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Abstract

Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. 

The SRS treatment planning process requires precise target delineation, which in clinical 

workflow for patients with multiple (>4) BMs (mBMs) could become a pronounced time 

bottleneck. Our group has developed an automated BMs segmentation platform to assist in 

this process. The accuracy of the auto-segmentation, however, is influenced by the presence of 

false-positive segmentations, mainly caused by the injected contrast during MRI acquisition. To 

address this problem and further improve the segmentation performance, a deep-learning and 

radiomics ensemble classifier was developed to reduce the false-positive rate in segmentations. 

The proposed model consists of a Siamese network and a radiomic-based support vector machine 

(SVM) classifier. The 2D-based Siamese network contains a pair of parallel feature extractors 

with shared weights followed by a single classifier. This architecture is designed to identify the 

inter-class difference. On the other hand, the SVM model takes the radiomic features extracted 

from 3D segmentation volumes as the input for twofold classification, either a false-positive 

segmentation or a true BM. Lastly, the outputs from both models create an ensemble to generate 

the final label. The performance of the proposed model in the segmented mBMs testing dataset 

reached the accuracy (ACC), sensitivity (SEN), specificity (SPE) and area under the curve 

(AUC) of 0.91, 0.96, 0.90 and 0.93, respectively. After integrating the proposed model into the 

original segmentation platform, the average segmentation false negative rate (FNR) and the false 

positive over the union (FPoU) were 0.13 and 0.09, respectively, which preserved the initial FNR 

(0.07) and significantly improved the FPoU (0.55). The proposed method effectively reduced the 

false-positive rate in the BMs raw segmentations indicating that the integration of the proposed 

ensemble classifier into the BMs segmentation platform provides a beneficial tool for mBMs SRS 

management.
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1. Introduction

Brain metastases (BMs) are diagnosed in up to 40% of cancer patients. Current data 

estimates that ~200,000 new patients develop BMs annually (Nayak et al., 2012; Langer 

and Mehta, 2005), and these numbers will continue to rise due to the advances in systemic 

therapy and improved primary cancer control (Barnholtz-Sloan et al., 2004). The treatment 

regimens for BMs include surgical resection, whole brain radiation therapy (WBRT) and 

stereotactic radiosurgery (SRS). Recently, SRS has become the standard for patients with 

1–3 BMs due to its efficacy and reduced toxicity (Sturm et al., 1987; Chang et al., 2009). 

Further, evidence from several clinical trials has demonstrated that for patients with multiple 

(>4) BMs (mBMs), compared to WBRT, SRS reduced the neurocognitive decline and 

improved quality of life (QoL) outcomes with no difference in overall survival (Thomas 

et al., 2014; Brown et al., 2016). Therefore, SRS is now increasingly favored for mBMs 

patients in the contemporary clinical practice.

High quality SRS treatment requires accurate target delineation for treatment planning as 

well as post-treatment follow-up. However, in the current clinical practice, BMs delineation 

is usually done manually by physicians, which can be very time-consuming especially for 

mBMs cases. Therefore, the automation of mBMs segmentation has become an urgent need 

in the clinic. Various algorithms have been proposed for this task recently. However, most 

algorithms cannot be directly applied into SRS for clinical applications either due to the 

requirement of imaging modalities or manual interactions (Geremia et al., 2012; Bagci et al., 
2013; Buendia et al., 2013; Bauer et al., 2013; Gordillo et al., 2013; Bousabarah et al., 2020; 

Rudie et al., 2021; Xue et al., 2020).

The T1-weighted MRI with Gadolinium contrast (T1c) sequence is the current clinical 

standard and the most used sequence for the BMs SRS simulation in many institutions. 

The benefit of the Gadolinium contrast is that tumors can present with high intensity, 

which helps the diagnosis and contouring process. Recently, our group has developed a 

convolutional neural network-based BMs segmentation platform using T1c images as the 

input (Liu et al., 2017; Yang et al., 2020), which can segment BMs with high sensitivity and 

segmentation accuracy compared to other related works (Cao et al., 2021; Charron et al., 
2018; Dikici et al., 2020). However, the false positive (FPs) contours in the segmentation 

are common due to intake of the contrast agent in cerebral vessels during the T1c MRI 

acquisition, as shown in Figure 1. Therefore, to further improve the performance and 

workflow automation without compromising the segmentation accuracy, a post-processing 

strategy is needed to reduce the FPs, which can be treated as a classification task separating 

true BMs and FPs in the auto-segmentation results.

Conventional classification approaches in the field of medical imaging usually utilize 

handcrafted feature together with suitable machine learning (ML) models. The most 

popular handcrafted features nowadays are radiomic features, referring to high-throughput 

quantitative features extracted from a large number of radiographic images (Nie et al., 
2016); and the commonly used ML methods include K-means clustering (Huang, 1998), 

support vector machine (SVM) (Cortes and Vapnik, 1995), random forest (RF) (Svetnik et 
al., 2003), etc. For instance, Zacharaki et al. (Zacharaki et al., 2009) proposed a support 
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vector machine recursive feature elimination (SVM-RFE) algorithm to distinguish different 

types of brain tumors, such as primary gliomas or BMs. Zhang et al. (Zhang et al., 2018) 

proposed a novel random forest approach for the classification of different types of high-

grade gliomas using T1-weighted MR images. These ML methods usually do not require 

high computational cost and have been proved to provide effective performance for medical 

image datasets.

In recent years, deep learning (DL)-based classification approaches are shown to be accurate 

and robust for medical image processing (Khoshdeli et al., 2017; Roth et al., 2015; Liu et 
al., 2019; Pan and Yang, 2009). The automatic feature learning performed by DL models 

effectively learns complicated patterns in the image data, thus no longer requiring manual 

feature extraction. Moreover, in recent studies, there is an emerging application of the 

Siamese network, whose architecture design can help to expand the richness of the dataset 

in a manner of pair-wise learning (Norouzi et al., 2012). Therefore, the Siamese network 

is considered to be powerful at discovering interclass differences and has been applied to 

a wide range of studies such as object tracking (Bertinetto et al., 2016), face recognition 

(Chopra et al., 2005), and other matching tasks (Perek et al., 2018), which can be essentially 

considered as classification problems. For example, in the applications of medical imaging 

field, Fu et al. (Fu et al., 2020) employed a Siamese network to classify and assess the 

viable and necrotic tumor regions in osteosarcoma. In addition, Liu et al. (Liu et al., 2019) 

proposed a Siamese network with a margin ranking loss for automated lung nodule analysis.

To solve the FP reduction problem, we proposed a deep learning and radiomics ensemble 

model to take advantage of both methods. The radiomic features are designed and calculated 

from 3D volumes to describe the geometry and texture characteristics, and the deep learning 

features are automatically extracted from the 2D images. These two approaches provide 

independent but complementary information to identify FPs.

2. Methods & Materials

2.1 Patient Data

This study was approved by the University of Texas Southwestern Medical Center review 

board. Two datasets were collected: one was for training/validating the FP reduction model, 

and the other was for testing the overall segmentation platform performance after the 

integration of the FP reduction model.

To prepare the dataset for training/validating the FP reduction model, we retrospectively 

identified and collected a total of 242 mBMs patients treated with Gamma Knife (GK) 

SRS. All patients had T1-weighted MRI with Gadolinium contrast (T1c) (TR=2260 ms, 

TE=3.4 ms, FA=8°, 256*256 acquisition matrix, 0.98 mm in-plane resolution, 1 mm slice 

thickness) available as the baseline for treatment planning. The BMs in the baseline MRIs 

were delineated by physicians as the ground truth contours. All MRI volumes were then 

segmented by a CNN-based BMs segmentation platform En-DeepMedic (Yang et al., 2020). 

As an embedded workflow prior to the segmentation, the platform first automatically 

preprocessed the input T1c MRI images which included the intensity normalization and 

resampling to 1 mm3 isotropic resolution. The segmentation results (raw segmentations) 
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were compared to the ground truth contours to identify FPs and true positive (TPs). In total, 

the raw segmentations contained 11890 volumes, among which 10832 volumes were FPs 

and 1058 volumes were TPs.

To test the segmentation platform after integrating the FP reduction model, a total of 10 

mBMs patient data were collected with similar data availability as the FP reduction dataset. 

Patients were chosen to have a wide range of BMs counts (11–69) to test the overall 

performance of the platform. Table 1 shows the demographic summary of patients enrolled 

into this dataset.

2.2 Model Design

As shown in Figure 2, the proposed FP reduction model, designed to classify FPs and 

TPs in the raw segmentation results, consists of two sub-models, a Siamese network-based 

classification model (branch (b) in Figure 2) and an SVM -radiomics model (branch (a) 

in Figure 2). The Siamese network-based model takes 2D images of the segmentation 

volumes as the input, next it generates a class label and a probability score along one 

cardinal axis, and then all three cardinal axes outputs are combined via majority voting. 

The SVM-radiomics model takes the radiomic features extracted from the 3D volumes with 

different dilations as the input and outputs a class probability score.

Note that the Siamese network-based model only takes BMs candidates that have the largest 

dimension < 10 mm. This threshold is designed for accommodating the size for the majority 

of BMs while satisfying consistent input size requirement of the deep learning network. We 

found more than 95% of the total raw segmentations of the collected data had the largest 

dimension <10 mm. This is not surprising since large number of mBMs clinically often 

manifest as small, and the BM candidates, mainly the contrast-agent-enhanced vessels, are 

also small in size.

Thus, in this FP reduction model, the segmentation candidates with size less than 10 mm 

will go through the Siamese network and SVM-radiomics ensemble model, in which the 

final classification is fused using outputs from both models with the fusion weighted by the 

corresponding area under the curve (AUCs). For the segmentation candidates with the size 

larger than 10 mm, only the SVM model will be utilized for the classification process.

2.2.1 Siamese Network Model

2.2.1.1 Methods: The proposed Siamese network model, as shown in Figure 3, consists 

of two consecutive modules. The first module is a feature extractor (green boxes in Figure 

3), which utilizes a pair of fine-tuned truncated ResNet50 structure as branches with shared 

weighs (He et al., 2016). Each branch starts with a single convolutional layer, followed by 

a series of residual blocks (Residual block 1 and Residual block 2) as shown in Figure 

3. The residual block 2 contains a 1*1 down-sampling convolutional layer added to the 

shortcut path to match the dimensions (He et al., 2016). This feature extractor enables the 

model to efficiently extract complex and representative high-level features from low-level 

image features. The second module is a classifier (red box in Figure 3), which uses three 

fully connected layers to convert the extracted high-level features to the final class label. 
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The entire Siamese network consists of two identical sub-network branches, and trains 

both branches conjointly. The updating of weight parameters is mirrored in both branches. 

Based on the output pair from these the two weight-shared branches, similarity or difference 

between the two inputs can be explored by implementing appropriate losses with the feature 

vector outputs.

To address the classification problem in raw BMs segmentations, we chose the contrastive 

loss together with this Siamese network design to investigate the differences between true 

BMs and FPs. Specifically, during the forward propagation process, these two parameter-

mirrored branches take a pair of images of the segmentation candidate as the inputs, and 

output the corresponding feature vectors, respectively. These two feature maps will be 

directly used to calculate the contrastive loss Lcontrastive measuring the similarity of the two 

feature maps:

Lcontrastive = ∑
i = 1

P
L W , Y , X1, X2

i , [1]

L W , Y , X1, X2
i = 1

2 1 − Y i d X1, X2
i 2 + Y i max 0, λ − d X1, X2

i 2
[2]

d X1, X2
i = F X1

i − F X2
i

2, [3]

where d(X1, X2)i is defined as the euclidean distance between the output feature maps F X1
i

and F X2
i  of the Siamese networks for the ith input pair X1

i  and X2
i . The latent variable is 

zero, Yi = 0, if the input pair (X1, X2)i have the same class; otherwise, it is one, Yi = 1. In 

addition, the margin λ is introduced to the Lcontrastive. Dissimilar input pairs that are beyond 

this margin will not contribute to the loss. The classifier will randomly pick one feature 

map to conduct TP/FP classification and calculate the cross-entropy loss LCE in the equation 

below, where lc is the ground truth label and pc is the probability of the cth class.

LCE = − ∑
c = 1

n
lclog pc , [4]

During the network training, the total loss is the weighted sum of these two complementary 

losses, the cross-entropy loss and the contrastive loss, plus an L2 regularization term R 
where w represents the corresponding weights of the model:

Ltotal = αLcontrassive + (1 − α)LCE + γR, [5]

R = wcontrassives 2
2 + wCE 2

2, [6]

Here, α and γ are weighting parameters. During the back propagation process, the 

Lcontrassive only affects the feature extractor, while the LCE affects the entire network. Those 
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two sub-networks update the parameters simultaneously. As a consequence of the Ltotal and 

the LCE formulations, the output of the feature extractor enables discovering the interclass 

differences.

2.2.1.2 Training Data Preparation: As described in the above session, the Siamese 

model only considers segmentation candidates with size less than 10 mm. Therefore, in 

total we collected 9038 segmentation volumes for the Siamese network, among which 8357 

volumes were FPs, and 681 volumes were TPs.

The proposed Siamese network takes advantage of the pre-trained ResNet50 structure, 

which has a required input size of 224*224*3. This 2D-based model requires moderate 

computational cost while providing benefits from parameters pre-trained with a large 

non-medical image dataset. To prepare the input, we identified all such candidates in 

the pre-processed MRI and cropped a square region of interest (ROI) with a size of 20 

mm in three consecutive slices at the center of the candidate volume which included 

the surrounding tissues. Therefore, the cropped ROI had a size of 20*20*3. Since the 

segmentation candidates were less than 10 mm, a 20 mm size ROI included the peritumoral 

edema, normal brain and other critical structures. Next, the cropped ROI images were 

resampled into 224*224*3 to meet the network input requirement. We used 10% of the 

dataset for testing, while 80% was utilized for training and 10% for validation.

In the training stage, the number of true BMs and FPs were highly imbalanced. For that 

reason, data augmentation was applied for true BMs in training and validation dataset by 

flipping (horizontal & vertical) and rotation. During the training process, two images were 

randomly selected as the paired input. If the first input candidate was a FP segmentation, 

then the probability of the second image to be a true BM was increased to 0.6. The final ratio 

in training and validation dataset was TP/FP = 7300/7348.

2.2.1.3 Model Training and Testing: The implementation of the proposed model was 

based on Pytorch library. To alleviate the amount of data requirement for the Siamese 

network, we adopted a transfer learning strategy and initialized the parameters of the feature 

extractor pair in the network by applying the parameters of the pre-trained ResNet 50. In 

addition, the “Xavier” algorithm was implemented for the parameter initialization of the 

classifier. The two hyper-parameters of the total loss function α, and γ are selected using the 

grid search.

The entire model was trained for 100 epochs with a batch size of 32 in a single NVIDIA 

RTX-2080ti GPU. And during the training process, we chose the Adam algorithm to update 

the model parameters with the initial learning rates as 1×10−3 in the feature extractor pair 

and 1×10−4 in the classifier.

In the testing stage, only half of the Siamese network architecture was utilized. Specifically, 

only one branch of the feature extractor was kept together with the classifier. Therefore, the 

model only takes one segmentation candidate as the input during testing. The single input 

candidate was processed through the single branch of the feature extractor following with 

the classifier to get the final prediction.
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Since the model only takes three slices of the 2D images as the inputs, which only contain 

information along a specific axis, we generated 2D inputs in all three axes (axial, coronal, 

and sagittal) and trained three Siamese models separately. The final classification of the 

Siamese network was generated by combining these three models via majority voting.

2.2.2 SVM-Radiomics Model—The SVM-radiomics model takes the radiomic features 

that are extracted from the 3D volume of interest (VOI) as the input. Prior to the radiomic 

feature extraction, four VOI masks were generated for each segmentation volume, including 

the masks of the original tumor and three ring-volume masks obtained by dilation of 3, 6, 

and 12 mm from the tumor boundary. The reason to include the dilated masks with different 

margins in the feature extraction was to include the sensitive regions like peritumoral edema. 

Figure 4 shows one example of the generated VOI masks, in which the red volume in (a) 

was the original tumor volume mask, the blue region in (b) was the 3 mm dilation margin 

mask, the green region in (c) was the 6 mm dilation margin mask and the pink region in (d) 

was the 12 mm dilation margin mask. Personalized skull-stripped brain masks were utilized 

to exclude the skull and outside brain regions in the dilation masks (Iglesias et al., 2011).

After the VOI mask generation, we extracted radiomic features for each segmentation 

subject with MATLAB program (Vallières et al., 2015). To ensure reliability and stability 

of the radiomic features, we utilized the pre-processed images generated from the platform 

for the extraction process, since they are intensity-normalized and have isotropic resolution. 

We first measured twelve morphological features with the original segmentation mask. 

The morphological features described the geometry-related characteristics of the VOI, thus, 

extracting morphological features with other dilated masks can be meaningless. Moreover, 

for each type of the dilated VOI masks, we extracted six first-order features and forty 

texture features from the pre-processed T1c MRI images. The first-order features measure 

the statistics of the intensity histogram within the VOI, and the higher order texture features 

measure the texture characteristics of the VOI derived from the gray-level co-occurrence 

matrix (GLCM), gray-level run-length matrix (GLRLM), and gray level size zone matrix 

(GLSZM), neighboring gray tone difference matrix (NGTDM), and gray level dependence 

matrix (GLDM). In total, 150 features were collected from both the tumor volume and the 

dilated regions surrounding the tumor volume. All features were normalized with z-scores 

normalization. Then a SVM was trained using all 150 normalized radiomic features to 

classify the segmented volumes as true BMs or FPs.

2.3 Evaluation

For the classification problem, model’s accuracy (ACC), sensitivity (SEN), specificity (SPE) 

and area under the curve (AUC) are the primary metrics to comprehensively evaluate the 

performance of a model. These evaluation metrics are defined as follows:

ACC = TP+TN
TP+TN + FP + FN , [7]

SEN = TP
TP+FN, [8]
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SPE = TN
TN+FP, [9]

AUC = ∑i ∈ pranki + P ∗ (P + 1)
P ∗ N , [10]

where TP, TN, FP, and FN denote the number of true positive, true negative, false positive, 

and false negative samples, respectively. P, N are the numbers of positive samples and 

negative samples, respectively. In addition, ranki is the rank of the ith positive example, and 

i ∈ p denotes the ith example from the positive sample. We applied the metrics above to 

evaluate the performance of the Siamese model, SVM model, and the ensemble model.

In addition, we integrated the developed FP reduction models into the BMs segmentation 

platform to improve the effectiveness of the auto-segmentation, and then tested the overall 

segmentation performance on ten individual patient data. Same as the evaluation method 

applied in our previous publication regarding the BMs segmentation platform (Yang et al., 
2020), the overall segmentation performance was evaluated by the following metrics, false-

negative rate (FNR) and false-positive over Union (FPoU), before and after the false-positive 

reduction process:

FNR = Number of false negative Autosegmentation
Total number of groudtrutℎ , [11]

FPoU = Number of false positive Autosegmentation
Autosegmentation ∪ Groundtrutℎ , [12]

3. Results

Since the proposed ensemble model was built upon the Siamese model and the SVM-

radiomic model, in this session the individual performance of both models will be presented 

first followed by the results of the combined ensemble model.

To test the proposed ensemble FP reduction models, we used a testing set of 1074 BMs 

raw segmentations from the FP reduction dataset, in which 70 were true BMs and the 

other 1004 were FP segmentations. No data augmentation was applied in the testing set. 

The testing dataset did not contain any segmentation candidates with size larger than 10 

mm as the Siamese network only takes candidates with size less than 10 mm. For each 

model, a confusion matrix was recorded during the testing stage. In addition, as mentioned 

in session 2.1, a total of 10 mBMs patient were collected to test the overall performance 

after integrating the ensemble FP reduction model with the segmentation platform. For this 

dataset, the candidates included all raw segmentations regardless of size.

3.1 Siamese Network Model

Since the proposed Siamese network only takes three slices of the 2D images as the input, 

we separately trained three Siamese models using 2D image inputs from axial, coronal, 
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and sagittal planes with one model for each plane. The predictions from all three models 

were then combined through majority voting to generate a final label. Figure 5 shows the 

confusion matrix of each model, where (a), (b) and (c) correspond to the models trained 

with the coronal, sagittal and axial images, respectively, and (d) is the result generated by 

majority voting from all three models. In the confusion matrix, class 0 represents the FPs, 

and class 1 represents the true BMs segmentations. It was found, see Figure 5, that the 

majority voting provided the best performance compared with models trained in a specific 

plane.

As mentioned in the section 2.3, we also employed four commonly used metrics for 

the performance comparison: accuracy (ACC), sensitivity (SEN), specificity (SPE) and 

area under the curve (AUC). Table 2 lists the detailed performance of all these above 

4 Siamese network models. In this table, Siamese_cor, Siamese_sag, and Siamese_axial 

represent the models trained using coronal, sagittal and axial images, respectively, while 

Siamese_majority corresponds to the model combining predictions of each cardinal plane 

via majority voting. It was found that the majority voting model had the best performance 

compared to the individual models trained with images from a specific plane.

3.2 SVM-Radiomics Model

Figure 5(e) shows the confusion matrix of the SVM-radiomics model for the testing dataset. 

In addition, the corresponding ACC, SEN, SPE, and AUC were 0.92, 0.80, 0.93, and 0.92, 

respectively.

3.3 Ensemble Model

Figure 5(f) presents the final performance of the ensemble FP reduction network. Table 2 

shows the detailed evaluation scores of the above models. The proposed ensemble model 

had the best AUC among all the models. In addition, both the sensitivity and specificity of 

the ensemble model were above 0.9, thus providing a more balanced FP reduction results 

compared with the other models.

3.4 Performance of BMs segmentation platform with the FP reduction model

The overall BMs segmentation platform performance was tested with ten testing patients. 

First, the baseline segmentation performance was established without any FP reduction 

process, and then the data was processed with the platform integrated with the ensemble FP 

reduction model. In addition, to demonstrate the effectiveness of the ensemble FP reduction 

model, we also compared the performance with a simple FP reduction approach using 

geometric sphericity metric as the removal threshold. Table 3 lists the platform performance 

for these ten patients before and after post-processing, where “Org-” represents the raw 

results generated by the segmentation algorithm, and “-Geo” indicates post-processing using 

geometric threshold to update segmentation results, and “-ES” indicates the proposed FP 

reduction ensemble models.

From formula [10]-[11]: the smaller values of FPoU and FNR, the better performance. 

Among these ten patient cases, the proposed ensemble model can help reduce the FPoU 

from 0.55±0.25 to 0.09±0.04, while keeping the FNR around 0.1. This means that the 
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ensemble network can help effectively remove the FP segmentations in the platform without 

sacrificing the true BMs segmentations.

As indicated in Figure 2, for large BMs, i.e., with size larger than 10 mm, only the SVM-

radiomic model was used for the FP/true BM classification. Figure 6 shows the confusion 

matrix of the classification result for large BMs (d >10 mm) for ten patient cases. The 

corresponding ACC, SEN, SPE, and AUC were 0.97, 0.95, 0.97, and 0.98, respectively.

4. Discussion

The BM segmentation platform for SRS applications provided promising segmentation 

accuracy (Yang et al., 2020; Liu et al., 2017). However, the T1c MRIs utilized in the 

platform with the injected contrast agents can cause the vessels to become bright in the 

images causing FPs as shown in Figure 1. Two possible approaches were considered to 

tackle this issue. The first choice was to modify the segmentation algorithm to reduce 

the generation of FPs at the segmentation stage, and the other choice was to add a post-

processing step after the segmentation to reduce the FP volumes. Since our original BMs 

segmentation platform can detect BMs with high sensitivity and segment BMs volumes 

with high segmentation accuracy, the second approach was preferred to assist the overall 

segmentation workflow.

In our initial investigation, we had implemented simple post-processing strategies for the 

raw segmentation results (Yang et al., 2020; Liu et al., 2017). The BMs segmentation 

algorithm is sensitive to intensity variations in the T1c images, causing the FP volumes to 

be more likely to occur in certain anatomical regions such as the superior sagittal sinus. 

However, utilizing anatomical masks in the removal process introduces extra steps and 

additional uncertainty as it requires supplementary segmentation of the brain structures to 

generate a personalized mask (Chen et al., 2019). As an alternative approach, we adopted the 

sphericity metric calculated by the contoured volume, the radius and the axis ratio of volume 

as the thresholds to remove the FPs. The underlying idea was that the BMs usually resemble 

rounded objects, whereas the segmented sinuses present more irregular shapes. In particular, 

the FP volume was removed if its sphericity was smaller than the desired threshold, or the 

axis ratio was larger than the desired threshold. However, this approach requires additional 

user interaction, since the physicians need to test different numbers to find out the best 

personalized variables to rule out most of the FPs, which is not efficient for the clinical 

application.

Over the past decades, the Siamese networks using CNNs contributed significantly to the 

progress made in natural language processing, recognition, and classification tasks (Rubin 

et al., 2019; Rao et al., 2017). The Siamese network’s dual branch architecture design 

in combination with the contrastive loss can benefit the classification task by exploiting 

the inter-class differences. We chose the Siamese network architecture to solve our FP 

reduction problem since the geometry characteristics of the segmentation candidates as 

well as their surrounding tissue can provide important information for the classification 

problem. However, considering the computational cost, the Siamese model we proposed 

takes 2D image as the input instead of 3D volumes. Therefore, we generated 2D inputs 
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from three cardinal planes to train three different models and then combined the outputs via 

majority voting to obtain the classification results, which takes more texture information into 

consideration for classification tasks. Figure 5 shows the classification results of these three 

models and the majority voting model in the confusion matrix. Among these three models 

of different planes, the model with axial images as the input had the best performance. 

This might be due to the original T1c acquisition being in the axial plane, which can 

thus provide the best consistent quality of information among these three planes. Overall, 

the majority voting model provided the best performance among these four models as it 

integrates information from the three different planes.

The traditional machine learning methods combined with radiomic hand-crafted features 

have been widely used in many classification studies, and these approaches can provide 

satisfying performance in many tasks with small computational cost (Jordan and Mitchell, 

2015). In this study, we chose the SVM model combined with radiomics features. The 

model we proposed to solve FPs reduction problem was designed using both the Siamese 

network and the radiomic-based SVM model. The radiomic features were directly calculated 

from 3D volumes capturing geometry and texture features in a relatively large VOI 

without much computational cost, while the Siamese network extracted deep learning 

features from the 2D images in specific planes and in a relatively smaller ROIs to keep 

computational cost manageable. Therefore, our proposed ensemble model takes advantages 

of the complementary information and balanced computational cost of these two models.

Figure 5 shows the confusion matrix of the radiomic model, majority voting based Siamese 

model and the ensemble model, and Table 2 listed their corresponding evaluation matrix 

including ACC, SEN, SPE and AUC. It was found that the radiomic SVM approach 

can greatly detect the FP segmentations, but the sensitivity was not satisfying compared 

with the Siamese model. The proposed ensemble model are shown to have the best AUC 

performance with a balance between sensitivity and specificity. In clinical practice, missing 

true BMs requires detailed inspection and additional manual contouring, while removing FP 

segmentation would be easier as it simply requires deleting selected structures. Therefore, 

the sensitivity of the FP reduction tasks can be weighted more than the specificity when 

the overall accuracy and AUC performance are relatively close among different models. The 

proposed ensemble model is thus preferred in this problem setting.

As shown in Table 3, we tested ten patient cases after integrating the FP reduction model 

into the segmentation platform. The original segmentation results have an average FPoU of 

0.55±0.25 and FNR of 0.07±0.07, which indicates the platform can segment almost all BMs. 

After the FP reduction process, the FPoU can be effectively reduced to 0.09±0.04, indicating 

most of the FP segmentation can be removed, while the FNR can still be kept at 0.13±0.08 

to maintain the achieved sensitivity.

The effectiveness of the proposed ensemble model was compared to our previous approach 

which utilized the geometry threshold metrics to remove the FPs for the above mentioned 10 

patient cases. In particular, we implemented the following threshold criteria for all 10 patient 

cases: sphericity larger than 0.6, axis ratio smaller than 1.6, and radius larger than 2 mm. 

These numbers were the default values for the removal thresholds in our platform, which 
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were statistically defined by analyzing the distribution of all BMs contours from 242 mBMs 

patients. Users can also personalize these thresholds for each patient case, but in this study, 

we only applied the default values as the baseline to compare with the proposed ensemble 

model. The results are listed in Table 3. We found that the ensemble model can improve the 

FPoU to 0.09±0.04 and FNR to 0.13±0.08, while the original geometric threshold approach 

with default settings provided the FPoU of 0.19±0.11 and FNR of 0.29±0.12.

In our proposed ensemble model, we mainly focused on the segmentation candidates with 

size smaller than 10 mm since the FP segmentations caused by vessels are often small. 

As introduced in Figure 2, for segmentations larger than 10 mm, only the SVM model 

was used in our workflow since the radiomic features take the geometry information into 

consideration by design. In figure 6 we presented the performance of the SVM model for 

large segmentation candidates for 10 patient cases. It was found that the SVM model was 

effective to classify the large segmentation candidates.

The limitation of this study was that the FP reduction model only relied on a single 

modality MRI, i.e., the T1c MRI. A possible improvement direction is to add other MRI 

modalities, such as vessel suppression sequences (Wang et al., 2010), which could provide 

multi-modality information in separating the true lesion from the FPs. In addition, the entire 

segmentation platform including the segmentation model and the FP reduction model were 

trained on data from a single institution and single modality. Therefore, for the future 

application in clinic, the generalization problem of this model needs to be taken into 

consideration.

5. Conclusion

In this study, we developed an ensemble model combining the Siamese network with 

radiomics for false-positive BMs segmentation reduction. The proposed method can 

effectively reduce the false-positive rate of the raw segmentation candidates. The integration 

of the FP reduction models with the BMs segmentation platform can improve the efficiency 

of the SRS treatment planning and provide beneficial tool for an improved mBMs SRS 

workflow.
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Figure 1. 
Examples of the segmentation results shown in red contours. The segmentations pointed to 

by yellow arrows are FPs. The blue arrow indicates the missed BM by segmentation. And 

the segmented true BMs are indicated by the green arrows.

Yang et al. Page 15

Phys Med Biol. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Workflow of the false-positive reduction process
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Figure 3. 
Architecture of the Siamese network for FP reduction
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Figure 4. 
Example of the VOI masks used for radiomic feature extraction: (a) the original tumor 

volume mask, (b) 3 mm dilation from the tumor boundary mask, (c) 6 mm dilation from the 

tumor boundary mask, (d) 12 mm dilation from the tumor boundary mask
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Figure 5. 
Confusion matrix of all tested models: the Siamese network model trained with (a) coronal, 

(b) sagittal and (c) axial images, and (d) majority voting from the above 3 models; (e) 

the SVM model using radiomics feature; (f) the proposed ensemble FP reduction model 

combining SVM with Siamese model. FP represents the false-positive segmentations, and 

BMs represents the true brain mets segmentations.

Yang et al. Page 19

Phys Med Biol. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
The confusion matrix of the SVM-radiomic model for large BMs (d >10mm) for 10 patient 

testing cases. FP represents the false-positive segmentations, and BMs represents the true 

brain mets segmentations.

Yang et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2023 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Yang et al. Page 21

Table 1

The demographic summary of patient cohort

Characteristic Value

Number 10

Mean age [years] 60.5±8.1

Sex:

 Male 6

 Female 4

No. of lesions diagnosed 38 ± 24
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Table 2

Detailed performance of all tested models. Siamese_cor, Siamese_sag, and Siamese_axial represent the 

models trained with coronal, sagittal and axial views respectively, and Siamese_majority is the model 

representing majority voting. SVM-radiomic represents the SVM model utilizing only radiomic features, and 

the ensemble model combines the SVM-radiomics and Siamese models.

Models ACC SEN SPE AUC

Siamese-network models

Siamese_cor 0.83 0.94 0.83 0.89

Siamese_sag 0.86 0.97 0.85 0.91

Siamese_axial 0.87 0.97 0.86 0.92

Siamese_majority 0.88 0.97 0.88 0.93

SVM-Radiomics model 0.92 0.80 0.93 0.92

Ensemble model 0.91 0.96 0.90 0.93
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Table 3

The segmentation platform performance on 10 individual patient cases comparing raw segmentations), post-

processing by geometric threshold FP reduction (-Geo), and post-processing by the ensemble FP reduction 

model (-ES).

Patient Number 
of BMs

Number 
of TP-
Org

Number 
of FP-
Org

Number 
of TP-
Geo

Number 
of FP-
Geo

Number 
of TP-
ES

Number 
of FP-
ES

FNR-
Org

FPoU-
Org

FNR-
Geo

FPoU-
Geo

FNR-ES FPoU-ES

1 11 9 48 7 10 8 6 0.18 0.81 0.36 0.17 0.27 0.11

2 61 60 84 49 34 54 14 0.02 0.58 0.20 0.23 0.10 0.10

3 69 69 74 34 12 63 13 0.00 0.52 0.51 0.08 0.09 0.09

4 12 12 96 8 40 12 12 0.00 0.89 0.33 0.37 0.00 0.11

5 44 44 106 39 44 41 19 0.00 0.71 0.11 0.29 0.07 0.13

6 55 51 13 33 9 49 3 0.07 0.19 0.40 0.13 0.11 0.04

7 58 52 8 41 8 47 2 0.10 0.12 0.29 0.12 0.19 0.03

8 11 10 26 9 12 9 5 0.09 0.70 0.18 0.32 0.18 0.14

9 11 9 15 8 3 9 2 0.18 0.58 0.27 0.12 0.18 0.08

10 43 41 33 34 5 39 4 0.05 0.43 0.21 0.07 0.09 0.05

Mean 38±24 36±23 50±37 26±26 18±15 33±21 8±6 0.07±0.07 0.55±0.25 0.29±0.12 0.19±0.11 0.13±0.08 0.09±0.04
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