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Intervertebral disc degeneration (IDD) is considered the basis of serious clinical symptoms, especially for low back pain (LBP).
4erefore, it is essential to explore the regulatory role and diagnostic performance of dysregulated genes and potential drugs in
IDD. 4rough WGCNA co-expression analysis, 36 co-expression modules were obtained. Among them, MidnightBlue and Red
modules were the most related to IDD. Functional enrichment analysis showed that the Red module was mainly related to
neutrophil activation and regulation of cytokine-mediated signaling pathway and apoptosis, whereas the MidnightBlue module
was mainly related to extracellular matrix organization, bone development, extracellular matrix, extracellular matrix component,
and other extracellular matrices. Furthermore, 356 genes highly related to the module were screened to construct a protein
interaction network. Network degree distribution analysis showed that the known IDD-related genes had a higher degree of
distribution. Enrichment analysis demonstrated that these genes were enriched in MAPK_SIGNALING_PATHWAY
(FDR� 0.012), CHEMOKINE_SIGNALING_PATHWAY, and some other pathways. By constructing a disease-gene interaction
network, three disease-specific genes were finally identified. 4rough combining with the drug-target gene interaction network,
two potential therapeutic drugs, entrectinib and larotrectinib, were determined. Finally, based on these genes, the diagnostic
model in the training dataset, test dataset, and verification dataset all showed a high diagnostic performance. 4e findings of this
study contributed to the diagnosis of IDD and personalized treatment of IDD.

1. Introduction

Low back pain (LBP) is a multifactor disease, with inter-
vertebral disc degeneration (IDD) as a main causal factor [1].
4e aging of process intervertebral disc [2] will lead to the
degeneration of vertebral disc (IVD), resulting in nerve
symptoms including LBP [3]; 80% of the world population
was reported to suffer from LBP, which could even cause the
loss of labor in severe cases [4, 5]. Due to the lack of a clear
understanding of the pathological mechanism of IDD,
treatment or delay of IDD seems to be ineffective. With the
aging of the population, the incidence of IDD-induced LBP

is further increasing, pointing to the need of exploring the
pathological mechanism of IDD.

Large-scale gene expression studies showed that many
coding genes are differentially expressed in IDD, and some
of them play an important role in IDD [6, 7]. For example,
the expression of the inflammation-associated autocrine
factor CHI3L1, a tissue specific in nucleus pulposus (NP), is
significantly upregulated during denaturation, and this
protects IDD by promoting the Akt3 signaling pathway [8].
With the development of genetic and proteomic tools, our
understanding of genetic disorders in IDD has greatly im-
proved. Targeted dissonant gene therapy strategies
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developed encouraging results from animal models of IDD
[9]. 4e novel lentiviral vector expressing CHOP shRNA
effectively inhibits the apoptosis of rat annulus fibrosus (AF)
cells by silencing the expression of CHOP [10].

In recent years, more and more bioinformatics research
has been carried out on disc repair, and some effective
analysis results have been obtained. For example, bio-
informatic analyses identified CCND1, GATA3, TNFSF11,
LEF1, and DKK1 were related to degenerative disc diseases
[11]. Based on bioinformatics analysis, LOC102555094
might be demethylated by ZFP217, activating FTO, and
LOC102555094/miR-431/GSK-3β/Wnt played a crucial role
in IDD [12]. Jinwen Zhu et al. identified several lncRNA/
circRNA-miRNA-mRNA interaction axes (MALAT1/hsa_-
circRNA_102348-hsa-miR-185-5p- TGFB1/FOS, MALAT1-
hsa-miR-155-5p-HIF1A, hsa_circRNA_102399-hsa-miR-
302a-3p-HIF1A, MALAT1-hsa-miR-519d-3p-MAPK1, and
hsa_circRNA_100086-hsa-miR-509-3p-MAPK1), which
may be crucial for the treatment of IDD [13].

4e purpose of this study was to investigate the potential
function of mRNA expression in IDD based on RNA ex-
pression profiles from IDD patients. We systematically an-
alyzed mRNA expression profiles between IDD and healthy
patients. In addition, we developed a novel algorithm for
identifying mRNAs during IDD progression to determine
mRNA biomarkers for IDD diagnosis and prognosis.

2. Results

2.1. Identification of IDD-Related Gene Modules.
Methodology consisted of data collection, batch effect re-
moval, co-expression module identification, and enrichment
analysis, followed by protein network construction, network
feature selection, and classifier construction and verification.
4e workflow is shown in Figure 1. 4e datasets GSE56081
and GSE124272 were obtained from GEO, and the data were
standardized and re-annotated on the chip. To include more
sample sizes, the GSE56081 and GSE124272 expression
profile datasets were merged, and finally, we obtained the
expression profiles of 12296 genes. 4e overall gene ex-
pression in the GSE56081 dataset was higher than that in the
GSE124272 dataset, and there is a batch effect (Figure 2(a)),
which was removed using the R software package SVA to
obtain a new expression profile. As the new profile showed
consistent distribution among the datasets (Figure 2(b)), this
suggested that the expression profile without batch effects was
qualified for further data analysis. 4e abnormal gene ex-
pression modules in IDD were analyzed by applying the R
software package WGCNA to analyze IDD-related co-ex-
pression modules based on gene expression profiles. In this
study, the power of β� 7 (R̂2> 0.85 without scale) was the soft
threshold to ensure the scale-free network (Figure 2(c) and
2(d)). A total of 36 modules were identified (Figure 2(e)). 4e
correlation between diseases and modules was determined.
Firstly, the Pearson correlation coefficient between the feature
vectors of each module and the occurrence of diseases was
calculated (Figure 2(f)). Further analysis on the distribution
difference of the feature vectors of the significantly related
modules in IDD and the control group showed that the

feature vector distribution of the disease group in LightPink4,
MidnightBlue, and Red modules was remarkably higher than
that of the healthy group, whereas the feature vector distri-
bution of the LightCyan1 module in the disease group was
significantly lower than that of the healthy group
(Figure 2(g)). Based on these two methods, LightPink4,
MidnightBlue, Red, and LightCyan1 modules, which were
found to be closely related to the occurrence of IDD, were
determined as the key modules of IDD in this study.

2.2. Functional Involvement of IDD-Related Modules. To
better understand the functional involvement of the four
disease-related modules, IDD-related genes were first ob-
tained from the DisGeNET [14]. 4e intersection of gene sets
and IDD-related regulatory genes in the four IDD-related
modules was analyzed (Figure 3(a)). We found that the genes
in Red and MidnightBlue modules showed significant in-
tersection with IDD-related regulatory genes (P< 0.05),
suggesting that the genes in Red and MidnightBlue modules
were biologically correlated with IDD. GO functional en-
richment analysis was performed on the Red and Mid-
nightBlue modules. 4e Red module was enriched to 20 GO
biological processes, which are mainly related to neutrophil
activation and regulation of cytokine-mediated signaling
pathway and apoptosis, and to another 23 cellular compo-
nents that mainly involved cellular outer membrane and cell
adhesion (Figure 3(b)). Similarly, the MidnightBlue module
was enriched to a large number of GO terms but most sig-
nificantly to 10 biological processes, which mainly included
extracellular matrix organization, bone development, and
other biological processes (Figure 3(c)). 4e top 10 cellular
components contained extracellular matrix, extracellular
matrix component, and other components related to extra-
cellular matrix (Figure 3(d)). In addition, the MidnightBlue
module was also enriched in many molecular functions, such
as receptor regulator activity and extracellular matrix struc-
tural constituent (Figure 3(e)). Previous reports indicated that
pro-inflammatory cytokines, immune cells secretion, and
cytokines regulate extracellular matrix in the intervertebral
disc-abnormal modification enzymes, causing an imbalance
betweenmetabolic enzymes and anabolic enzymes, which will
lead to widespread back, neck and back pain [15]. 4ese
results suggested genes in the Red andMidnightBlue modules
shared a strong biological correlation with IDD.

2.3. Construction of IDD-SpecificProtein InteractionNetwork.
To identify new IDD-related genes, the gene sets in the Red
and MidnightBlue modules were selected, and the Pearson
correlations between the genes in the modules and the
feature vectors of the modules were calculated, respectively.
A total of 855 genes with a correlation greater than 0.7 were
selected, and the expression table of these genes was further
calculated to determine the AUC of IDD. We obtained a
total of 356 genes with AUC higher than 0.8 and mapped
these 356 genes to the STRING database [16] (https://string-
db.org/). From here, 533 interaction data involving 252
genes were collected to construct an IDD-specific protein
interaction network. In the network, a few genes were linked
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Figure 1: Workflow chart.
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Figure 2: Continued.
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by a large number of other genes, and many genes only
interacted with a few genes (Figure 4(a)), and among these
genes, MAPK1 was relatively the genes with the largest
interaction with other genes in the network. 4e p38 MAPK
signaling pathway plays an important role in many in-
flammatory andmetabolic changes during disc degeneration
[17]. 4e degree distribution in the network was analyzed
(Figure 4(b)), and it has been found that the majority of
nodes had degrees around 1 and a few nodes were above 10,
showing a median law distribution, which is consistent with
the characteristics of biological networks. 4ere were 9
known IDD-regulated genes in the network, and most of
these genes had a large degree ranking, suggesting that a
larger node degree in the IDD-specific protein interaction
network is more closely related to IDD (Figure 4(c)). 4e
degree of nodes in the network was used as rank for GSEA
function enrichment analysis, and these genes were found to
be significantly enriched into 5 KEGG pathways
(Figure 4(d)–4(h)), which were MAPK_SIGNA-
LING_Pathway (FDR� 0.012) and CHEMO-
KINE_SIGNALING_Pathway (FDR� 0.024).

2.4. Key Genes of IDD Were Mined and Identified.
Considering the significance of IDD-specific protein net-
works, we introduced all IDDRGs into the network. 4e
interaction relationships between two IDDRGs and between
two IDDPPIG were obtained from the STRING database to
construct a new IDD regulation network, which contained
435 nodes and 4362 pieces of interaction information, and
there were 194 IDDRGs (Figure 5(a)). We found that the
degree of IDDRG in the network was significantly higher
than that of IDDPIG. 4e enrichment significance of each
IDDPPIG gene by IDDRG was calculated, and the results

demonstrated that a total of 168 IDDPPIG genes (69.7%)
were significantly enriched by IDDRG with a P< 0.05,
suggesting that a large number of IDDPPIG genes in the
network were indirectly or interrelated with IDDRG. 4e
network characteristics of IDDRG and IDDPPIG were
further systematically compared, and it was observed that
the average shortest path between each IDDPPIG and
IDDRG was significantly (p � 1E − 16) shorter than the
average shortest path between other IDDPPIGs
(Figure 5(b)), indicating that there was a closer interaction
relationship between IDDPPIG and IDDRG. 4e multiples
of the average shortest path from an IDDPPIG gene to an
IDDRG and the average shortest path from each IDDPPIG
gene to other IDDPPIG were calculated, and we found that
most of them were between 0.8 and 0.85, which was lower
than that of the random network (Figure 5(c)). After ana-
lyzing the degree distribution of each IDDPPIG in the
network, it is observed that the average degree was higher
than that of the random network (Figure 5(d)). In addition,
we also found a higher proportion of IDDRG interacting
with IDDPPIG gene than that in the random network
(Figure 5(e)).

Based on the above results, IDDRG with a significantly
high interaction ratio and IDDPPIG with both significantly
low multiple of shortest path and high degree of distribution
were selected as a new potential key gene of IDD. Here, we
obtained three genes (Table 1).

2.5. Potential Drugs and Drug Targets of Key IDD Genes.
To further determine the potential drug targets of key IDD
genes, following Wang et al. [18], we determined the
network distance between these 3 key genes and 5490 drugs
on DrugBank (Figure 6(a)), and found that the distance
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Figure 2: Identification of IDD-related modules. (a) Expression distribution in each sample in the combined dataset of GSE56081 and
GSE124272. Blue is the GSE56081 dataset sample, Red is the GSE124272 dataset sample. (b) Expression distribution in each sample in
GSE56081 and GSE124272 datasets after removing batch effect, Blue is the GSE56081 dataset sample, Red is the GSE124272 dataset sample.
(c) Analysis of the scale-free fit index for various soft-thresholding powers (β). (d) Analysis of the mean connectivity for various soft-
thresholding powers. (e) Dendrogram of all expressed genes clustered based on a dissimilarity measure (1-TOM). (f ) 4e correlation
between co-expression module and IDD, where the upper right corner represents significant P value, and the lower left corner represents
correlation coefficient, ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. 4e number in parentheses is the number of genes in the module. (g) 4e
difference distribution of the feature vectors of modules that are significantly related to IDD in IDD and the control group.

Journal of Oncology 5



between the three key genes and the drug was shorter than
that of the random background. A total of two drugs were
determined according to a global FDR < 0.05 (Table 2).
Subsequently, the relationship between these two drugs and
the three key IDD genes (SIRT7, NTRK2, CHI3L1) was
further analyzed by molecular docking methods
(Figure 6(b)). When drugs DB11986 and DB14723 were
combined with CHI3L1 protein, both drugs could well bind
to the active site of the protein and carried −9.7 kcal/mol
and 10.0 kcal/mol, respectively. Such a high docking score
indicated that these two molecules may have potential
biological activity against CHI3L1 protein. When the two
drugs bound to NTRK2 protein, the docking score was
significantly reduced to −8.6 kcal/mol and −7.9 kcal/mol,
respectively, though both of them bound to the active site.

4e drug DB11986 could be extended from the other side of
the active site due to the molecular structure of the additive
farm, but DB14723 was all embedded into NTRK2 protein
for its relatively small molecular structure. Interestingly,
when drugs DB11986 and DB14723 interacted with SIRT7
protein, the docking scores of the two drugs were signif-
icantly different. Among them, the docking score of
DB11986 for SIRT7 was −9.5 kcal/mol, whereas that of
DB14723 for SIRT7 was −7.9 kcal/mol. Such a significant
difference also indicated that there may also be potential
differences in the activity of these two drugs against SIRT7
protein. 4ese results suggest that the different binding
affinities of the two drugs to the three proteins could in-
dicate the potential differences in interaction and biological
activity.
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2.6. Identification and Validation of IDD Biomarker.
Markers related to IDD were further determined based on
three disease-specific genes, we used GSE124272 as the
training set, GSE56081 as the test set, and GSE23130 and
GSE150408 as the external validation set. SIRT7, NTRK2,
and CHI3L1 served as features in the training dataset to

obtain their corresponding expression profiles.4e heat map
of expression profiles in each dataset demonstrated that
SIRT7, NTRK2, and CHI3L1 were all highly expressed in the
IDD group in different datasets (Figure 7(a)). After ana-
lyzing the expressions of the three genes in different datasets,
we found that SIRT7 and NTRK2 genes were significantly
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Table 1: Network characteristics of 3 key genes.

Symbol IDDRG
Count IDDRG Count p value IDDRG ratio IDDRG ratio p value Shortest ratio Shortest

Ratio_p value
IDDRG

enrichment p value
SIRT7 16 0.000609 0.94 0.024 0.76 0.01 4.93E-28
NTRK2 21 3.04E-06 0.87 0.041 0.77 0.015 5.33E-35
CHI3L1 18 8.84E-05 0.86 0.048 0.76 0.01 9.30E-30
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overexpressed in GSE124272 (Figure 7(b)), that NTRK2 and
CHI3L1 were significantly highly expressed in GSE56081
dataset (Figure 7(c)), that SIRT7 and CHI3L1 were signif-
icantly highly expressed in GSE23130 dataset (Figure 7(d)),
and that SIRT7 and NTRK2 were significantly highly
expressed in GSE150408 dataset (Figure 7(e)). Also, we

added experimental validation, specifically, we collected
tissues from five early IDD patients (III) and five advanced
IDD patients (V) from 4e 4ird People’s Hospital of
Nanning and evaluated the expression differences of SIRT7,
NTRK2, and CHI3L1 using RT-PCR, and as expected, they
had a trend of higher expression in advanced IDD patients,

DB11986 DB14723
CH

I3
L1

N
TR

K2
SI
TR

7

(b)

Figure 6: Potential drugs and drug-target analysis of key IDD genes. (a) 4e distribution of network-regulated distance between drug and
disease key genes. (b) Interaction results of drugs DB11986 and DB14723 with CHI3L1, NTRK2, and SIRT7 proteins. Among them, CHI3L1
protein was added sky blue surface, NTRK2 protein was added rosy brown surface, and SIRT7 protein was added sea green surface.4e drug
DB11986 was displayed as yellow, and DB14723 was displayed as orchid.
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Figure 7: Continued.

Table 2: Potential drugs for key genes.

Drug_id Drug name Distances P value FDR
DB11986 Entrectinib 0.2238934 5.219693e-06 2.865090e-02
DB14723 Larotrectinib -0.9601777 2.416713e-12 1.326775e-08
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with CHI3L1 and NTRK2 having a significant expression
difference (Supplementary Figure S1). 4ese findings sug-
gested that the expression of a single gene in different
datasets was easily disturbed by other factors. 4erefore, we
used the three genes as a panel to construct a SVM classi-
fication model. Tenfold cross-validation was used to test the
model, and the classification accuracy was 100%, as all the 16
samples were correctly classified in the training dataset. 4e
sensitivity of the model to IDD was 100%, the specificity was
100%, and the area under ROC curve (AUC) was 1.0. When
using the GSE56081 dataset for verification, 9 out of 10
samples were correctly classified, with a classification ac-
curacy of 90%, a model sensitivity to IDD of 80%, a spec-
ificity of 100%, and an area under ROC curve of 0.96. 4e
GSE23130 dataset was further used for verification and
accurately classified 19 samples out of 23, with a classifi-
cation accuracy of 83.6%, a sensitivity of the model to IDD of
50%, a specificity of 94%, and area under ROC curve of 0.95.
4e GSE150408 dataset was further used for verification and
accurately classified 27 samples out of 34, with a classifi-
cation accuracy of 88.2%, a sensitivity of the model to IDD of
70.6%, a specificity of 79.4%, and an area under ROC curve
of 0.94 (Figure 7(f )). 4ese results indicated that the

diagnostic prediction model based on SIRT7, NTRK2, and
CHI3L1 could effectively distinguish IDD patients from
control population; therefore, these genes could serve as
reliable biomarkers for specific diagnosis of IDD.

3. Discussion

Low back pain (LBP) caused by intervertebral disc degen-
eration (IDD) is the most common musculoskeletal system
disease [19]. IDD is the result of the interaction of many
factors, including abnormal pressure load, inflammatory
factors, cell aging, and related signal pathways, but the final
result is the imbalance of extracellular matrix synthesis and
catabolism [20]. In this study, the gene expression patterns
between IDD and healthy samples were systematically an-
alyzed, and two disease-related gene modules were identified
by the weighted co-expression method. 4ese genes were
mainly enriched in neutrophil activation and regulation of
cytokine-mediated signaling pathways, and extracellular
matrix-related multiple biological pathways, suggesting that
these modular genes have a strong biological correlation
with IDD. Based on this, we constructed a protein inter-
action network and observed high-degree nodes with known

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.00 0.10 0.25 0.50 0.75 0.90 1.00

False positive fraction

Tr
ue

 p
os

iti
ve

 fr
ac

tio
n

Group
GSE124272 AUC=1
GSE150408 AUC=0.938
GSE23130 AUC=0.951
GSE56081 AUC=0.96

(f )

Figure 7: Identification and validation of IDD biomarker. (a) Heatmaps of expression profiles of SIRT7, NTRK2, CHI3L1 genes in the
training set, test set, GSE150408 Dataset, and validation set. (b) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE124272
dataset. (c) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE56081 dataset. (d) Differential distribution of SIRT7,
NTRK2, CHI3L1 genes in the GSE23130 dataset. (e) Differential distribution of SIRT7, NTRK2, CHI3L1 genes in the GSE150408 dataset.
(f ) Classification of ROC curve of the lncRNA diagnostic model in four datasets.

12 Journal of Oncology



IDD, and found that a higher correlation of related genes.
Finally, IDD-related genes were introduced to establish a
disease-specific network. 4rough the analysis of network
topology, SIRT7, NTRK2, and CHI3L1 were finally identi-
fied as new IDD-specific genes, and these genes were sig-
nificantly highly expressed in IDD samples.

Sirtuin 7 (SIRT7), which is a nicotinamide adenine
dinucleotide (NAD+)-dependent histone deacetylase, is
mainly located in the nucleus. SIRT7 is involved in a variety
of cellular processes, including aging, DNA repair, tu-
morigenesis, and metabolism [21, 22]. SIRT7 is proven to
be an important regulator of cartilage homeostasis and is
involved in the development of OA [23]. SIRT7 expression
is significantly downregulated in OA articular cartilage,
which is consistent with autophagy gene expression;
moreover, loss of SIRT7 accelerates type II collagen ca-
tabolism [24]. Neurotrophic receptor tyrosine kinase 2
(NTRK2) is a member of the neurotrophic receptor kinase
(NTRK) family and a membrane-bound receptor. When
neurotrophic proteins bind, members of the NTRK family
and MAPK pathways are phosphorylated and give out
signal through NTRK2, leading to cell differentiation.
Jinhuai Hu et al. reported that NTRK2 is an oncogene, and
its overexpression partially reverses the inhibitory effect of
miR-22 on tumor proliferation and invasion [25]. In-
flammation-related autocrine factor CHI3L1, which is
tissue-specific and significantly upregulated during dena-
turation, protects IDD by promoting the Akt3 signaling
pathway [8]. CHI3L1 can be expressed by a variety of cells,
including chondrocytes, smooth muscle cells, and osteo-
sarcoma cells, but its function is usually related to in-
flammation and tissue remodeling [26–28]. According to
current studies, SIRT7 and NTRK2 have not been previ-
ously reported in IDD. 4e current study is the first to
reveal the involvement of these two genes may be involved
in the occurrence and development of IDD.

Entrectinib is an effective oral tyrosine kinase inhibitor
of TrkA, TrkB, and TrkC (encoded by the genes neurotrophic
tyrosine receptor kinase (NTRK) 1, 2, and 3, respectively). In
a clinical study of 25 patients who had various malignancies
containing NTRK, ROS1, or ALK gene fuses and received an
effective dose of entrectinib, an overall response rate of 79%
with significant tumor regression in all NTRK-altered tu-
mors (including ETv6: NTRK3 translocation) [29] was
observed. Larotrectinib is a selective inhibitor of neuro-
trophin receptor kinase (NTRK) and can be used to treat
solid tumors carrying NTRK gene fusion [30, 31]. David S
Hong et al. showed that among 159 patients with TRK
fusion-positive cancer who received larotrectinib, 121 out of
153 evaluable patients showed an objective response (79%,
95% CI 72–85), and 24 (16%) showed a complete response
(16%) [32]. As NTRK2 was confirmed as a prognostic gene
for IDD in this study, we speculated that entrectinib and
larotrectinib may relieve IDD through NTRK2.

Although we analyzed and verified the abnormal ex-
pression and functional role of genes in IDD from multiple
data coalitions using bioinformatics techniques, some lim-
itations of this study should be noted. Firstly, the sample
lacked some clinical follow-up information; thus, we failed

to consider factors such as the presence of other patient
health conditions. Secondly, the results obtained only by
bioinformatics analysis were insufficient, which required
further experimental validation. 4erefore, further genetic
and experimental studies with larger sample sizes and ex-
perimental validation are needed.

4. Conclusion

In conclusion, in this study, we systematically analyzed the
gene expression patterns in IDD and conducted a large-scale
genome-wide study on the RNA expression profile to
identify two gene modules closely related to IDD.4ree new
IDD-specific genes have been found for IDD through dis-
ease-association network mining, and the three genes were
involved in a variety of important biological pathways. At
the same time, we also discovered that entrectinib and
larotrectinib may be effective in the treatment of IDD, which
provides a target and reference for clinicians and biological
experimentalists.

5. Materials and Methods

5.1. RNA Expression Profile. All gene expression profiles of
human intervertebral disc degeneration were retrieved from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/), and 4 datasets with a sample
size of no less than 10, namely, GSE56081 [33], GSE124272
[34], GSE23130 [7], and GSE150408, were selected. Among
them, there were 10 samples in GSE56081, including 5
samples from patients with IDD and 5 samples from the
nucleus pulposus of normal control. 4e platform was
Arraystar Human lncRNA microarray V2.0 (Agi-
lent_033010 Probe Name version). 4e GSE124272 dataset
contained of 8 IDD samples and 8 control samples on the
Agilent-072363 SurePrint G3 Human GEV3 8× 60K
Microarray 039494. 4e GSE23130 dataset contained a total
of 23 samples on Affymetrix Human X3P Array.

4e GSE56081 dataset is a lncRNA chip platform. 4e
probe sequence of the GSE56081 dataset was aligned to the
genome (GRCh38.p13, https://ftp.ebi.ac.uk/pub/databases/
gencode/Gencode_human/release_39/gencode.v39.
primary_assembly.annotation.gff3.gz) through the method
of chip re-annotation to determine the transcript IDmapped
by the probe. Each transcript cluster was assigned to
Ensembl gene ID to obtain the matching relationship be-
tween probe and gene to acquire gene expression profile.

4e specific process is as follows:

(1) 4e matrix files expressing the sequence tags were
downloaded to obtain the nucleic acid sequences of
these probes.

(2) 4e nucleic acid sequences of these probes were
matched to the human genome library (ENCODE
database, version 38, https://www.gencodegenes.org/
human/) using SeqMap software [35]. 4e library
requires sequence matches and no mismatches, and
the corresponding chromosomal positions of the
probes were obtained.
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(3) A total of 19873 re-annotated mRNA probes were
obtained by simultaneously removing the presence
of multiple matching probes.

Finally, for all the expression profiles, the probe was
mapped to the gene, and whenmultiple probes were mapped
to the same gene, the median value was taken as the ex-
pression value of the gene. To enlarge the sample size of the
dataset, we combined the GSE56081 and GSE124272 data-
sets, combat function of R software package SVA [36] was
used to remove the batch effect to obtain a new expression
profile, and the GSE23130 dataset served as an external
independent verification queue.

5.2. Weighted Co-Expression Network Analysis. After
merging the datasets of GSE56081 and GSE124272 and
removing the batch effect, the weighted co-expression
module was constructed using the gene expression
profile. Specifically, the RNA expression data profile of
the genes was used to examine whether the samples and
genes were qualified. 4en, we used the WGCNA [37]
package in R to construct a scale-free co-expression
network for the genes. 4e Pearson’s correlation matrices
and average linkage method were performed for pair-
wise. 4en, a weighted adjacency matrix was constructed
using a power function Amn � |Cmn|β (Cmn �Pearson’s
correlation between gene m and gene n; Amn � adjacency
between gene m and gene n). β, which is a soft-thresh-
olding parameter, emphasizes strong correlations be-
tween gene and indicates weak correlations. After
determining the power of β, the adjacency was trans-
formed into a topological overlap matrix (TOM) for
measuring the network connectivity of a gene, which was
defined as the ratio of sum of its adjacency to all other
genes, and then, the corresponding dissimilarity
(1-TOM) was calculated. To classify genes with similar
expression profiles into gene modules, average linkage
hierarchical clustering was performed according to the
TOM-based dissimilarity measured with a minimum size
(gene group) of 30 for the gene dendrogram. To further
analyze the module, we calculated the dissimilarity of
module eigen gene, determined a cut line for module
dendrogram, and merged some modules.

5.3. Identification of Co-Expression Modules Associated with
IDD. We defined the module related to the occurrence of
IDD as the IDD Module. Specifically, the correlation be-
tween ME and IDD features was calculated to identify the
relevant modules with significance P< 0.05. Further analysis
on the distribution differences of each module’s feature
vectors in IDD and control group was performed to select
the modules with significant FDR< 0.05. Also, we obtained
known IDD-related gene (IDDRG) sets from the DisGeNET
[14] database, analyzed the intersection of genes and
IDDRGs in each Module, evaluated the enrichment sig-
nificance of IDDRG by hypergeometric test, and selected the
modules with significantly rich IDDRGs as the final IDD
Module.

5.4. Functional Enrichment Analyses. Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis was performed using the R
package clusterProfiler [38] for screening genes associated
with the IDDModule, so as to identify over-represented GO
terms in three categories (biological processes, molecular
function, and cellular component) and KEGG pathway. For
both analyses, a FDR of <0.05 was considered to denote
statistical significance.

5.5.Constructionof IDD-RelatedProtein InteractionNetwork.
In the IDDModule, the correlation between the genes in the
Module and the feature vectors of the Module was calculated
to select gene set with the correlation coefficient greater than
0.7. 4e classification performance of each gene expression
in IDD and control group was further analyzed, and the gene
set with AUC greater than 0.8 was determined as the final
core gene set of IDD Module. 4ese gene sets were mapped
to the STRING v11.0 [16] database to obtain the interaction
data among these genes, and an IDD-related protein in-
teraction network (IDDPPI) was established. Visual analysis
was performed using cytoscope [39], and the degree of nodes
in the protein interaction network was used as the rank.
GSEA [40] enrichment analysis was employed to obtain
significantly enriched KEGG pathways to evaluate network
function.

5.6. Construction of IDDRG-IDDPPI-Related Network.
4e genes in IDDRG and IDDPPI (IDDPPIG) were mapped
to the STING V11.0 [16] database to construct a protein
interaction network. 4e degree distribution of each
IDDPPIG and IDDRG in the network was further analyzed.
4e significance of each IDDPPIG enriched by IDDRG and
the proportion of IDDPPIG gene interaction were calculated
using a hypergeometric test to analyze the network char-
acteristics of IDDPPIG and IDDRG, and the average
shortest path between two IDDPPIG or between IDDPPIG
and IDDRG was compared. 4e multiple relationship dis-
tribution of the average shortest path between two IDDPPIG
genes and between an IDDRG and an IDDPPIG gene was
calculated. Based on the above characteristics, the random
perturbation method was used to establish a random net-
work as the background, and the significant genes were
selected as the new key genes of IDD (IDDG).

5.7. IDDG and Drug-Target Network Construction. To ex-
amine the potential drug effects of IDDG, the relationship
between drugs and drug-target genes was obtained from
DrugBank v5.1.7 database [41], and a total of 16196 drug-
gene interaction data were identified. 4ese drug-target
genes and IDDG genes were mapped to the STRING V11.0
[16] database to obtain gene interaction information, and a
drug-gene-IDDG network was constructed. As previously
described by Wang et al. [18], the shortest path of drugs to
IDDG was calculated for identifying potentially related
drugs to IDDG.
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Specifically, we calculated the proximity of the drug to
IDDG. In this case, we can give S, the IDD-related gene set
IDDG; D, the degree of IDD-related gene set nodes in PPI;
and T, drug-target gene collection. Distance D (s, t) is the
shortest path between s node and Tnode (where S ∈ S is IDD-
related gene; T ∈T is drug-target gene), and the calculation
method is as follows:

d(S, T) �
1

|T|
􏽘
t∈T

min
s∈S

(d(s, t) + ω), (1)

where ω is the weight of the target gene. If the target gene is a
gene in the IDD-related gene set, the calculation method is
ω� −ln (D+ 1); otherwise, ω� 0.

We generated the simulated reference distance distri-
bution corresponding to the drug. To put it simply, a group
of protein nodes were randomly selected in the network as
the simulated drug target, and the number of nodes was the
same as the target size (denoted as R). Next, the distances d
(S, R) between these simulated drug targets (representing the
simulated drug) and DMEGs were calculated. After 1000
random repeats, the simulated reference distributions were
generated. At the same time, the mean and standard devi-
ation of the μd (S, R) and σd (S, R) reference distributions
and the corresponding actual observed distances were
converted into standardized scores, that is, proximity Z:

z(S, T) �
d(S, T) − μd(S,R)

σd(S,R)

. (2)

Finally, the shortest path to IDDG was significantly
higher for the drug than for the background drug according
to the simulated reference distance distribution. 4e degree
of binding between IDDG and drugs was evaluated by
molecular docking.

5.8. Establishment of IDD Diagnostic Prediction Model and
Evaluation of Model Prediction Performance. IDDG was
used to construct a diagnostic prediction model based on
support vector machine (SVM) classification [42] to predict
the IDD and control samples. SVM, which is a supervised
machine learning algorithm model, analyzes data, and
identifies patterns. A SVM creates a hyperplane, in high or
infinite dimensions, and can be used for classification and
regression. Given a set of training samples in which each
marker belongs to two classes, an SVM training algorithm
builds a model that assigns new instances to one class or
another, making it an improbabilistic binary linear
classification.

In this study, GSE124272 was the training set, GSE56081
was the test set, and GSE23130 was the external verification
set. 4e model was constructed in the training dataset, and
the classification ability of the model was verified by the
tenfold cross-validation method. 4e established model was
then used to predict the samples in the test set and validation
dataset. 4e predictive ability of the model was evaluated
using area under the ROC curve (AUC), and the sensitivity
and specificity of the model for IDD prediction were
analyzed.

5.9. Statistical Analysis. Ggplot2 of R software was used for
visualization, and heatmap was used to draw heat maps.
Fisher’s exact test was used for multigroup comparison, and
significance was defined as P< 0.05. 4e Benjamini method
was used for multiple test correction to obtain FDR. All of
these analyses are performed in R 3.4.3.
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