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Abstract

Archived metabolomics data represent a broad resource for the scientific community.

However, the absenceof tools for themeta-analysis of heterogeneousdata typesmakes

it challenging toperformdirect comparisons in a single andcohesiveworkflow.Here,we

present a framework for the meta-analysis of metabolic pathways and interpretation

with proteomic and transcriptomic data. This framework facilitates the comparison of

heterogeneous types of metabolomics data from online repositories (eg, XCMSOnline,

Metabolomics Workbench, GNPS, and MetaboLights) representing tens of thousands

of studies, as well as locally acquired data. As a proof of concept, we apply the work-

flow for the meta-analysis of (a) independent colon cancer studies, further interpreted

with proteomics and transcriptomics data, (b) multimodal data from Alzheimer’s dis-

ease and mild cognitive impairment studies, demonstrating its high-throughput capa-

bility for the systems level interpretation of metabolic pathways. Moreover, the plat-

form has beenmodified for improved knowledge dissemination through a collaboration

with Metabolomics Workbench and LIPID MAPS. We envision that this meta-analysis

tool combined with our in-source fragmentation/annotation (ISA) technology will help

overcome the primary bottleneck in analyzing diverse datasets and facilitate the full

exploitation of archival metabolomics data for addressing a broad array of questions

in metabolism research and systems biology.
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1 INTRODUCTION

Metabolites are the prime drivers of biological activity as they regulate enzyme reactions,1 protein activation, and gene/protein expression.2 Ulti-

mately, metabolites provide an accessible functional readout for the activity of the system and in themselves modulate the phenotype.3 In line

with this, themeta-analysis of untargeted high-resolutionmass spectrometry (MS) metabolomic data obtained from distinct studies can be used to
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obtain a better understanding of the alteredmetabolic processes and active endogenous metabolites affecting the system over a broad population

of samples. This type of analysis requires the generation and/or recollection of multiple metabolomic data sets across several independent studies,

to provide a more comprehensive picture than an individual study. In some cases, the data sets required for the meta-analysis have already been

generated andmade available on public databases. In this regard, several data storage infrastructures have been recently developed to address the

raising call for metabolomics data sharing and currently encompass more than 1000 untargeted high-resolution data sets. Emerging open-access

ecosystems include MetaboLights,4 MetabolomicsWorkbench,5 Metabolonote,6 Global Natural Products Social Molecular Networking (GNPS),7

andmetabolomic data aggregation services, such asmetabolomeXchange8 (http://www.metabolomexchange.org/site/) andOmics Discovery Index

(http://www.omicsDI.org).9 In addition, the LIPID MAPS service provides a link into MetabolomicsWorkbench to support the direct deposition of

lipidomics data (www.lipidmaps.org).10,11

These publicly available data sets can reduce the workload for data re-collection as well as foster transparency and collaboration between

researchers. However, owing to the absence of tools for their cohesive meta-analysis and to the heterogeneity of the stored data, that are often

obtained by different types ofMS-basedmetabolome profiling workflows, each study remains only partially utilized for comparative analyses.

Currently, the meta-analysis of metabolomic pathways is carried out by comparing and analyzing the results reported in published papers (eg,

fold change comparison, absolute concentrations from targeted studies), thus ignoring the total content of information on metabolites contained

in the raw profiling data. Moreover, the interpretation of the meta-analysis findings in the context of proteomic and transcriptomic dysregulations

remains amanual task as no systems level data interpretation tool currently provides this functionality. For example, depending on data type, there

are many tools for integration of multi-omics data available including correlation analysis, multivariate comparison, regression/machine learning

for sample classification.

Here, we report MetaXCMS framework, to enable the meta-analysis of heterogeneous types of archived untargeted, high-resolution MS data

across metabolomics, proteomics, transcriptomics, and genomics. The XCMS Online metabolomics platform12,13 is an environment for the direct

re-analysis, in-source fragmentation/annotation47,48 and comparison of data from transcriptomics andmetabolomics repositories and/or acquired

locally, to gather insights into the dysregulated active metabolites and pathways over independent studies and populations of subjects/samples.

We deploy this workflow by integrating and interpreting at systems level archival data sets from two independent colon cancer studies obtained

from the XCMS Online Public repository.14 In addition, we tested this framework in the meta-analysis of archival multimodal metabolomics

data acquired from plasma samples from patients with Alzheimer’s disease, mild cognitive impairment, and cognitive normal patients, from the

MetabolomicsWorkbench.15

2 RESULTS

2.1 Workflow for themeta-analysis of archival metabolomic data and systems level integration

WedevelopedMeta XCMS framework for themeta-analysis and interpretation of archival metabolomics data by developing and combining differ-

ent bioinformatic modules to be facilitated with the XCMSOnline platform (Figure 1).

In the meta-analysis workflow, the raw MS data sets from individual studies can be uploaded in XCMS Online to perform data processing and

analysis, including peak detection, retention time alignment, putative annotation, and statistical significance testing, to a final list of detected and

dysregulated metabolic features.13 At this level, the user can set the processing and statistical parameters depending on the analytical platform

employed for metabolome profiling and on the statistical test needed for that study. The processed jobs can then be selected and downloaded to

be inputted into the Meta XCMS framework for further analysis. Multiple metabolomic analysis (analytical modalities) for a given study can be

combined together for comprehensive coverage, for example, on lipid and central carbon metabolism (eg, combining data obtained by reversed

phase chromatography coupled with positive electrospray ionization (ESI)–MS, and hydrophilic interaction liquid chromatography in negative ESI–

MS, etc).16,17 Moreover,metabolomics data sets obtained fromhigh-resolutionuntargeted studies archived in theMetabolomicsWorkbench canbe

directly uploaded formeta-analysis, and the user interface also supports the upload ofmetabolomics data sets in text/tsv format, obtained through

alternative data preprocessing workflows.

TheMetaXCMS framework code is basedonmummichogversion2.0.717,18 and leverages itself on this open sourceplatform.Briefly, themummi-

chog algorithm performs a Fisher’s exact test on the number of metabolites jointly dysregulated in the studies as opposed to the total metabolites

in the pathway, to predict active pathways directly from putative metabolic features. To allow for a multi-file input, the code and algorithm were

adjusted. Using either data from the MetabolomicsWorkbench or XCMSOnline, data are read into the system via convenient tsv/csv peak list file

formats. Data read into the system are first parsed, each feature is tagged to its input file to allow for tracing throughout the system. Several possi-

ble adducts combinations are calculated onto the feature masses. These features are queried against the pathway database, each file is processed

separately and ranked on their corresponding P-value score to statistically eliminate false positives. Once a list of possible hits is obtained, fea-

tures that match the neutral mass in the pathway, they are merged between the different files. This is done such that any compound that is seen in

more than one file is merged together and the best P-value score is taken. This method allows for the expanded coverage and keeps the statistical

http://www.metabolomexchange.org/site/
http://www.omicsDI.org
http://www.lipidmaps.org
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F IGURE 1 Workflow for themeta-analysis of heterogenousmetabolomics data combinedwith our in-source fragmentation/annotation (ISA)
technology47,48 in XCMSOnline: metabolomics data sets from public repositories are uploaded in the XCMSOnline database and processed for
metabolic features detection and statistical analysis. The jobs are then used as input for meta-analysis and integration with proteomics and
transcriptomics data inMeta XCMS framework. Results can be shared in the XCMSOnline cloud for knowledge dissemination

validation. Next, the regularmummichog process continues with the statistical validation of the matched pathways. Finally, the output is processed

to simplify future analyses.

For each individual study included in the meta-analysis, the user can set a specific significance threshold (P-value),m/z tolerance for metabolite

putative annotation, and filter the metabolic feature list according to a specified intensity threshold. We recommend to carefully choose these

parameters considering the size of each individual study and the type of metabolomics platform used.

Notably, lipids comprise around a third of all metabolites, but they require distinct processing approaches for accurate annotation and pathway

prediction. In particular, removing spuriousMS signals is critical to improve statistical power, especially for lipids wheremultiple forms of the same

molecule can be detected/exist. LipidFinder19 has been recently developed at LIPID MAPS11 to alleviate these artifacts. Here, we suggest using

LipidFinder post processing of XCMS outputs. This helps to further the broaden the output of lists of putative structures and their categories for

more accuratemeta-analysis of lipidomics data.

As part of the Meta XCMS framework, we suggest performing multi-omic data integration by superimposing user-uploaded transcriptomic and

proteomic data sets onto the dysregulated pathways. Using a list of dysregulated genes (as gene symbols or loci) and proteins (as UniProt accession
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F IGURE 2 Developments of themeta XCMS framework to enhance archival metabolomics data processing, archiving and sharing for
meta-analysis and systems level interpretation

IDs or gene symbols) obtained from studies targeting a given biological question users can generate improved confidence on the pathway hits.

The integration with proteomics and transcriptomics results offers the possibility to gauge a systems level mechanistic understanding of pathways

dysregulation andmetabolite activity in the investigated biological system.20

The downloaded “metabolite results” table reports the list of all the overlapping dysregulatedmetabolites detected in the studies included in the

meta-analysis and used for pathway prediction.

The “pathway results” table showcases the output for the metabolic pathways jointly dysregulated in the studies. For each metabolic pathway,

it reports the number of overlapping dysregulated metabolites detected in different studies with respect to the total number of metabolites in

the pathway. By clicking on the number of “shared metabolites” the complete list of metabolic features is shown. Entries can be further filtered

based on the adduct type, study group or pairwise job group.Moreover, this table reports the overlapping dysregulated genes and proteins from the

uploaded proteomics and transcriptomics data for each metabolic pathway, thus providing a rapid glance on the biological process from a system-

wide perspective.

2.2 Expanding the capability of XCMSOnline for themeta-analysis of archived data

Toallow themeta-analysis ofmetabolomics data sets obtained fromdisparate sources,we enabled easy parsing file options of tsv/csv inMetaXCMS

framework (Figures 1 and 2). First, the user can select studies processed in theXCMSOnline private space or in theXCMSOnline Public. These data

are then easily downloaded to be parsed into the Meta-XCMS framework. Alternatively, the Metabolomics Workbench data can also be used. On

many of the studies there are already existing outputs of identified metabolites or feature lists. In these instances where a metabolite is already

identified it will be read into the system and used as a confirmedmetabolite of the pathway analysis.

This strategy is aimed at fostering data dissemination and at actively promoting the full exploitation of archived metabolomics data through

stimulating further meta-analysis for results validation or for generating novel hypothesis.

2.3 Analysis of archivedmetabolomics data

We tested the workflow in the systems level meta-analysis of two independent colon cancer tissue metabolomics data sets by leveraging archival

data from the XCMS Online Public repository, and for the meta-analysis of Alzheimer’s disease and mild cognitive impairment studies in plasma,

including heterogeneous profiling data from theMetabolomicsWorkbench.

2.3.1 Colon cancer

Several previous studies have pinpointed the multifaced metabolic reprogramming underlining colon cancer.14,24,25 Here, we performed themeta-

analysis of archived untargetedmetabolomics data from a study investigating the role of bacterial biofilms in colon cancer14 (Study A) and a second

colon cancer study, recently performed in our laboratory (StudyB) (Figure 3a). StudyA involved 30 subjects diagnosedwith colon cancer from stage

3 to 4 (18 females and 12 males, 61-88 years old) and was available in the XCMS Online Public repository,14 while Study B involved 19 subjects
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F IGURE 3 a, Meta-analysis of colon cancer metabolomics studies, and systems level interpretation with proteomics and transcriptomics data;
b, cohesive re-analysis of heterogeneous archival metabolomics data fromAD andMCI, comparedwith CN

diagnosedwith colon cancer (13 females and6males, 62-92 years old).More details on study design and samples collection are available in Table S1.

Both studies used similar platforms for metabolome profiling (reversed phase chromatography coupled with ESI(+)-quadrupole time-of-flight (Q-

TOF) MS) and sample preparation protocols, therefore we expected comparable metabolome coverage and overlapping dysregulations (excluding

inter-population heterogeneity).

First, raw data from study B were uploaded in XCMS Online and processed as a paired job. This job and the archival job (Study A) were then

selected as input for meta-analysis in meta XCMS framework (Figure 3a). The results unveiled the presence of 30 metabolic pathways with at

least 10 dysregulated putative metabolic features across study A and B (Table S2; Figure 4a), among these are glycerophospholipids metabolism,

aspartate and asparagine metabolism, glycine, serine and alanine metabolism, carnitine shuttle, tyrosine metabolism, steroidal hormones, and bile

acids. The dysregulation of the glycerophospholipid metabolism has been previously confirmed correlating with altered viability, proliferation, and

colorectal cancer development.26 Themeta-analysis also highlighted the dysregulation of the aspartate and asparagine pathway that includes sper-

mine/spermidine biosynthesis and degradation (polyamine pathway) where N1-acetylspermidine, N1-acetylspermine, spermidine, and N1,N12-

diacetylsperimine, spermidine dialdehyde, spermic acid were found jointly upregulated, a finding consistent with previous work (Figure 4c).14,30 Of

note, in the bile acids biosynthesis pathway taurine and taurochenodeoxycholate were upregulated (Figure 4b). Increased levels of conjugated bile

acids have beenpreviously reported to highly associatewith colon cancer.27 In particular, taurochenodeoxycholate can behydrolyzed releasing tau-

rine, a sulfur amino acid further transformed by the gutmicrobiota to form compoundswith genotoxic activity (eg, H2S), and colon tumor promoters

(deoxycholic acid).28,29

To Interpret this evidence in light of the variations occurring at proteomic and transcriptomic level, colon cancer data sets obtained from

The Cancer Genome Atlas24 and The CPTAC Proteomics Data Portal32 were uploaded and processed in meta XCMS framework. Approximately

90% of the upregulated metabolic pathways were further supported by dysregulated proteins and gene transcripts (Table S3). For instance, both

polyamines and bile acids pathway dysregulations were confirmed (Figure 3a).

2.3.2 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of unknownetiology.33 ADanddementia patients are usually subject to a long

pre-AD period known as mild cognitive impairment (MCI). Here, we used public available metabolomics data obtained from previous longitudinal

studies performed at theMayo Clinic Study of Aging (MCSA) andMayo Clinic Alzheimer Disease Research Center (ADRC).15 Plasma samples were

from AD,MCI, and cognitive normal (CN) subjects (15 individuals/group). The metabolomics data sets and meta-data were publicly available in the
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F IGURE 4 Meta-analysis across independent colon-cancer studies predicts 30 dysregulatedmetabolic pathways (a), including bile acids
biosynthesis (b) and polyaminemetabolism (c)

Metabolomics Workbench and formerly generated by LC-Q-TOF MS in four analytical modalities (hydrophilic interaction liquid chromatography

[HILIC] and reversed phase liquid chromatography [RP], in both positive and negative ESI modes) for comprehensive metabolome coverage. We

downloaded the raw data sets from theMetabolomicsWorkbench repository and uploaded them in the XCMSOnline for processing and statistical

analysis to extract significant metabolic variations in AD versus CN and MCI versus CN. The resulting XCMS Online jobs were then used as input

for theMeta XCMS framework to detect sharedmetabolic changes at different disease stages.

Meta XCMS framework predicted 24 dysregulated metabolic pathways with at least 10 metabolic features dysregulated in the AD versus CN

and the MCI versus CN groups, over a total of 101 paths (Table S4). We manually compared the output with the dysregulated pathways reported

in the original publication.15 Our development predicted the dysregulation of tyrosine, glycerophospholipid, aspartate and asparagine, glycine, ser-

ine and alanine metabolism, urea cycle, tryptophan, and purine metabolism, together with the other pathways reported in Table S4. The original

work reported 50 total dysregulated pathways, of which nine were consistently predicted across AD versus CN and MCI versus CN (Figure 5).

Our approach predicted a total of 101 dysregulated pathways, of which 24 pathways were reported in the original publication, demonstrating the

efficiency of the workflow in identifying jointly dysregulatedmetabolic pathways from heterogeneous archivedmetabolomic data.

3 DISCUSSION

Archivedmetabolomics data are a rich source of information for second-order analysis by the scientific community. However, the heterogeneity of

the data and the lack of tools for their cohesive re-analysis and interpretation hinders their full utilization. To address this, we developed a frame-

work for archival data re-processing, analysis, integration, and interpretation at systems level. The workflow moves from the metabolomics tools

available in the XCMS Online, further combining them with a bioinformatic development specifically designed for the meta-analysis of heteroge-

neousmetabolomics data.

Akeyaspect of theworkflow is theuseof apathway-centric approach to themeta-analysis,whichallows thedirect predictionof thedysregulated

metabolic pathways from putative metabolic features jointly detected in the archived data/studies. This is performed through the embedment

of a recently developed tool for metabolic pathway prediction from putative annotations of metabolic features extracted from different types of

metabolomics data sets.17,18 This tool allows for higher confidence in the putative pathway enrichment results by estimating the probability of a

pathway being dysregulated on the basis of the total number of dysregulated metabolites detected. It is also worth noting that, when attempting
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F IGURE 5 Meta-analysis across AD versus CN andMCI versus CN studies in plasma predicts 101 dysregulatedmetabolic pathways
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to re-analyze archival metabolomics data, the physical samples are not directly accessible and often no longer available. This makes it unfeasible

to perform further MS fragmentation experiments and metabolite identity confirmation. In this scenario, performing direct pathway prediction

analysis represents a practical strategy to bypass this limitation and directly formulate biological hypothesis from the archived data, to be later

tested through independent targeted studies or biochemical assays.

The use of a pathway-centric approach also streamlines the interpretation of themetabolomic data by superimposing the dysregulated proteins

and transcripts to each metabolic pathway. This provides a rapid glance on the system in the light of other omics regulatory levels, introducing the

possibility for the orthogonal confirmation of the insights extracted from the archivedmetabolomics data.

Despite recent efforts aimed at standardizing metabolome profiling and reporting,21,35,36 a widely adopted consensus on untargetedMS-based

workflows in the perspective ofmeta-analysis is still missing.37,38 Themetabolic profiles are indeed usually acquired by a variety of different analyt-

ical solutions,16,39-41 thus introducing heterogeneity in the type of available data. For example, MetabolomicsWorkbench5 currently stores >190

untargeted high-resolutionMS studies, for a total of ∼400 different analyses (ie, different analytical modalities including ESI positive and negative

acquisition modes), while Metabolights4 stores ∼350 among GC- and LC-MS based studies. This heterogeneity complicates the development of

bioinformatics solutions for the automatedmeta-analysis, as each differentmetabolomics platform calls for specific data processing andmetabolite

annotation pipelines. To circumvent this limitation, we designed the workflow in amodular fashion: each study can be processed as pairwise XCMS

Online job using different processing and statistical settings and the resulting jobs can be used as input for further meta-analysis. This allows the

use of raw data acquired by different metabolomics platforms and modalities. For example, the user can upload both lipidomics and metabolomics

data obtained by different chromatographic or ionization modes for comprehensive metabolome coverage and improved pathway prediction.17

This, together with the ability to performmulti-omics data integration, represents a fundamental advantage over our previous development for the

meta-analysis of metabolomics data.42,43

Besides raw data sets, the workflow also supports the direct comparison of untargeted studies already processed and available in the XCMS

Online Public cloud and in the MetabolomicsWorkbench. Of note, several data sets currently archived in public databases are not compliant with

the ISA guidelines for meta-data reporting, unearthing the need of harmonized and more pragmatic guidelines for metabolomics data sharing in

public repositories.37

The meta-analysis of metabolomics data sets and their interpretation at systems level has the potential of streamlining different types of study

comparisons. For example, a meta-analytical approach can be used for (a) providing further validation of metabolite dysregulations in the context

of independent set of samples (eg, in biomarker studies); (b) stimulating the generation of biological hypothesis from the re-analysis of archived

untargeted studies; (c) streamlining the exclusion of experimental artifacts to reduce the list of dysregulated metabolites before performing time

consuming structural elucidation42; (d) excluding metabolic dysregulations due to physiologic heterogeneity in different populations of subjects,

therefore taking a step towards the identification of therapeutic targets and biomarkers of broad applicability. In particular, in biomarker discovery

the automatic integration of multiple archival metabolomics studies can be a cost-effective strategy to minimize the interstudy bias introduced by

genetic and environmental factors.44-46 This strategy is not limited to archiveddata, since the difficulty in cross-laboratory comparison has impeded

the biomedical applications of metabolomics. In an emergency situation like the current COVID-19 pandemic, the pathway-centric meta-analysis

can be important for identifying scientific consensus in a timely manner.

As proof of concept,wedemonstrated the utility of theworkflow in twometa-analytical studies. First, we leveraged archival data sets fromapre-

vious study available in the XCMSOnline Public,14 for the autonomous comparisonwith a colon cancer study recently performed in our laboratory.

Theworkflow allowed a rapid glance onmetabolic pathways jointly dysregulated and validation at systems level (eg, the bile acid and the polyamine

pathways). In the secondexample,weapplied theworkflow for the re-analysis of archival biomarker studies obtained from theMetabolomicsWork-

bench database. Theworkflow permits the streamlined and autonomous prediction ofmetabolic pathways changed in both AD andMCI patients in

plasma (pre-AD) in agreement and beyond the results previously obtained bymanual meta-analysis.15

In summary, there are many challenges in the analysis of diverse datasets including variability in experimental designs as well as information

types that are largely platform dependent. However, by combining a fully automated workflow including in-source fragmentation/annotation47,48

with anenhanced strategy for data storage anddirect connection to theMetabolomicsWorkbenchdata repository, thedescribed approach canpro-

vide a solution formeta-analysis, with the ultimate goal of maximizing the usage and dissemination of information-rich archival metabolomics data.

With the growing number of metabolomics, proteomics and genomics data generated to cover a wide range of biological questions, this workflow

paves the way to unlock biological insights in the era of “big data” and “open science.”

4 MATERIALS AND METHODS

4.1 Meta-analysis framework

The system has been built on a local based Flask system with code based on mummichog version 2.0.7 running on python 2.7.18 Several files were

altered to allow for a multi-file input and hosting on a web frontend. Metabolomics Workbench data is processed using either csv/tsv formats
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directly into the software or via XCMS processing to csv/tsv files. Once the data are read each feature is processed against all possible adducts for

search masses. Using the mummichog algorithm, the search masses are searched against the pathway database, each file is processed separately

and ranked on their corresponding P-value score. Once a list of possible hits is obtained, they are merged between the different files such that any

compound that is seen inmore than one file ismerged together and the best P-value score is taken. Now, the regularmummichog process continues

with the statistical validation of the altered pathways. Finally, the output is processed to make further analysis simpler and result are downloaded

by the user. Framework code has beenmade available via github at https://github.com/hpbenton/archive-mummi

4.2 Metabolomics profiling data

The colon cancer studyAwas available in theXCMSOnlinePublic Space as a processed job. The rawMSdata fromhigh-resolutionmetabolomepro-

filing for the colon cancer study Bwere archived in our laboratory, and previously obtained as part of a pilot colon cancer study (Study B). Both pro-

filing studies were performed in RP-ESI(+)-Q-TOF profiling. More details on study A and B experimental setups can be found in previous published

work.14,17 Metabolome profiles for AD,MCI, and CN plasma samples were downloaded from theMetabolomicsWorkbench repository,5 uploaded

and re-processed in theXCMSOnline. These studieswere performed at theMayoClinic Study ofAging ((MCSA) andMayoClinic AlzheimerDisease

Research Center (ADRC) andmore details on study design and experimental procedures are available in previous publishedwork.15

4.3 Data processing and re-analysis

Rawarchival data setswereuploaded as .mzXML files in theXCMSOnline andprocessed as pairwise jobs. Before processing, the profiling datawere

manually examined for assessing the quality and the parameters for further processing and analysis. Colon cancer study A was already processed

and available in the XCMSOnline Public. The XCMS jobs were used for further meta-analysis in theMeta XCMS framework. P-value, intensity, and

ppm error settings are reported in Supporting Information Text S1.

4.4 Proteomics and transcriptomics data

Transcriptomics data were obtained from The Cancer Genome Atlas (TCGA)31 in the frame of a previous colon cancer study involving 22 sub-

jects (22 colon cancer tissue samples vs 22 paired normal tissues). Dysregulated genes were selected based on a P-value cut off of 0.01 and fold

change> 4. A total of 7138 dysregulated transcripts were included in the final data set for upload in the XCMSOnline as gene symbols. Proteomics

data were obtained by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), involving 90 patients affected by colon cancer (90 colon cancer

tissue samples and 90 paired normal tissues). Dysregulated proteins were filtrated by P-value < .01 and fold change > 2, obtaining a total of 2545

dysregulated proteins uploaded in the XCMSOnline as UniProt accession IDs for multiomic analysis.
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