

miRNA derived from mouse study was validated with human subjects with PTSD and 

showed exosomal FKBP-linked miRNA in the blood as a possible biomarker. The study 

further determined the neuronal correlate with serum biomarker depicting HPA-axis and 

miRNA expression, with a composite score of miRNA expression positively correlated with 

higher prefrontal/limbic cerebral blood flow and a higher grey matter volume ratio within 

the PTSD group (Kang et al., 2020). This is the first study to show a panel of differential 

miRNAs profiling in Fkbp5 KO mice, a critical modulator in HPA-axis. Furthermore, a 

follow-up study by the same group conducted RNA sequence analysis using WT (wild 

type) and Fkbp5 KO mice with restrain stress, a form of physical and mental stress that 

is induced by placing the mice in a plastic tube in order to block their movements, to 

determine the specific miRNA affected in medial prefrontal cortex (mPFC). The study 

showed that 41 miRNAs were dysregulated, of which, 23 miRNAs were reduced and, 18 

miRNAs were increased. Among upregulated miRNA, miR-690 showed significantly high 

level of expression and was chosen for further characterization (Park et al., 2020). Using 

green fluorescent protein (GFP)-tagged recombinant adeno-associated virus (rAAV) and 

viral construct containing miR-690 (rAAV-GFP-miR-690) into the pre-limbic cortices of the 

mPFC of mice, the authors showed in restrain stress mouse model that overexpression 

of miR-690 revealed higher sucrose preference and lower immobility time compared 

to stressed mice (Park et al., 2020). This finding may provide novel insights into the 

epigenetic regulation of stress-associated biological functions like PTSD. Further research 

in human models and specifically Veterans are needed to verify these findings. However, 

identification of miRNA in FKBP5 modulation in PTSD may uncover new mechanism of 

PTSD development and offer possible therapeutic target.

Other directions for future research

One potential avenue for future research is focusing on enzymes that play a role in 

generating miRNA. One study showed offering promising results is one that focused on 

Dicer1, an enzyme that generates mature miRNAs, which regulate gene expression. In this 

study, levels of Dicer1 were associated with increased amygdala activation to fearful stimuli, 

a neural correlate for PTSD among civilians (Wingo et al., 2015). The finding specifically 

demonstrated that miR-3130–5p was significantly reduced in PTSD with depression subjects 

compared to controls with a history of trauma but no PTSD or depression, indicating that 
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DICER1 and miR-3130–5p impart a critical role in the pathogenesis of PTSD (Wingo 

et al., 2015). This is the first human study showed DICER1 and miRNA modulation 

in underpinning the PTSD comorbid with depression. Given that PTSD and depression 

are highly comorbid in Veterans (Ikin et al., 2010) and the prevalence of both disorders 

is associated with greater psychological burden than PTSD alone (Nichter et al., 2019), 

investigation into their comorbidity may provide important information for etiology of these 

disorders and offer new avenues for treatment.

The studies included in this review used syndromal PTSD versus no PTSD controls. Within 

the control groups, they ranged from Veterans with combat exposure to healthy civilian 

volunteers. Future research using trauma-exposed Veterans will help inform the specificity 

of PTSD for changes in miRNA regulation. Finally, individuals can have significant 

symptoms, without meeting criteria for the PTSD syndrome. Future studies are needed to 

understand how the presence of symptoms compared to the severity of symptoms associated 

with the alteration of miRNAs. Some preliminary research with a civilian sample has found 

associations between ratios of miRNA expression and PTSD symptom severity (Kang et al., 

2020).

Treatment Implications

At present, it may be premature to offer miRNA as psychiatric therapeutic tool but, 

possibilities exist. Introducing targeted miRNA into the central nervous system would be 

challenging and several off-target effects would have dire side effects. However, current 

knowledge in bioinformatics has provided powerful information regarding precise targets 

among multiple predicted targets. Moreover, identification and validation of miRNA and its 

target gene(s) would further enrich our understanding of underlying molecular mechanism 

of PTSD. The novel RNA-based therapeutics can be developed by taking the advantage 

of CRISPR/CAS9 gene editing (Dominguez et al., 2016). Furthermore, the FDA approved 

selective serotonin reuptake inhibitors (SSRIs) currently used for PTSD treatment may be 

considered for miRNA modulation. Regarding miRNA involved in SSRI, mouse model 

of PTSD showed that fluoxetine is associated with a significant reduction in miR-1971 

expression (Schmidt et al., 2013). However, the use of SSRIs to treat PTSD in Veterans 

has been mixed. PTSD participants treated with SSRI (antidepressants) showed modest 

protective effect against relapse relative to placebo subjects (Martenyi et al., 2002; Martenyi 

and Soldatenkova, 2006; Cavaljuga et al., 2003). However, other studies have shown 

fluoxetine was not superior to placebo in a study of combat Veterans (Hertzberg et al., 

2000). Furthermore, a study conducted by Copeland L et al showed there some SSRIs are 

associated with increased risk of long QT syndrome, a disorder of the heart’s electrical 

system and, there was no significant risk using two SSRI drugs, citalopram and fluoxetine, 

in PTSD (Stock et al., 2018). Together, these suggest that fluoxetine may have less QT 

prolongation risk and, may cause change in miRNA. More research is needed to observe 

the dynamic of circulatory miRNAs in SSRI treated patients to understand factors associated 

with efficacy in Veterans, as it may that there is subset of Veterans who may benefit from 

this treatment most. Further, venlafaxine has showed increased remission rates compared 

to other SSRIs in a routine clinical care study of Veterans enrolled in VA care (Shiner et 
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al., 2010). Thus, future research examining whether venlafaxine or other SSRI agents alter 

miRNA may inform better treatment efficacy in Veterans.

The authors are not aware of any research suggesting psychotherapy has been associated 

with changes in miRNA. However, other research in DNA methylation, another epigenetic 

modification, in psychotherapy treatment is emerging (Wolf et al., 2019). There is research 

showing that pre-treatment methylation has prognostic value in that it predicts outcomes 

(Yehuda et al., 2013). If targeting miRNA can impact methylation, then Veterans who 

previously didn’t respond to psychotherapy might become responders and, thus, leading 

to better treatment responses. Together, studies correlating miRNA alteration with clinical 

outcomes may contribute in the development of biomarkers and miRNA-based therapeutics 

in PTSD diagnosis and prognosis.

Conclusion

Veterans are suffering from many psychiatric disorders due to exposure of concussive brain 

injuries resulted in TBI and large quantities of psychological trauma exposure that result 

in high rates of PTSD. There is a great prospect of use of miRNA as biomarkers for the 

diagnosis, prognosis and therapeutic opportunities for Veterans with psychiatric disorders, 

including PTSD. The fact that differential expression of circulatory miRNA originated from 

neuronal dysfunction in brain tissue, miRNA have been associated with several disease 

processes pertaining to brain tissues advocating the potential use of miRNA as a next 

generation biomarker for the treatment of neuropsychiatric conditions. Circulating miRNAs 

in Veterans with PTSD can be used as independent biological indexes. The insights may 

offer gene networks related PTSD symptomatology, improve biological mechanisms of 

PTSD and provide pharmacological targets avenue. The implication and ramification of 

miRNA in psychiatric research is at budding stage compared to the more established study 

in cardiovascular or cancer fields; therefore, larger studies are warranted using Veterans with 

appropriate control cohort. The present review summarizes the small literature on miRNA in 

Veterans, considers directions for future research and proposes how this field of study can be 

used to improve the treatment of PTSD for Veterans. The outcome will help us to understand 

the deeper function and, novel insight into the mechanism of miRNA and, the target genes in 

the pathophysiology of PTSD in war Veterans. Finally, it may lead to the clinical application 

of miRNAs in PTSD diagnosis and prognosis.
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Figure 1. 
Schematic of miRNA biogenesis. Pri-miRNA, Primary miRNA; Pre-miRNA, Precursor 

miRNA; RISC, RNA-induced silencing complex; AGO, Argonaute protein; DGCR8, 

DiGeorge syndrome critical region 8
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