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Abstract

As a result of cross-species transmission in December 2019, the coronavirus disease 2019 (COVID-19) became a serious
endangerment to human health and the causal agent of a global pandemic. Although the number of infected people has
decreased due to effective management, novel methods to treat critical COVID-19 patients are still urgently required. This
review describes the origins, pathogenesis, and clinical features of COVID-19 and the potential uses of mesenchymal stem
cells (MSCs) in therapeutic treatments for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients.
MSCs have previously been shown to have positive effects in the treatment of lung diseases, such as acute lung injury, idi-
opathic pulmonary fibrosis, acute respiratory distress syndrome, lung cancer, asthma, and chronic obstructive pulmonary
disease. MSC mechanisms of action involve differentiation potentials, immune regulation, secretion of anti-inflammatory
factors, migration and homing, anti-apoptotic properties, antiviral effects, and extracellular vesicles. Currently, 74 clinical
trials are investigating the use of MSCs (predominately from the umbilical cord, bone marrow, and adipose tissue) to treat
COVID-19. Although most of these trials are still in their early stages, the preliminary data are promising. However, long-
term safety evaluations are still lacking, and large-scale and controlled trials are required for more conclusive judgments
regarding MSC-based therapies. The main challenges and prospective directions for the use of MSCs in clinical applications
are discussed herein. In summary, while the clinical use of MSCs to treat COVID-19 is still in the preliminary stages of
investigation, promising results indicate that they could potentially be utilized in future treatments.

Keywords Coronavirus disease 2019 (COVID-19) - Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) -
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Introduction

In December 2019, there was a global outbreak of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
known as the coronavirus disease 2019 (COVID-19) [1, 2].
Cross-species transmissions lead to the outbreak, which was
found to seriously endanger human health [3, 4]. The main
routes of transmission were identified as respiratory drop-
lets, direct contact, fecal—oral, mother-to-child, and aerosols
[5, 6]. On March 11, 2020, the WHO issued an early warn-
ing of the global spread of COVID-19 and increased the
impact level from epidemic to “global pandemic” [7]. As of

4 Charlie Xiang
cxiang @zju.edu.cn

State Key Laboratory for Diagnosis and Treatment

of Infectious Diseases, National Clinical Research Center
for Infectious Diseases, Collaborative Innovation Center
for Diagnosis and Treatment of Infectious Diseases,

The First Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang,
People’s Republic of China

Department of Respiratory Disease, Thoracic Disease

Centre, The First Affiliated Hospital, College of Medicine,
Zhejiang University, Hangzhou 310003, Zhejiang,
People’s Republic of China

Central Laboratory, The First Affiliated Hospital, College
of Medicine, Zhejiang University, Hangzhou 310003,
Zhejiang, People’s Republic of China

November 17, 2021, over 253, 640, 000 cases of COVID-
19 infection and 5, 104, 899 subsequent deaths were con-
firmed worldwide (https://www.who.int/emergencies/disea
ses/novel-coronavirus-2019). Due to the suddenness of the
outbreak, there were no effective antiviral drugs available
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to immediately eliminate COVID-19. Furthermore, to date,
effective control using drugs has not yet been achieved and is
thus still in development. Although the spread rate of SARS-
CoV-2 infections was initially controlled, new cases and
mortality rates are still increasing globally. Of the reported
COVID-19 cases globally, 13.8% were classified as severe,
6.1% were critical, and 2.3% were fatal [8, 9]. Therefore, the
development of effective treatments for COVID-19 remains
imperative.

Of the great efforts made worldwide to control COVID-
19 [10, 11], vaccine research has clearly been important
in controlling infection rates [12—17]. Initially, Zhu et al.
[18] and Folegati et al. [19] reported that in human clinical
trials the COVID-19 vaccine had acceptable safety, toler-
ance, immunogenicity, and efficacy. Many other organiza-
tions then quickly developed effective vaccines, such as
the BNT162 mRNA vaccine sponsored by Pfizer Inc. and
BioNTech SE [20-22], the adenovirus ChAdOx1 nCoV-19
(AZD1222) vaccine sponsored by AstraZeneca in the United
Kingdom [23, 24], the mRNA-1273 vaccine co-sponsored
by Moderna, Inc. and the National Institute of Allergy and
Infectious Diseases of the United States of America [25,
26], the recombinant NVX-CoV2373 vaccine developed by
Novavax, Inc. in the United States of America [27, 28], the
recombinant Sputnik V vaccine co-sponsored by Gamaleya
Research Institute of Epidemiology and Microbiology and
the Health Ministry of the Russian Federation of Russia
[29], the recombinant adenovirus type-5 (AdS) vectored
vaccine co-developed by the CanSino Biologics Inc. and
Beijing Institute of Biotechnology of China [18, 30], the
inactivated vaccine (BBIBP-CorV) sponsored by the Beijing
Institute of Biological Products Company Limited of China
[31, 32], the inactivated vaccine (CoronaVac) sponsored by
Beijing Sinovac Life Sciences of China [33, 34], and the
inactivated vaccine (BBV152) sponsored by Bharat Bio-
tech International Limited, the Indian Council of Medical
Research, and the National Institute of Virology of India [35,
36]. Clinical research results found that these vaccines were
safe and effective [21, 22, 26, 28-30, 36], and some were
mass produced for practical application. To date, billions
of people have now been vaccinated for COVID-19, and
the data continue to show that they are safe without seri-
ous negative side effects [37, 38]. All approved COVID-19
vaccines will continue to be monitored for long-term safety.
Furthermore, some drugs (such as remdesivir, favipiravir,
and dexamethasone) have also shown positive preliminary
results in randomized, controlled, open-label clinical trials
[39-41]. However, there are currently no specific drugs for
the treatment of COVID-19, and consequently, novel meth-
ods to treat SARS-CoV-2 are urgently required.

Mesenchymal stem cells (MSCs) have the capacity to
self-renew and differentiate, and MSC-based therapies have
received much attention in both basic medicine and clinical
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research [42—-45]. MSCs can be acquired from most human
tissues, including but not limited to, bone marrow (BM),
adipose tissue (AD), umbilical cord (UC), Wharton’s jelly
(W1J), peripheral blood, menstrual blood, placenta, endo-
metrium, amniotic membrane, amniotic fluid, fetal, dental
pulp, urine, liver, lung, spleen, intestine, muscle, and syn-
ovium [46-50]. MSC-based therapies mainly rely on their
self-renewal ability, pluripotent differentiation, low immuno-
genicity, anti-inflammatory function, and a homing ability to
damaged tissues [51-55]. Importantly, MSCs have a unique
immuno-regulation mechanism for mediating innate and
adaptive immune responses [56, 57]. An increasing num-
ber of clinical studies have shown great promise in various
diseases through the transplantation of MSCs [42, 58-60].
Wilson et al. used allogeneic MSCs in patients with acute
respiratory distress syndrome (ARDS) and found no adverse
reactions, such as hypoxemia, arrhythmia, and ventricular
tachycardia, and also showed good therapeutic effects [61].
Our group reported that menstrual blood-derived MSC
implantation significantly reduced the mortality of ARDS
patients induced by the influenza A (H7N9) pandemic [62].
Angiotensin-converting enzyme 2 (ACE2) has been verified
as a receptor by which SARS-CoV-2 enters target cells [63,
64]. Interestingly, researchers have shown that MSCs do not
express ACE2 and are resistant to SARS-CoV-2 infection
[65, 66]. Therefore, MSC-based treatments may be promis-
ing for patients with COVID-19, especially those in which
the disease is classified as severe or critical.

This review focuses on the potential mechanisms of
MSCs and clinical studies using MSC transplantation for
the treatment of COVID-19. The aim is to improve under-
standing of the current MSC-based treatments for COVID-
19 and provide guidance for their further applications in
clinical medicine.

Epidemiology of COVID-19
Origins of SARS-CoV-2

Since the beginning of the twenty-first century, three
coronaviruses have crossed the species barrier and been
transmitted from animals to humans. These viruses
include severe acute respiratory syndrome coronavirus
(SARS-CoV), Middle East respiratory syndrome coro-
navirus (MERS-CoV), and SARS-CoV-2 [67, 68], all of
which can cause fatal lung damage. Human-to-human
transmission of SARS-CoV, MERS-CoV, and SARS-
CoV-2 mainly occurs through respiratory droplets when
an infected person coughs/sneezes/talks [69]. The newly
discovered coronavirus, SARS-CoV-2, is an encapsulated,
positive sense, single-stranded RNA virus that causes
global fulminant infections [70, 71]. SARS-CoV-2 is in
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the Sarbecovirus subgenus of the f-coronavirus genus.
According to genome comparisons, the similarity between
SARS-CoV and SARS-CoV-2 at the nucleotide level is
approximately 79% [72]. SARS-CoV and MERS-CoV
viruses are thought to originate from bats, while civet cats
and dromedaries are intermediate hosts of SARS-CoV and
MERS-CoV, respectively, which cause zoonotic transmis-
sion [73, 74]. Preliminary epidemiological investigations
have shown that the source infection for SARS-CoV-2 can
be traced back to a live seafood wild animal market [75].
Genome sequence analysis showed that SARS-CoV-2 was
very similar to a bat coronavirus (approximately 96% iden-
tical), and it is considered that SARS-CoV-2 may have
been transmitted to humans through bats [72, 76, 77].

Origin of SARS-CoV-2

Pangolin

Spike glycoprotein

Envelope protein

Structure of SARS-CoV-2

Fig. 1 Basic characteristics and entry of SARS-CoV-2 into the host
pneumocyte. a Bats and pangolins are thought to be two of the inter-
mediate hosts of SARS-CoV-2, however, further investigation is
required to identify other intermediate hosts. SARS-CoV-2 binds to
ACE2 through the spike glycoprotein on the surface of the virus and
the spike protein of SARS-CoV-2 is activated by TMPRSS2. The
pulmonary alveoli are infected with SARS-CoV-2, leading to injury

Transmission

Membrane glycoprotein

Nucleocapsid protein

Interestingly, Lam et al. found several speculative pango-
lin coronavirus sequences that were 85.5-92.4% similar
to SARS-CoV-2 [78]. Additional studies have shown that
there are a variety of Malayan pangolin (Manis javanica)
coronavirus lineages similar to SARS-CoV-2 genes, fur-
ther supporting the hypothesis that pangolins are potential
intermediate hosts [78, 79]. Recently, researchers discov-
ered that minks, cats, and dogs are also sensitive to SARS-
CoV-2 [80-82], but whether they are intermediate hosts
requires further investigation. While bats and pangolins
are currently considered to be the intermediate hosts of
SARS-CoV-2 (Fig. 1a), further investigation is required
to identify the exact source and other intermediate hosts.

Variation
L ®

Human

ACE2 Y % TMPRSS2

seeew

Type II pneumocyte

g

Injured Type I pneumocyte

Acute lung injury, acute respiratory distress syndrome,
severe pneumonia, severe hypoxemia, septic shock, and
even multiple organ failure.

of the type II pneumocyte. This can lead to acute lung injury, acute
respiratory distress syndrome, severe pneumonia, severe hypox-
emia, septic shock, and even multiple organ failure. b SARS-CoV-2
consists of the spike glycoprotein, envelope protein, membrane gly-
coprotein, and nucleocapsid protein. The RNA contains the genetic
information that is passed to the next generation of virions which sub-
sequently infect other host cells
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Pathogenesis of COVID-19

By infecting human bronchial epithelial cells, lung cells,
and upper respiratory tract (URT) cells, SARS-CoV-2 can
develop into a serious life-threatening respiratory disease,
resulting in severe ARDS and permanent lung injury [70,
83]. Studies have found that the host receptor by which
SARS-CoV-2 enters is the same as the host receptor for
ACE2 [84]. SARS-CoV-2 consists of a spike glycoprotein,
membrane glycoprotein, envelope protein, and nucleocapsid
protein (Fig. 1b). SARS-CoV-2 binds to ACE2 through the
spike glycoprotein on its surface (Fig. 1a, b), which can be
modulated by transmembrane protease serine 2 (TMPRSS2)
[85-87]. The symptoms of COVID-19 are generally divided
into three stages: (1) the asymptomatic stage, which lasts
for one to two days after infection, during which the virus
attaches to the ACE2 receptor and starts to replicate. Innate
immunity is lacking at this stage. (2) The URT infection
stage, during which the virus migrates into the respiratory
tract, triggering innate immunity. For most SARS-CoV-2
infected people, the infection is limited to URT. (3) The third
and final stages involves ARDS and hypoxia, as the virus
stresses and damages the alveoli. The alveoli release inter-
feron (IFN), which sends signals to nearby unaffected cells
to release antiviral peptides. These signal peptides cause
resistance to the virus, and damaged cells release damage-
associated molecular patterns, pathogen-associated molecu-
lar patterns, and secrete a series of cytokines that activate
the innate immune response [88]. Macrophages respond to
these signals by releasing more inflammatory factors, caus-
ing fluid filling between the capillaries and alveoli. In the
process of killing the virus, neutrophils are recruited to
the site of infection, possibly damaging healthy lung cells.
During this period, the surfactants present in the alveoli are
reduced. Phagocytes also release inflammatory cytokines,
such as interleukin (IL)-1, IL-2, IL-6, IL-8, IL-12, tumor
necrosis factor (TNF)-a, granulocyte colony-stimulating
factor (G-CSF), transforming growth factor-pf1 (TGF-p1),
and monocyte chemoattractant protein-1 (MCP-1), which
can cause an inflammatory response and subsequent lung
infections [89, 90]. These cytokines also lead to increased
levels of procoagulants.

Clinical features of COVID-19

The most significant feature of the disease is its heterogeneity,
as it ranges from asymptomatic infections to inducing critically
ill symptoms [91, 92]. The incubation period of COVID-19 is
calculated to be two weeks, and the median time is thought
to be 4-5 days [1, 93]. A research report showed that 97.5%
of COVID-19 patients developed symptoms within 11.5 days
of SARS-CoV-2 infection [94]. Autopsy results have shown
micro-thrombosis in multiple organ systems, such as the lung,
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heart, and kidney, which indicates that thrombosis precedes
multiple organ dysfunction in severe cases [95]. Xu et al. found
that patients with severe COVID-19 had respiratory failure
and acute bilateral lung infiltration [96]. Hariri et al. further
compared SARS-CoV-2 with SARS-CoV and HINI1 influenza
and found that 88% of COVID-19 patients had acute diffuse
alveolar damage, which is comparable to HIN1 (90%) and
SARS (98%). Pulmonary micro-thrombosis was reported in
57%, 58%, and 24% of the SARS-CoV-2, SARS-CoV, and
HINI infected patients, respectively [97]. In short, the main
symptoms of COVID-19 include fever, headache, dry cough,
chest tightness, sore throat, adverse gastrointestinal reactions,
abdominal pain, diarrhea, hypoxemia, systemic muscle and
joint aches, nasal congestion, rhinorrhea, liver damage, acute
lung injury (ALI), metabolic acidosis, conjunctival congestion,
ARDS, and severe pneumonia [98—100].

Main treatment strategies for COVID-19

Researchers are continuing to explore various methods to
treat COVID-19. At present, large-scale drug screening, in-
depth exploration of viral pathogenesis, application of rapid
detection kits, and anti-inflammatory and antiviral therapies
have been widely applied to prevent further spread of the dis-
ease [20, 56, 101, 102]. Extracorporeal membrane oxygena-
tion (ECMO) is an invasive mechanical ventilation strategy
mainly used to support continuous external breathing and
circulation in critically ill patients with critical cardiopulmo-
nary failure [103]. However, these devices are often expensive,
and resources of ECMO are limited globally. It is urgent that
effective treatments to reduce mortality and improve clinical
outcomes are developed, especially for severe and critically ill
patients. The main measures to alleviate COVID-19 in patients
(especially severe patients) include: (1) plasma therapy for
convalescent patients; (2) antiviral drug therapy; (3) immune-
mediated therapy; (4) glucocorticoid therapy; (5) inhibition of
the binding of human cell surface receptor ACE2 protein to the
virus; (6) inhibition of key enzymes in the virus; (7) metabolic
support and nutrition therapy; (8) stem cell therapy; (9) inte-
grated Chinese and Western medical therapies; (10) probiotic
therapy; (11) artificial liver therapy; and (12) lung transplanta-
tion [104—-112]. In addition, blood purification systems have
also been investigated. These studies speed up the screening of
effective drugs to prevent mild cases of the disease from devel-
oping into severe cases, and improve the treatment regimens
for severe and critically ill COVID-19 patients.
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Underlying mechanisms of the MSCs used
to treat COVID-19

Rapid developments in regenerative medicine have led sci-
entists to study and isolate MSCs from different human tis-
sues, and they have been utilized for a variety of purposes
such as the repair of lung tissues [113—-115]. MSCs can be
utilized to treat many common lung diseases, such as ALI
[116-118], idiopathic pulmonary fibrosis [119-121], ARDS
[122—-124], lung cancer [125-127], asthma [128, 129], and
chronic obstructive pulmonary disease (COPD) [130, 131].
A schematic diagram of this process is shown in Fig. 2.

Early reports indicated that MSCs could be used to treat
various lung diseases by promoting repair and regulating
inflammation in the lung [132—-134]. While there are differ-
ences in the mechanism of different lung diseases, MSCs
have shown positive effects in preclinical studies. Recently,
clinical studies have found that the cytokine profile of
COVID-19 patients undergoes great changes after treatments
with MSCs [135-138], which may lead to immune imbal-
ances and multiple lung dysfunctions. The main mechanisms
of action for MSCs in the treatment of COVID-19 are shown
in Fig. 3.

Differentiation potential

Under certain conditions, the addition of special induc-
ing factors can guide MSCs to differentiate into nerve,
muscle, and epithelial cells, thus proving their differentia-
tion potential into endodermal and neuro-dermal tissues
[139]. Previous studies have shown that MSCs may have
the ability to transdifferentiate into alveolar epithelial cells
[115, 140]. Furthermore, transplanted MSCs were found
to differentiate into respiratory epithelial cells to compen-
sate for the functional alveolar epithelial cell barrier in
diseased tissues and improve local damage. Recently, Liu
et al. induced the differentiation of hUC-MSCs into type
2 alveolar epithelial cells and transplanted differentiated
cells into pulmonary fibrosis mice. They found that dif-
ferentiated cells could reduce the mortality of bleomycin-
induced pulmonary fibrosis mice [141]. Therefore, it was
determined that MSCs could be applied to treat various
lung diseases, including lung injury and inflammation
caused by SARS-CoV-2 infection, due to their potential
to differentiate into alveolar epithelial cells.

Placenta Uterus
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BM AD uc Menstrual blood Lung Dental pulp wJ
lEnlarge culture
Application for lung diseases in pre-clinical stuides
Acute lung injury IPF ARDS Lung cancer Asthma COPD

Fig.2 MSC-based therapies for pre-clinical studies in lung diseases.
MSCs can be obtained from most human tissues, including bone mar-
row (BM), adipose tissue (AD), umbilical cord (UC), Wharton’s jelly
(WJ), menstrual blood, placenta, dental pulp, and lung. MSCs can

treat many lung diseases, such as acute lung injury, idiopathic pulmo-
nary fibrosis (IPF), acute respiratory distress syndrome (ARDS), lung
cancer, asthma, and chronic obstructive pulmonary disease (COPD)
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Fig.3 The main mechanisms
of action for MSCs in the treat-
ment of COVID-19. The main
mechanisms by which MSCs
exert their effect in the treat-
ment of lung-related diseases
is through their differentiation
potential, immune regulation,
secretion of anti-inflammatory
factors, migration and hom-
ing, anti-apoptotic properties,
antiviral effects, and through
extracellular vesicles

Immune regulation

The role of MSCs in immune regulation has been exten-
sively studied. MSCs can regulate both innate and adaptive
immunity by interacting with various immune cells [56, 58,
142, 143]. MSCs can also regulate innate immune responses
by targeting DCs, natural killer (NK) cells, innate T helper
17 cells, neutrophils, mast cells, and macrophages [56].
Due to the immune escape mechanism of SARS-CoV-2, the
virus partly evades the recognition and attack of the innate
immune system, causing adaptive immunity to play a key
role. MSCs mainly regulate adaptive immunity by target-
ing T lymphocytes, B lymphocytes, antigen-presenting
cells (APCs), DCs, NK cells, and regulatory T cells (Tregs)
[58]. In addition, the local immunity of the lung is medi-
ated by CD4* T cells and CD8* T cells, which can quickly
kill foreign viruses during infection [144], implying that the
adaptive immunity regulation mechanism by MSCs may be
applied in the treatment of COVID-19. Although the human
body’s dual immune system can mostly prevent the virus
from invading, SARS-CoV-2 has an escape mechanism.
After MSCs are injected into the body, the immune regula-
tion mechanism allows additional mobilization of various
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immune cells, which further prevents the invasion of SARS-
CoV-2. As a response to inflammatory mediators, MSCs
mainly produce a variety of soluble factors that regulate the
immune response, including PGE2, TGF-f1, indoleamine
2,3-dioxygenase (IDO), nitric oxide (NO), HGF, and IL-10
[143].

Secretion of anti-inflammatory factors

The inhibition of inflammation is another important func-
tion of MSCs. MSCs secrete a variety of soluble factors
through paracrine action, collectively called secretory bod-
ies. Studies have found that many inflammatory factors
were increased in the blood of COVID-19 patients, such as
IFN-vy, IFN inducible protein-10, and MCP-1. In addition,
the concentration of inflammatory factors, such as G-CSF,
MCP-1, and TNF-q, in intensive care unit (ICU) patients
have been shown to be significantly higher than in non-ICU
patients [145]. Several studies have shown that the thera-
peutic effect of MSCs is mainly mediated by the secretion
of paracrine factors, including growth factors, chemokines,
and cytokines [146, 147]. The cytokine storm in patients
with severe COVID-19 causes the release of nitric oxide,
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which affects the normal contraction and diastolic func-
tions of the blood vessels, resulting in hypotension, multiple
organ hypoxia, and ARDS [148, 149]. SARS-CoV-2 causes
a cytokine storm and secretes high levels of pro-inflam-
matory cytokines, such as IL-1p, IL-1RA, and IL-2, in the
lungs. As well as, IL-6, IL-7, G-CSF, IFN, TNF, PI3-K/
AKT, Racl, alveolar cavity neutrophils, and infiltration of
macrophages [145, 150, 151]. Ellison-Hughes et al. sum-
marized how MSCs potentially alleviate damage caused
by COVID-19-induced cytokine storms, and explored how
MSC transplantation facilitated the reduction of long-term
complications in COVID-19 patients, including lung injury
repair and partial functional lung cell regeneration [152]. In
addition, our group has found that menstrual blood-derived
MSCs improve lung function by secreting anti-inflammatory
cytokines both in ALI and pulmonary fibrosis mouse models
[153, 154]. The main mechanism of MSC-based therapy for
COVID-19 is mediated by the production of anti-inflamma-
tory molecules and reductions in the secretion of inflamma-
tory factors. In summary, inflammatory factors are reduced,
and anti-inflammatory factors are increased by MSC infu-
sion. Therefore, the anti-inflammatory effects of MSCs can
be utilized in the treatment of COVID-19.

Migration and homing

Migration and homing are unique characteristics of MSCs.
Although not a direct effect of MSCs, their chemotaxis ena-
bles them to target injured lung tissues [155, 156], allow-
ing a further exertion of their therapeutic effects. MSCs
can migrate to the site of injury after intravenous or local
injection. Migration and homing is a multi-step process that
includes three different stages: (1) direct administration
or cell recruitment and entering the blood circulation; (2)
extravasation through the concentration gradient of lympho-
cytes near the lesion; and (3) migration to the damaged inter-
stitium of the lung [157]. This process is mainly induced by
chemokines released from injured or inflamed lung tissues,
which triggers the migration and homing of MSCs [156,
158]. G-CSF is a common pharmacological agent used to
induce mobilization, which acts through the expansion of
the medullary compartment, activity of neutrophil elastase,
release of cathepsin G, and reduction of stromal cell-derived
factor-1 (SDF-1) levels. Stabilization of hypoxia-inducible
factor-1 a (HIF-1a) increases mobilization by sinus-shaped
vasodilatation caused by an increase in VEGF levels. In
short, the main factors for MSC migration and homing
include SDF-1, CXCR4, G-CSF, HIF-1a, PGE2, peroxisome
proliferator-activated receptor (PPAR)-y, MCP-1, CXCR7,
CCR2, a4/p1 integrin, and CD44 molecules [158]. In addi-
tion, MSCs can recognize some endothelial cell adhesion
molecules, including palmitate G protein, vascular cell

adhesion molecule-1, and intercellular adhesion molecule-1,
thereby mediating migration and homing.

Anti-apoptotic properties

Apoptosis is a defense mechanism of the host against the
source of infection, and it plays a vital role in the interactions
between the host and pathogen. MSCs, however, have the
ability to resist apoptosis. Studies of SARS-CoV-2 patients
have observed different degrees of apoptosis during the viral
infection stage [159]. Lymphopenia caused by immune cell
failure due to T cell exhaustion and apoptosis has also been
observed in the same patient population [160]. Therefore, it
is particularly important to effectively control apoptosis in
COVID-19 patients. MSCs inhibit cell apoptosis resulting
from hypoxia, chemical stimulation, mechanical damage,
and radiation. The anti-apoptotic effect of MSCs has been
fully demonstrated in cardiac ischemia and neurological and
pulmonary diseases [161]. Bernard et al. found that HGF and
KGF released by MSCs protected alveolar epithelial cells
from apoptosis by increasing B-cell leukemia/lymphoma-2
(Bcl-2) expression and inhibiting HIF-1a expression [162].
In hypoxia-induced apoptosis, MSCs induced the expression
of several factors, including VEGF, TGF-f1, and HGF, to
reduce the apoptosis of endothelial cells. The anti-apoptotic
properties of MSCs against lung diseases mean that MSCs
could potentially be used as a treatment for COVID-19.

Antiviral effects

Antiviral effects are another feature of MSCs. MSCs inhibit
virus replication, virus shedding, and virus-induced lung
epithelial cell damage [163]. IDO [164] and antimicrobial
peptide LL37 [165] produced by MSCs have been shown to
inhibit influenza virus replication through viral membrane
degradation. Khatri et al. studied the swine influenza virus
pneumonia model and showed that intra-tracheal adminis-
tration of MSC-derived EVs could effectively reduce virus
replication in lung epithelial cells [163]. Additional stud-
ies have shown that SARS-CoV2 enters cells through the
widely distributed ACE2 receptors, including alveolar and
capillary endothelial cells. RNA-sequence analysis has
found that transplanted MSCs are ACE2 negative and can
therefore resist SARS-CoV-2 infection [166]. In addition,
MSC:s retained their immunomodulatory potential, which
supports their potential applicability for treating COVID-
19 [65]. Recently, Avanzani et al. demonstrated the role
of SARS-CoV-2 infection in MSCs derived from various
human tissues. These findings support the use of MSCs
as a potential method by which to downregulate immune
over-activation in COVID-19 patients and reduce fibrosis
in patients recovering from acute SARS-CoV-2 infections
[66]. The mechanisms by which MSCs inhibit the replication
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and infection of SARS-CoV-2, however, are unknown and
require further investigation.

MSC-EVs

EVs are mainly divided into extracellular bodies, microvesi-
cles, and apoptotic bodies [167]. As a medium for cell-to-
cell communication, EVs play a vital role in cell-to-cell
transmission under pathophysiological conditions, includ-
ing the transmission of RNAs, antigen presentation, tumor
immune regulation, and drug loading [168—170]. This strat-
egy bypasses most of the safety issues related to cell ther-
apy, such as cancer cell contamination and cell proliferation
hazards. Recent studies have shown that EVs derived from
MSCs can improve bronchopulmonary dysplasia, ARDS,
COPD, idiopathic pulmonary fibrosis, COVID-19, and pul-
monary hypertension [171-173]. Morrison et al. showed
that MSCs regulate macrophages in ALI through EV-medi-
ated mitochondrial transfer [174]. Functional mitochondria
transferred through MSC-EVs enhanced the mitochondrial
function of primary human alveolar cells and their ability to
repair lung injury [163]. EVs can reduce pulmonary inflam-
mation by reducing the recruitment of neutrophils and mac-
rophages and the level of MIP-2 [175]. At the same time,
EVs can reduce pulmonary edema and endothelial permea-
bility. In a mouse model of lung ischemia/reperfusion injury,
the anti-apoptotic molecule miR-21-5p was found to be the
main link to the protective effect of the MSC-EVs [176].
Specifically, exogenous miR-21-5p reduces lung tissue oxi-
dative stress-induced apoptosis by targeting the phosphatase
and tensin homolog (PTEN) and programmed cell death 4
(PDCD4) [176]. These findings strongly support the use of
MSC-derived EVs as a treatment for COVID-19.

Clinical studies of MSC transplantation
to treat COVID-19

At present, there are no effective treatments available for
COVID-19 patients who are classified as critically ill. How-
ever, stem cell transplantation is an emergency treatment
method that could be used to address this, and is currently
being tested in clinical trials in research institutions around
the world [177-179]. As of Nov 17, 2021, according to
Clinicaltrials.gov (https://www.clinicaltrials.gov/; search
for “COVID-19” and “mesenchymal stem cell”), a total
of 74 MSCs are currently being verified in clinical trials
to treat COVID-19 (Table 1). Among these MSC clinical
trials (Table 1), 22 were using UC-MSCs, 15 AD-MSCs,
and 11 BM-MSCs. There were also 7 W1J, 2 dental pulp, 1
cord blood, 1 menstrual blood, 1 placental, and 1 mucosal-
derived MSC clinical trials. In addition to those using known
sources for the MSCs, there were also 14 clinical trials using
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MSCs from unknown tissue sources. At present, UC, BM,
and AD are the major sources of MSCs used in the clinical
trials for the treatment of COVID-19. Most trials were in
their early stages, as 19 were phase 1, 25 were phase 1/2, 24
were phase 2, 1 was a phase 2/3 combined trial, 1 was phase
3, and 4 were unspecified.

Since most of these clinical trials are ongoing, the
available clinical research results are currently limited.
Leng et al. used MSCs to treat COVID-19 patients [180]
and investigated the inflammation, immune function, and
adverse reactions of seven patients within 14 days after
MSC transplantation. Expression of TNF-o was reduced,
and the expression of IL-10 was enhanced. They further
reported the absence of any adverse events and concluded
that MSCs effectively ameliorated the functional out-
comes of all seven patients. In addition, our group studied
the therapeutic effects of menstrual blood-derived MSCs
in treating COVID-19 in a multicenter, open-label, non-
randomized, parallel-controlled exploratory trial [181].
The mortality of patients in the MSC group was signifi-
cantly lower (7.69% in the MSC group and 33.33% in
the control group). The dyspnea and SpO2 significantly
improved after MSC infusion on days 1, 3, and 5. Chest
imaging results of the experimental group also showed
improvement within 1 month of the MSC treatment. The
incidence of most adverse events did not differ between
the MSC and control groups [181]. Another study con-
ducted by Meng et al. included 18 patients with moderate
to severe COVID-19, nine of whom received UC-MSC
infusion therapy [182]. From their results, two patients
who received UC-MSCs experienced transient facial
flushing and fever 12 h after infusion, and one patient
experienced transient hypoxia. Recently, the same group
conducted a phase 2 study and found that when com-
pared with the placebo group, UC-MSCs significantly
decreased the proportion of solid component lesion
volume [183]. Lanzoni et al. conducted a double-blind,
phase 1/2a randomized controlled trial in which 24 sub-
jects receiving UC-MSC treatment were followed up for
COVID-19 and ARDS for 1 month [184]. They found
that the UC-MSC infusion consistently and effectively
reduced a group of inflammatory cytokines related to
COVID-19 “cytokine storms”, thus improving patients’
survival and recovery time [184]. Shu et al. studied the
possible impact of intravenous UC-MSCs on COVID-19
patients and showed that the transplantation of human
UC-MSCs shortened the time for clinical improvement
when compared to the placebo group. The incidence of
critically ill progression after UC-MSC treatment was 0,
and the 28-day mortality rate was 0. In the control group,
four critically ill patients were treated with invasive ven-
tilation, of which 3 died, and the 28-day mortality rate
was 10.34%. At the same time, the clinical symptoms of
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fatigue, weakness, and respiratory distress were signifi-
cantly reduced after UC-MSC treatment [185]. Sanchez-
Guijo et al. demonstrated the safety of AD-MSCs with the
transplantation of 1x 10%kg of AD-MSCs 1-3 times in
13 patients with severe COVID-19 [186]. The study found
that the clinical symptoms of 9 patients (70%) improved
at a median follow-up of 16 days after the first AD-MSC
administration. Feng et al. reported that the mortality
rate of COVID-19 patients was 6.25% after UC-MSC
infusion. The estimated cytokine levels changed within
the normal range, the radiological appearance (ground
glass opacity) was improved, and the lymphocyte count
and lymphocyte subpopulation (CD4* T cells, CD8* T
cells, and NK cells) counts were restored after trans-
plantation [187]. Hashemian et al. proved that no serious
adverse reactions occurred 24—48 h after transplantation
of the UC-MSC:s or placental MSCs [188]. They further
observed that 48-96 h after the first infusion in 7 patients,
dyspnea eased and SpO2 increased. Of these 7 patients,
5 were discharged from the ICU within 2—7 days (aver-
age of 4 days). The serum levels of the TNF-a, IL-8, and
C-reactive protein (CRP) were significantly reduced in
all six survivors. The six survivors had no symptoms of
dyspnea 60 days post infusion. The radiological param-
eters of the lung CT showed clear signs of recovery [188].

Clinical data increasingly show that “not all MSCs are
equal” as MSCs from different tissues express different
factors at different levels and have different functions
(Table 2). However, regardless of the MSC type, they
were all found to exert a significant improvement in lung
function or reduced mortality when intravenously trans-
planted. Although there are many types of MSC injection,
the most popular method is intravenous infusion. When
compared with different sources of MSC-based therapies
in COVID-19, the initial results mainly rely on improving
lung function, serum indexes, and inflammation indexes.
Currently, there is still no systematic contrast regarding
treatment differences with various MSCs. For example,
menstrual blood MSCs were used, and a total of 9 x 107
cells showed a rapid improvement in breathing difficul-
ties [181]. AD-MSCs were used in a total of 1-3 x 10° /
kg cells to treat COVID-19 [186]. The UC-MSCs used
a range from a total of 9 X 107 cells [182] to a total of
4% 108 cells [187]. Generally, MSCs should be injected
2—-4 times to persistently exert their function. In addition
to the above clinical studies, some case reports have shown
that MSCs (including UC-MSCs, menstrual blood MSCs,
and WJ-MSCs) are a promising method for the treatment
of COVID-19, especially critically ill patients [189-192].
Although these preliminary clinical results are encourag-
ing, more clinical data are required to further clarify the
underlying mechanisms and potential targets to improve
clinical applications.

@ Springer

Current challenges for MSC-based COVID-19
therapies

Currently, there is a large amount of active clinical research
occurring in relation to MSCs for the treatment of various
diseases. In particular, the clinical research of MSCs for the
treatment of COVID-19 has seen explosive developments.
However, in addition to the evaluation of the therapeutic
effects of MSCs, more in-depth problems require clarifica-
tion [193]. The main clinical challenges relating to the use
of MSCs to treat COVID-19 are presented in Fig. 4.

First, thrombosis is common in COVID-19, particularly
in critically ill patients [194, 195]. COVID-19-specific coag-
ulopathy is caused by increased levels of fibrinogen, von
Willebrand factor (vWF), fibrin degradation product, and
p-dimer in the blood [196]. SARS-CoV-2 infection induces
an inflammatory process called immuno-thrombosis, which
activates the interaction of monocytes and neutrophils with
platelets and the coagulation cascade, resulting in the for-
mation of intravascular thrombi in small and large blood
vessels [196, 197]. During immuno-thrombosis, neutrophils
and monocytes can secrete tissue factors and regulate the
extracellular nucleosomes to degrade endogenous anticoagu-
lants, thereby promoting inflammation-induced coagulation
activation. When immuno-thrombosis is not controlled, it
leads to the unregulated activation of the coagulation cas-
cade, which in turn leads to micro-thrombosis and inflamma-
tion, creating a positive-feedback-like cycle, which eventu-
ally may develop into thrombosis (thrombotic inflammation)
and diffuse intravascular coagulation [198]. Thus, thrombo-
prophylaxis and immuno-thrombosis must be monitored in
hospitalized COVID-19 patients in the absence of contrain-
dications. Different MSC products show different levels of
high procoagulant tissue factor and may have adverse effects
on the immediate blood-mediated inflammatory response
(IBMIR). Appropriate strategies for evaluating and control-
ling blood compatibility and optimizing cell delivery are
critical for the development of safer and more effective MSC
therapies [199].

Second, we should emphasize that due to the unique
nature of the COVID-19 outbreak and the ethical restric-
tions on treating severe COVID-19 patients, not all clini-
cal trials used a standard design. From the perspective
of safety and effectiveness, the clinical use of autologous
MSC:s is the best method to treat COVID-19. However,
the production of a clinically relevant number of MSCs
requires a significant amount of time, which is not always
the case in the current COVID-19 emergency. A large
number of MSCs are urgently needed, and the correspond-
ing quality of MSCs must also be strictly controlled.

Third, there is concern regarding the use of fresh and
frozen MSCs due to their different therapeutic roles. Moll
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Collections of MSCs from different sources
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MSC infusion into COVID-19 patients
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Fig.4 The main challenges and corresponding strategies of MSC-
based therapies in clinical applications. There are three steps for the
clinical application of MSCs in COVID-19. The first is the collection
of MSCs from different sources, then the isolation, identification, and

et al. found that the difference between using fresh and
frozen MSCs was significant [200, 201]. In six published
clinical reports, allogeneic sources were used, of which
only two studies used freshly cultured BM-MSCs [202,
203] and the other studies used previously cryopreserved
BM-MSCs [61, 204], which can play a certain therapeu-
tic effect in terms of curative effect using cryopreserved
MSCs. Undoubtedly, fresh MSCs were the best choice.
However, due to the COVID-19 outbreak, there is cur-
rently an insufficient number of donors available to pro-
vide fresh tissue samples. In addition, growth in a short
period of time is difficult, and access to cell processing
facilities may also be limited. Therefore, when conditions

@ Springer

multiplication of MSCs in vitro, and finally, the infusion of MSCs
into COVID-19 patients. The challenges faced in each step and their
corresponding strategies to overcome these challenges are summa-
rized

permit, fresh MSCs are the first choice, but in emergency
situations, frozen MSCs can be utilized. More studies
comparing the differences between fresh and frozen MSCs
and interpreting existing preclinical data are required to
increase our understanding and provide a higher standard
of care.

Fourth, regardless of which part of the human body
the MSCs were obtained and isolated from, they must be
processed in a facility that follows a good manufacturing
practice (GMP) and can ensure that the MSCs meet clinical
quality standards. Although the effectiveness of MSCs from
different sources in the treatment of COVID-19 has been
studied, more optimized treatment strategies for evaluating
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and controlling hemocompatibility, optimizing cell infusion,
and monitoring the real-time dynamics of cells in the body
are essential for the development of safer and more effective
MSC therapies [199]. In theory, MSCs can be isolated from
most tissues of the human body but are very restricted clini-
cally due to the limited availability of the source tissues, the
invasiveness of the procedure, and the general conditions
of the donor. It is important to select a suitable cell source,
evaluate the difficulties in obtaining samples, and consider
the possible adverse effects of the procedure. In summary,
although MSCs isolated from different tissues show differ-
ent common characteristics, their biological functions and
markers can differ depending on the tissue source. For many
countries, especially developing and underdeveloped coun-
tries, the availability of such GMP-compliant cell processing
facilities and ensuring the provision of clinical-grade MSCs
are major challenges [205]. Even within the same organiza-
tion, each country may have certain differences and hetero-
geneity in the production processes with different patient
groups using MSCs from different sources.

Then, the high cost of MSC products is an ongoing issue
that hinders their large-scale application in the treatment of
COVID-19 [206]. Unlike conventional therapeutic methods,
MSC:s can be collected from both autologous and alloge-
neic organisms. Standard protocols must be followed when
collecting MSCs from the various different sources [207].
Highly specialized technical staff, time costs, technical costs,
material costs, testing equipment, quality control costs, cell
preservation, and cell transportation costs all require strict
maintenance and management by specialized personnel.
These personalized procedures make stem cell therapy very
expensive. Further investigations into how to effectively con-
trol these costs must be conducted in future.

Finally, there is a lack of long-term follow-up data on
the tolerance and safety of MSC infusions. Meng et al. con-
ducted a study that included 18 patients with moderate to
severe COVID-19, nine of whom received UC-MSC infu-
sion therapy [182]. Based on their results, intravenous infu-
sions of UC-MSCs were found to be safe and well tolerated
during the one-month follow-up period. Clinical studies have
shown that MSCs have a good therapeutic effect, but some
studies have reported that allogeneic AD-MSC infusions
are ineffective at improving immune recovery or reducing
immune activation and inflammation in patients with an
immune response [44]. Our study found that a small number
of patients still had adverse events greater than grade 3 at
the one-month follow-up period after post-menstrual blood-
derived MSC transplantation [181]. Although these adverse
events are not considered to be a direct effect of the MSC
treatment itself, further verification is still required. Moreo-
ver, these clinical studies are currently based on a small sam-
ple of participants. Therefore, although MSC transplantation
is an effective method for treating COVID-19, particularly

critically ill patients, further large-scale clinical studies,
potential treatment mechanisms, and long-term safety stud-
ies are still required.

Prospective directions for MSC-based
COVID-19 therapies

It is worth noting that intravenous infusions of convales-
cent plasma can currently be used treat patients with severe
COVID-19 and could easily be combined in future with
MSC transplants to inhibit cytokine storms, promote lung
injury repair, and the recovery of lung function [208]. It is
also important to consider that MSCs derived from differ-
ent tissue sources have phenotypic heterogeneity and exhibit
different differentiation possibilities and the release of differ-
ent biologically active factors [209]. Thus, selecting source
MSCs with specific biological properties will help to enable
precision therapies in future [210]. For critically ill elderly
patients with COVID-19, ready-made sources of allogeneic
cells are the best choice. However, for younger patients who
are likely to develop COVID-19, autologous sources, such as
AD-MSCs, can be used. Furthermore, autologous menstrual
blood MSCs may be a good choice for women. Selecting a
suitable source for MSCs is vital for the effective treatment
of COVID-19. As MSC sources have different quality cri-
teria and researchers have different clinical grades for MSC
products, regulations from authorities and clinical guidelines
are necessary [211, 212]. To achieve global consensus, some
specialists have already proposed therapeutic guidelines for
MSC COVID-19 treatments [213, 214].

Understanding the origin of the global COVID-19 pan-
demic and public health emergency is an ongoing process.
It is clear, however, that we must develop a better under-
standing of how animal viruses can jump species bound-
aries and effectively infect humans to help prevent future
zoonotic events [215]. Some studies have found that bats
and pangolins were the intermediate hosts for SARS-CoV-2
[72, 76-79], while other recent studies have found that pets,
including cats and dogs, are also susceptible [81, 82]. There-
fore, it is possible that the virus infected humans indirectly
via transmission from wild animals to domestic pets. How-
ever, these are conjectures. The true origins and the process
of how viruses infect specific animals and subsequently pass
to humans should be explored from all angles in future.

Due to a lack of studies comparing the efficacy of MSCs
and MSC-derived EVs, it is currently unclear which treat-
ment should be used. Current reports of MSC-derived EVs
for the treatment of COVID-19 are continuous and effec-
tive [216-220]. However, since some studies have verified
the importance of direct cell contact to the success of treat-
ment and considering the urgency of treatment, it makes
sense to use MSCs directly. Nevertheless, both therapies
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are likely to be accepted, as evidenced by clinical stud-
ies with COVID-19 patients. Based on this evidence, we
hypothesize that MSCs in the form of a freeze-dried pow-
der, administered by intravenous transplant (or inhalation,
etc.), may be a suitable method for treating COVID-19 in
future, particularly critically ill patients. Further analysis
of MSCs and MSC-EVs will help to further understand
the differences and respective advantages of these treat-
ment methods.

Conclusion

Clinical studies have indicated that MSCs from various
sources could be utilized in future treatment methods for
patients with COVID-19 (especially critically ill patients).
MSCs have already shown potential as adjuvant treatments
for COVID-19 in preliminary studies. However, MSC treat-
ments for COVID-19 are currently lacking important long-
term safety information and data from large-scale controlled
trials, which is required to make conclusive judgments. With
the continuous development of new technologies, we have
come to understand that combined treatments can be more
effective and advantageous, and that we should keep this in
mind when considering treatments for COVID-19 in future.
Thus, MSC-based treatments combined with other treatment
methods could play a powerful role in developing effective
strategies to combat COVID-19.
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