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Abstract

Pancreatic β-cells depend on the well-balanced regulation of cytosolic zinc 
concentrations, providing sufficient zinc ions for the processing and storage of insulin, 
but avoiding toxic effects. The zinc transporter ZnT8, encoded by SLC30A8, is a key player 
regarding islet cell zinc homeostasis, and polymorphisms in this gene are associated 
with altered type 2 diabetes susceptibility in man. The objective of this study was 
to investigate the role of ZnT8 and zinc in situations of cellular stress as hypoxia or 
inflammation. Isolated islets of WT and global ZnT8−/− mice were exposed to hypoxia 
or cytokines and cell death was measured. To explore the role of changing intracellular 
Zn2+ concentrations, WT islets were exposed to different zinc concentrations using zinc 
chloride or the zinc chelator N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine 
(TPEN). Hypoxia or cytokine (TNF-α, IFN-γ, IL1-β) treatment induced islet cell death, but 
to a lesser extent in islets from ZnT8−/− mice, which were shown to have a reduced zinc 
content. Similarly, chelation of zinc with TPEN reduced cell death in WT islets treated 
with hypoxia or cytokines, whereas increased zinc concentrations aggravated the effects 
of these stressors. This study demonstrates a reduced rate of cell death in islets from 
ZnT8−/− mice as compared to WT islets when exposed to two distinct cellular stressors, 
hypoxia or cytotoxic cytokines. This protection from cell death is, in part, mediated by 
a reduced zinc content in islet cells of ZnT8−/− mice. These findings may be relevant for 
altered diabetes burden in carriers of risk SLC30A8 alleles in man.

Introduction

Pancreatic β-cells are highly dependent on the 
micronutrient zinc for the processing and storage of 
insulin (Chabosseau & Rutter 2016), which is then released 
in response to rising glucose concentrations. The cytosolic 

concentration of free Zn2+ in pancreatic β-cells is 400–500 
pM (Bellomo et  al. 2011) and is much higher in insulin-
secreting granules, reaching high micromolar (Vinkenborg 
et al. 2009) to the millimolar range (Foster et al. 1993).
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High concentrations of intracellular zinc, resulting 
from exogenous administration or release from 
intracellular stores, are toxic and potentially lethal for 
cells (Plum et  al. 2010). This has been shown not only in 
different tissues, such as cortical neurons (Kim et al. 1999), 
but also in pancreatic islet cells, where zinc is cytotoxic in a 
dose-dependent manner (Kim et al. 2000).

To reach intracellular concentrations sufficient for 
proper function, but at the same time avoiding the toxic 
effects of zinc, intracellular zinc and its flux from/into 
different organelles is tightly regulated by zinc-binding 
and -transporting proteins. Three main protein families are 
responsible for the maintenance of zinc homeostasis: the 
metallothioneins (MTs), the zinc importers (ZIP, SLC39A) 
and the zinc transporters (ZnT, SLC30A) (Chabosseau & 
Rutter 2016). Zinc transporter 8 (ZnT8), encoded by the 
SLC30A8/Slc30a8 gene, is of particular interest in terms 
of islet cell function (Rutter & Chimienti 2015). In β-cells, 
ZnT8 is the most abundantly expressed zinc transporter 
and is responsible for the efflux of Zn2+ from the cytosol. 
ZnT8 transporters are mainly located on the membrane 
of insulin-secreting granules (Lichten & Cousins 2009). 
Furthermore, the expression of ZnT8 in high levels is quite 
specific for pancreatic islet cells (α- and β-cells (Chimienti 
et  al. 2004, Solomou et  al. 2015, Ghazvini Zadeh et  al. 
2020)).

In 2007, a genome-wide association study identified a 
non-synonymous polymorphism in the zinc transporter 
SLC30A8 gene as being linked with an increased risk 
of type 2 diabetes mellitus (T2DM) (Sladek et  al. 2007). 
Subsequently, it was shown that global and β-cell specific 
Slc30a8 knockout mice display age-, sex- and diet-
dependent abnormalities of various degree in glucose 
tolerance, insulin secretion and body weight (Nicolson 
et al. 2009, Wijesekara et al. 2010). Later studies, however, 
provided evidence for a protective role of loss-of-function 
mutations in SLC30A8 with regard to T2DM risk (Flannick 
et al. 2014, Dwivedi et al. 2019).

We have shown previously that islets exposed to 
hypoxia exhibited a decreased expression of Slc30a8 
and lowered zinc concentrations, while cell survival was 
enhanced in islets of global Slc30a8 knockout mice (Gerber 
et al. 2014). This was surprising since pancreatic islets are 
highly dependent on oxidative metabolism (resulting from 
glycolytic flux) for ATP synthesis, and oxygen deprivation 
has a major impact on their function and survival (Sekine 
et al. 1994). The question remained as to why changes in 
zinc transporter abundance are potent enough to alter this 

cellular response to hypoxia. Thus, with the present study, 
we sought to explore the mechanism of enhanced islet cell 
survival in islets of Slc30a8 knockout mice under hypoxic 
conditions or other situations of islet cell stress.

Materials and methods

Animals

Female CD1 mice were purchased from Charles River. 
Global female ZnT8−/− mice on a mixed 129Sv/C57BL/6J 
background have previously been described (Nicolson et al. 
2009). Mice were euthanized at the specified age by cervical 
dislocation. Female WT littermates were used as a control 
to ZnT8−/− mice. Animal experiments were conducted 
following the EU Directive for animal experiments. 
All animal procedures were approved by the Cantonal 
Veterinary office in Zurich, Switzerland (164/2018), or the 
Animals (Scientific Procedures) Act 1986 of the United 
Kingdom (Personal Project Licences P2ABC3A83 and 
PP1778740), as well as the University of Birmingham’s 
Animal Welfare and Ethical Review Body (AWERB).

Islets isolation and culture

Mouse islets were prepared as in Ravier and Rutter (2005). 
Briefly, pancreata were perfused via the pancreatic duct 
with a NB8 collagenase solution (SERVA, Uetersen, 
Germany). Pancreata were digested at 37°C for 10 min and 
separated using a histopaque gradient (Sigma-Aldrich). 
Islets were handpicked under a microscope and cultured 
overnight in RPMI 1640 containing 11.1 mM glucose.

Experiments in isolated islets

Isolated pancreatic islets were exposed to hypoxia (1% O2, 
5% CO2 and 94% N2) or normoxia (21% O2, 5% CO2 and 
74% N2) using a tissue culture incubator (CB-60, Binder). 
Zinc deprivation was achieved using 50 μM N,N,N′,N′-
tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, Sigma-
Aldrich). Zinc supplementation was performed using 600 μM 
zinc chloride solution (ZnCl2, Sigma-Aldrich). Cytokine 
treatment was performed using a mixture of cytokines: 1000 
U/mL Tumour necrosis factor-α (TNF-α; ThermoFischer), 
1000 U/mL Interferon-γ (IFN-γ; ThermoFischer) and  
50 U/mL interleukin-1β (IL-1β; ThermoFischer) (Jain et al. 
2015). All treatments were conducted for 24 h.
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Live/Dead cell assay

Following treatment, islets were incubated for 15 min in 
PBS containing 3 μM calcein-AM and 2.5 μM propidium 
iodide (PI) at 37°C (04511 Cellstain double staining kit, 
Sigma-Aldrich), before detection of absorbance/emission 
at 491/525 and 561/620 nm, respectively (Gerber et  al. 
2014). ImageJ was used for data capture and analysis, where 
the islet area occupied by dead cells (PI) was calculated and 
expressed as a unitary ratio vs that occupied by all (live and 
dead) cells (PI plus calcein-AM).

Assessment of apoptosis and cell proliferation

Isolated islets were cultured for 24 h in RPMI 1640 (+10% 
FBS + 1% P/S) medium containing 50 μM TPEN, or 600 μM 
ZnCl2, or a cytokine mixture containing 1000 U/mL TNF-α, 
50 U/mL interleukin-1β and 1000 U/mL interferon-γ or a 
combination of these.

After being fixed in 4% paraformaldehyde, the islets 
were subjected to antigen retrieval using citrate buffer. 
Subsequently, TUNEL staining was performed using the 
DeadEnd Fluorometric TUNEL System (Promega), according 
to the manufacturer’s instructions and co-staining for 
PCNA was carried out using mouse anti-proliferating cell 
nuclear antigen (PCNA) 1:500 (Cell Signaling Technology) 
as primary antibody and anti-mouse Alexa Fluor 568 1:500 
(Thermo Fisher Scientific) as secondary antibody. The islets 
were mounted on SUPERFROST slides using VECTASHIELD 
HardSet with DAPI (Vector Laboratories, Burlingame, USA).

Images were acquired using a Zeiss LSM780 meta-
confocal microscope using PMT spectral detectors and a 
25×/0.8 immersion Plan-Apochromat objective. Excitation 
was delivered at λ = 405 nm, λ = 488 nm and λ = 561 nm for 
DAPI, TUNEL + staining (fluorescein-12-dUTP) and Alexa 
Fluor 568, respectively. Emitted signals were detected at 
λ = 415–533 nm, λ = 488–566 nm and λ = 571–648 nm for 
DAPI, TUNEL and Alexa Fluor 568, respectively. Islets were 
size-matched for analysis, and changes in apoptosis and 
proliferation normalized against controls as fold change.

Imaging of cytosolic Zn2+ concentrations with 
FluoZin-3AM

Islets were incubated for 1 h in 6 μM of the cell-permeable 
dye FluoZin-3AM (Invitrogen) dissolved in DMSO 
(0.01%, w/v), buffered by bicarbonate buffer containing 
11 mM glucose. Imaging was performed with a ZEISS 
microscope, FluoZin-3AM was excited at 470 nm. ImageJ  
(https://imagej.net/Fiji, October 2016) was used for data 

capture and analysis. Results were normalized to the 
background fluorescence.

Measurements of glycated haemoglobin (HbA1c)

Mouse tail blood was collected and HbA1c was measured 
on a DCA 2000 Plus biochemical analyzer (Bayer) (Zehetner 
et al. 2008).

Glucose-stimulated insulin secretion (GSIS) from 
isolated islets

Isolated islets were cultured overnight in normal culture 
medium (RPMI 1640 containing 11.1 mM glucose, 100 U/mL  
penicillin, 100 µg/mL streptomycin, 2 mM l-alanyl-l-
glutamine and 10% FBS). Islets were pre-incubated for 
30 min in Krebs-Ringer Hepes bicarbonate (KRHB) buffer 
(131 mM NaCl, 4.8 mM KCl, 1.3 mM CaCl2•2H2O, 25 mM 
HEPES, 1.2 mM KH2PO4 and 1.2 mM MgSO4•7H2O with 
0.5% BSA) with 3.3 mM glucose. Following that, GSIS was 
assessed by static incubation of islets in KRHB with 3.3 mM,  
followed by 16.7 mM and then again 3.3 mM glucose for 
1 h at 37°C. After each incubation step, the medium was 
collected and subjected to ELISA (Mouse insulin ELISA, 
Mercodia, Sweden).

Intraperitoneal glucose tolerance test (IPGTT)

Before the glucose tolerance test, mice were fasted overnight 
for 16 h. After determination of fasted blood glucose levels, 
each animal received an i.p. injection of saline glucose 
solution (2 g/kg body weight). The measurements were 
performed before and 15, 30, 45, 60, 90 and 120 min after 
glucose injection.

RNA extraction and qPCR

Total RNA from ~50 islets was obtained using TRIzol reagent 
(Ambion by Life technologies) and reverse transcribed into 
cDNA using a high-capacity RNA-to-cDNA kit (Applied 
Biosystems by Thermo Fisher Scientific). cDNA was subject 
to qPCR using Power SYBR Green master mix (Applied 
Biosystems by Thermo Fisher Scientific) in a 7500 fast 
real-time PCR system (Applied Biosystems) and analysed 
by the comparative Ct method (primers are shown in 
Supplementary Table 1, see section on supplementary 
materials given at the end of this article). The expression 
of target genes was normalized to the expression of Ppia 
(encoding cyclophilin A).
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Cell line culture and Western blot analysis

EndoC-βH5 cells (Univercell Biosolutions, Toulouse, France) 
were handled according to manufacturer instructions. The 
cells were cultured for 1 week, following which they were 
treated with a mixture of TNF-α (10 ng/mL, ThermoFischer), 
IL1-β (50 U/mL, ThermoFischer) and IFN-γ (750 U/mL, 
ThermoFischer) for 24 h. Treated and untreated cells 
(n = 4) were lysed on ice with radioimmunoprecipitation 
assay (RIPA)  buffer, sonicated for 15 s and then 40 µg of 
protein was loaded for immunoblotting and detected with 
antibodies against human ZnT8 (Proteintech, Manchester, 
UK) and γ-tubulin (Sigma-Aldrich).

Data analysis

 Data are presented as single data points and mean ± s.d., 
unless otherwise stated. The statistical significance of 
differences between groups was assessed by Student’s t-test/
Mann–Whitney U test. Generalized multivariate analysis 
was used to assess the effect of different factors on islet cell 
death and in particular to separate the effect of islet size from 
other factors. ANOVA was used for comparisons between a 
higher number of groups. P-values < 0.05 were considered 
to be statistically significant. All statistical analyses were 
performed using Prism 8.04 software (GraphPad Software) 
and SPSS Statistics 26.0 software.

Results

Islet cells deficient of Slc30a8 exhibit decreased cell 
death despite impaired long-term glucose control

We confirmed the previous results (Gerber et  al. 2014) 
demonstrating that cell death was lowered in ZnT8−/− islets 

exposed to hypoxia (as a potent inducer of cell death) (Fig. 
1A). In order to correct for a possible influence of islet size 
on cell death, generalized multivariate analysis was used.

Taking into consideration recent evidence for a 
protection against diabetes resulting out of a loss-of-
function of ZnT8 (Dwivedi et al. 2019) and due to previously 
reported variations in dysglycaemia in mice deficient 
in ZnT8 (Rutter & Chimienti 2015, Rutter et  al. 2016), we 
assessed short- and long-term glucose control in our mice 
deficient in ZnT8. It was hypothesized that a possible 
change of long-term glucose levels could lead to the change 
in the susceptibility of pancreatic islet cells to cell death 
described above. In accordance with some previously 
published results (Nicolson et al. 2009), the assessment of 
glucose tolerance as well as glycated haemoglobin revealed 
impaired glucose control and higher levels of HbA1c 
in ZnT8−/− mice compared to WT mice (Fig. 1B and C), 
thus rejecting the hypothesis that reduced glucose levels 
underlie protection from cell death.

Reduction of hypoxia-induced cell death in  
ZnT8-deficient islets depends on zinc

As shown in previous studies (Gerber et al. 2014), pancreatic 
islets deficient in zinc transporter ZnT8 exhibit reduced 
intracellular zinc levels. Thus, it was hypothesized that 
these lower intracellular zinc levels may protect pancreatic 
islets from cell death in situations of increased islet cell 
stress. Exposure of cells to increased zinc levels (which 
consecutively leads to higher intracellular (Vinkenborg 
et al. 2009) and in particular, cytosolic (Bellomo et al. 2011) 
zinc levels) increases the rate of cell death in pancreatic 
islets (Kim et  al. 2000), which we could reproduce in the 
present study (Fig. 2A).

Figure 1
Loss of ZnT8 protects against hypoxia-mediated 
islet cell death despite impaired glucose control. (A). 
The proportion of dead cells in islets of WT and 
ZnT8−/− mice at the age of ~25 weeks is depicted 
after incubation of islets for 24 h at normoxia (21% 
O2) or hypoxia (1% O2, Hx), n (islet number) ≥ 100 
islets per condition. (B) A glucose tolerance test was 
performed after i.p. administration of glucose  
(2 g/kg body weight) in 48-week-old mice, n  = 4 per 
group. Corresponding areas under the curve (AUC) 
are shown. (C) Glucose control was assessed by 
HbA1c determination in WT and ZnT8−/− mice at the 
age of ~25 weeks, n (number of mice) = 4 in each 
group. Data are expressed as mean ± s.d. *P ≤ 0.05, 
**P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. Generalized 
multivariate analysis (A), Student’s t-test (B) and 
Mann–Whitney U test (C) were performed.
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This effect was more pronounced in pancreatic islets 
lacking ZnT8. Furthermore, the protective effect of ZnT8 
deficiency on hypoxia-induced cell death disappeared 
with exposure of islets to high zinc levels (Fig. 2B).

To simulate the effect of reduced ZnT8 activity on 
intracellular zinc levels, WT islets were treated with the 
zinc chelator TPEN, thus reducing intracellular zinc 
content (Vinkenborg et al. 2009). When exposed to hypoxic 
conditions, TPEN treatment was able to reduce the extent 
of cell death (Fig. 2C).

ZnT8/Slc30a8 knockout protects pancreatic islets 
from cytokine-mediated cell death in a  
zinc-dependent way

To further test the observed effects in another setting 
of increased cell death, we exposed pancreatic islets to 
a mixture of cytokines known to induce cell death. The 
combination of TNF-α, IFN-γ and IL-1β induced cell death 
in pancreatic islets from mice of different ages (Pierre Pirot 
2008, Riboulet-Chavey et al. 2008). This effect was seen in 
both WT and ZnT8−/− mice but was observed to a lesser 
extent in ZnT8−/− islets (Fig. 3A and B).

The effect of Slc30a8 knockout on intracellular 
zinc levels was explored using the fluorescent zinc 
probe FluoZin-3AM. This revealed decreased free zinc 
concentrations in ZnT8−/− islets (as compared to WT 
islets) without and after exposure to the cytokine  
mixture (Fig. 3C).

Exposure to added zinc ions increased cell death in islet 
cells to a greater extent in ZnT8−/− islets compared to WT 
islets, an effect that disappeared when islets were exposed 
to the cytokine mixture (Fig. 3D).

Treatment with TPEN was able to reduce cytokine-
mediated islet cell death in WT islets (Fig. 3E).

To further assess the mechanisms by which zinc 
and the reduction/depletion of zinc influence cell death 
in WT islets, we assessed islet cell apoptosis by TUNEL 
staining as well as cell proliferation by PCNA staining. 
While changes in zinc concentrations by adding ZnCl2 
or the zinc chelator TPEN did not change the proportion 
of apoptosis under control condition, cytokine-
induced apoptosis could be reduced by the addition of  
TPEN (Fig. 3F).

Of interest, the proliferation rate was increased by zinc 
under control conditions (Fig. 3G).

Figure 2
ZnT8-mediated changes of hypoxia-induced islet 
cell death rate depend on Zn2+. (A) Cell death in 
pancreatic islets from WT mice is induced by ZnCl2 
in a dose-dependent manner. n (islet number) ≥ 
30 per condition. (B) The proportion of dead cells 
was assessed in islets of WT and ZnT8−/− mice 
exposed to 600 µM ZnCl2 in the presence of 
normoxia (21% O2, Nx) or hypoxia (1% O2, Hx) for 
24 h. n (islet number) ≥ 50 per condition. (C) Islets 
of WT mice were exposed to normoxia or hypoxia 
for 24 h with or without 50 µM of the zinc chelator 
TPEN. n (islet number) ≥ 80 per condition. 
Representative microscopy images of pancreatic 
islets are depicted: staining of viable cells 
(calcein-AM, green) and cell death (PI, red). Data 
are expressed as mean ± s.d. ns, not significant; *P 
≤ 0.05, **P ≤ 0.01, ****P ≤ 0.0001. Generalized 
multivariate analysis was performed.
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ZnT8 deficiency does not alter the response of islet 
insulin secretion to cytokine exposure

To test whether the response of glucose-stimulated insulin 
secretion to cytokine treatment is altered by a change 
in Slc30a8 expression, we exposed islets of WT as well 
as ZnT8−/− mice to low and high glucose levels by static 
incubation. As described previously (Nicolson et al. 2009), 
insulin secretion in ZnT8−/− islets was higher after glucose 
stimulation compared to WT islets. However, after cytokine 
exposure, insulin secretion was reduced in both WT and 
ZnT8−/− islets to a similar extent (Fig. 4).

ZnT8 expression is reduced in pancreatic islets 
treated with cytokines

The response of pancreatic islet cells to cytokine treatment 
was assessed by measurement of mRNA expression of zinc 
transport proteins (ZnT and ZIP families, Fig. 5A and B). 
This revealed downregulation of different zinc transporter 

mRNA, with the most pronounced effect on Slc30a8. 
Furthermore, ZnT8 also tended to be downregulated 
on protein level in a different system (human cell 
line), providing evidence of a very consistent effect  
across species.

Discussion

This study provides further evidence that the regulation 
of intracellular zinc content is a fundamental process 
for islet cell function and survival. Elimination of the 
zinc transporter ZnT8 in pancreatic islet cells, which 
is accompanied by reduced intracellular zinc levels, 
results in less pancreatic islet cell death. This process 
can be modulated by changes in the extracellular 
zinc concentration to which islet cells are exposed, as 
demonstrated in the present study.

Early histochemical studies revealed a close connection 
between the zinc and insulin content of the pancreas and 

Figure 3
Cytokine-mediated cell death in pancreatic islets 
is dependent on the level of ZnT8 expression and 
Zn2+ concentrations. The proportion of dead cells 
in islets of WT and ZnT8−/− mice at age of (A) ~14 
weeks and (B) ~29 weeks is depicted after 
incubation of islets for 24 h with or without a 
mixture of cytokines (1000 U/mL TNF-α + 1000 U/mL 
IFN-γ + 50 U/mL IL1-β, Mix). n (islet number) ≥ 250 
per condition. (C) The cytosolic zinc concentration 
was estimated applying FluoZin-3AM staining in 
islets of WT and ZnT8−/− mice with and without a 
mixture of cytokines (Mix). Measurements were 
corrected for autofluorescence (no FluoZin 
condition). n (islet number) ≥ 80 per condition.  
(D) The proportion of dead cells in islets of WT 
and ZnT8−/− mice is depicted after incubation of 
islets for 24 h with a mixture of cytokines (Mix), 
600 µM ZnCl2 or both. n (islet number) ≥ 80 per 
condition. (E) The proportion of dead cells in WT 
islets is depicted after 24 h incubation with 
cytokine mixture (Mix) and/or the zinc chelator 
TPEN. n (islet number) ≥ 100 per condition. (F) 
Fold change of positively stained cells for 
apoptosis (TUNEL, vs control) and (G) for 
proliferation (PCNA, vs control) in WT pancreatic 
islets is depicted after incubation (24 h) with 
different combinations of cytokines (Mix), ZnCl2 or 
TPEN. Representative microscopy images of 
pancreatic islets are depicted: Staining of 
apoptosis (TUNEL, green), proliferation (PCNA, 
red) and DAPI (blue). n (islet number) ≥ 12 per 
condition. Data are expressed as mean ± s.d. ns, 
not significant; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, 
****P ≤ 0.0001. Generalized multivariate analysis 
(A, B, D, E), Mann–Whitney U test (C) and ANOVA 
(F, G) were performed.

https://doi.org/10.1530/JOE-21-0271
https://joe.bioscientifica.com	 © 2022 The authors

Published by Bioscientifica Ltd.
Printed in Great Britain

This work is licensed under a Creative Commons 
Attribution 4.0 International License.

https://doi.org/10.1530/JOE-21-0271
https://joe.bioscientifica.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


7

Research

M Karsai et al. Lack of ZnT8 reduces islet cell 
death

253:1Journal of 
Endocrinology

found that this (high) content depends on functional 
endocrine tissue (Scott & Fisher 1938). Later, it was shown 
that zinc is an essential component of insulin hexamers 
(Blundell et al. 1972) thought to be the fundamental form 
of insulin when stored in the insulin secretory granules 
of β-cells (Emdin et  al. 1980). At the same time, it is well 
known that high intracellular concentrations of zinc are 
potentially cytotoxic. The cytotoxic effect of zinc ions can 
be modulated by chelation or competition for cell entry 
with other ions (Borovansky & Riley 1989), which was also 

demonstrated for pancreatic β-cells (Kim et al. 2000). Thus, 
the regulation of islet cell zinc content appears to be a fine 
balance between proper function and death of these cells.

Although intracellular zinc content in pancreatic 
islets, as well as their proper function, is impaired in mouse 
models lacking the zinc transporter ZnT8 (Nicolson et al. 
2009), findings which were confirmed in the present 
study, knockout islets are more resistant to the cytotoxic 
effects caused by hypoxia and cytokine exposure. That 
intracellular zinc plays a central role in modulating 
hypoxia- and cytokine-induced damage is suggested by the 
fact that exposure to high zinc concentrations abolishes 
the observed cytoprotective effect. We assume that a high 
load of zinc ions and consequent increase in cytosolic 
zinc hamper the ability of ZnT8 to regulate intracellular 
zinc concentrations. In the absence of stressors such as 
hypoxia or cytokines, ZnT8−/− islets are even more prone 
to zinc-induced cell death than WT islets, possibly because 
they are less armed with defensive mechanisms against 
high concentrations of intracellular zinc, for example, 
zinc-binding metallothioneins which have been shown 
to protect from Zn2+-induced cell death in different 
cell types (Wiseman et  al. 2006, Smith et  al. 2008). This 
corroborates our finding that hypoxia-induced expression 
of metallothioneins 1 and 2 (Mt1, Mt2) is impaired in 
pancreatic islets deficient in ZnT8 (Gerber et al. 2014).

Whereas high concentrations of zinc induce cell 
death in a wide range of cell types, it was also shown 
that zinc depletion negatively influences cell survival: in 
the rat insulinoma-derived β-cell line INS-1E, high zinc 
concentrations induced cell necrosis while zinc chelation 
induced apoptosis (Nygaard et  al. 2014). However, in 

Figure 4
The effect of cytokine treatment on GSIS in pancreatic islets from 
ZnT8−/− and WT mice. Mouse islets were incubated for 24 h with a 
cytokine mixture (1000 U/mL TNF-α + 1000 U/mL IFN-γ + 50 U/mL IL1-β, 
Mix). The insulin concentration (fmol/min/IEQ) in the supernatant was 
determined following incubation for 1 h in each 3.3 mM, 16.7 mM and 
again 3.3 mM glucose. Experiments were performed with three islet pools 
per condition (≥150 islets in each pool). Data are represented as  
mean ± s.d. **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001; Mann–Whitney U test 
was performed.

Figure 5
The effect of cytokine treatment on the 
expression of genes encoding zinc transporters in 
pancreatic islets. Mouse WT islets were incubated 
for 24 h with a cytokine mixture (Mix). (A) Slc30a 
(ZnT) mRNA expression, (B) Slc39a (ZiP) mRNA 
expression. (C) EndoC-βH5 cells were incubated 
for 24 h with a cytokine mixture (Mix) and protein 
expression was assessed by Western blot 
analysis. Data are expressed as mean ± s.d. n 
(replicates number) = 4; *P ≤ 0.05 **P ≤ 0.01,  
***P ≤ 0.001; Student’s t-test was performed.
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situations of cellular stress, these effects are probably 
shifted in favour of lower zinc concentrations, since the 
constitutively high concentrations of zinc in islet cells may 
exert an additive stress to the cell. From observations in 
neuronal tissues, where the interplay of hypoxic injury and 
zinc-mediated modulation of cell death has been studied 
extensively, it is known that zinc chelation by TPEN 
decreases apoptosis and cell death induced by oxygen and 
glucose deprivation (Liu et al. 2015, Wang et al. 2015, Zhang 
et al. 2017). This might also be true for pancreatic islet cells 
with a very high intracellular zinc content. In contrast, 
in the absence of exogenous stress, chelation of zinc 
might have adverse effects on islet cell survival as shown 
previously by Lefebvre et al. (2012) and also confirmed by 
our data demonstrating an increased cell death in islets 
treated with TPEN in the absence of hypoxia- or cytokine-
mediated stress.

Additional analysis of cell apoptosis in our analysis 
revealed that in the absence of cytokine exposure, there was 
no significant influence of zinc on islet cell apoptosis. Thus, 
we assume that the observed increase in islet cell death by 
zinc is mainly exerted by non-apoptotic cell death. This 
is in accordance with previously published data showing 
increased necrosis, but not apoptosis, when zinc was 
added to pancreatic β-cells (Chang et  al. 2003). However, 
zinc depletion was able to abrogate the effects of cytokines 
on apoptosis. Thus, regarding apoptosis, zinc is of limited 
effect in non-stressed β-cells even at higher concentration 
but becomes a major threat under conditions associated 
with increased apoptosis (i.e. cytokine exposure). The 
narrow line between pro-apoptotic and anti-apoptotic 
properties of zinc is well known from other settings, 
for example in cancer cells, where its effects vary widely 
depending on the cell type and other conditions (Franklin 
& Costello 2009).

While zinc depletion can be beneficial in situations of 
acute cell stress, it may compromise islet cell proliferation 
in the long run as suggested by our data and existing 
literature (Nygaard et al. 2014).

Of interest, both hypoxia (Gerber et  al. 2014) and 
cytokine exposure (El Muayed et  al. 2010) are known to 
mediate downregulation of the zinc transporter ZnT8 in 
pancreatic islets, which we confirmed in the present study, 
suggesting that this constitutes a protective mechanism, 
tasked with reducing intracellular zinc content and thus 
reducing the rate of cell death, an effect which can be 
abolished by adding excessive exogenous zinc. In this way, 
ZnT8 downregulation may counteract other cytokine-
mediated mechanisms that are known to increase 
intracellular zinc content (e.g. increased expression of 

Zip8 (Besecker et al. 2008)) and which may be particularly 
harmful in pancreatic β-cells.

Other mechanisms contributing to an inflammatory 
stress protection by ZnT8 downregulation have been 
shown previously, namely by promoting an adaptive 
protective unfolded protein (UPR) response (Merriman & 
Fu 2019). However, this was shown in a tumour cell line. It 
remains to be determined whether such mechanisms also 
apply to primary islet cells.

In contrast to cell survival, our data showed that 
glucose-stimulated insulin secretion from isolated islets 
treated with cytokines was not altered in ZnT8−/− islets 
compared to WT islets. Glucose-stimulated insulin 
secretion was however reduced in islets from both strains 
of mice when exposed to the cytokine mixture. Together 
with previous studies, this finding demonstrates consistent 
effects of cytokine exposure on insulin secretion over a 
broad range of cytokine concentrations (Kiely et al. 2007, 
Laporte et  al. 2019). Among other factors, induction of 
oxidative stress and restriction of mitochondrial capacity 
for oxidising pyruvate contribute to this effect (Barlow et al. 
2018).

As hypothesized by earlier studies, functional 
compensation by the Slc30a7 isoform, which encodes 
ZnT7, may reduce the impact of Slc30a8 deletion on islet 
function (Syring et  al. 2016). However, this effect might 
be limited since we observed a reduced transcription of 
Slc30a7 as well after cytokine treatment.

As a limitation of this study, using a global ZnT8 
ko model, the effects observed in islets may not be fully 
attributed to pancreatic β-cells, because other islets cells 
(i.e. α-cells) express ZnT8. However, since most of the 
differences in the ratio of live to dead cells were observed 
in the centre of the rodent islets (which is populated 
almost exclusively by β-cells) and since the vast majority 
of pancreatic islet cells consists of β-cells, it can be assumed 
that β-cells are probably the most important contributor to 
the observed effects.

It remains to be defined to what extent a decreased 
rate of cell death (and thus a suggested preserved mass of 
insulin-secreting cells with proper function) contributes to 
a protective effect of ZnT8 loss-of-function in the context 
of T2DM. Recent studies suggest an increased insulin 
secretion capacity of β-cells with ZnT8 loss-of-function 
to be the reason for a lower risk to develop diabetes 
(Dwivedi et al. 2019). However, our data demonstrate that 
mice lacking ZnT8 exhibit slightly worsened long-term 
glucose control, despite the better resistance of islets to 
hypoxia- or cytokine-mediated cell death. It might be 
possible that certain compensation mechanisms are in 
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place in vivo which cannot be stimulated in vitro, at least 
in mice. However, in line with our results, transgenic mice 
overexpressing the human hZnT8 R325W polymorphism 
(which is associated with a decreased susceptibility to 
T2DM) have reduced islet Zn2+ levels as well as higher 
glucose tolerance when fed a high-fat diet, as compared 
to their hZnT8 WT littermates (Li et al. 2017). In any case, 
future studies are likely to be necessary to understand 
the impacts of ZnT8 deletion as well as the action of 
presumed loss-of-function alleles (Kleiner et al. 2018) both 
in mice and in humans. An important goal is therefore to 
explain the apparent discordance between the impact of 
these alleles on β-cell function and survival vs glycaemic 
control and type 2 diabetes risk (Rutter & Chimienti 2015). 
Importantly, by demonstrating a mechanism through 
which ZnT8 inactivation may lead to resistance towards 
β-cell death in the longer term, while impairing glucose 
tolerance in the mouse in the short-term, our findings 
might provide an explanation for the protective effects 
towards diabetes of rare loss-of-function SLC30A8 alleles in 
man (Dwivedi et al. 2019).

In conclusion, our study provides evidence for a 
decreased rate of cell death in islets lacking the zinc 
transporter ZnT8 as compared to WT islets when exposed to 
different cellular stressors, such as hypoxia and cytokines. 
Thus, targeting ZnT8 remains an appealing therapeutic 
strategy against diabetes.
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This is linked to the online version of the paper at https://doi.org/10.1530/
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