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CLINICAL AND POPULATION STUDIES

Harnessing Whole Genome Polygenic Risk 
Scores to Stratify Individuals Based on 
Cardiometabolic Risk Factors and Biomarkers  
at Age 10 in the Lifecourse—Brief Report
Tom G. Richardson , Katie O’Nunain, Caroline L. Relton , George Davey Smith

BACKGROUND: In this study, we investigated the capability of polygenic risk scores to stratify a cohort of young individuals into 
risk deciles based on 10 different cardiovascular traits and circulating biomarkers.

METHODS: We first conducted large-scale genome-wide association studies using data on adults (mean age 56.5 years) 
enrolled in the UK Biobank study (n=393 193 to n=461 460). Traits and biomarkers analyzed were body mass index, systolic 
blood pressure, diastolic blood pressure, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, 
apolipoprotein B, apolipoprotein A-I, C-reactive protein and vitamin D. Findings were then leveraged to build whole genome 
polygenic risk scores in participants from the Avon Longitudinal Study of Parents and Children (mean age, 9.9 years) which 
were used to stratify this cohort into deciles in turn and analyzed against their respective traits.

RESULTS: For each of the 10 different traits assessed, we found strong evidence of an incremental trend across deciles 
(all P<0.0001). Large differences were identified when comparing top and bottom deciles; for example, using the 
apolipoprotein B polygenic risk scores there was a mean difference of 13.2 mg/dL for this established risk factor of 
coronary heart disease in later life.

CONCLUSIONS: Although the use of polygenic prediction in a clinical setting may currently be premature, our findings suggest 
they are becoming increasingly powerful as a means of predicting complex trait variation at an early stage in the lifecourse.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Polygenic risk scores (PRS) involve the aggregation 
of genetic variants scattered throughout the human 
genome to index an individual’s genetic risk of dis-

ease.1 Their use in applied research has become increas-
ingly popular in recent years, although their diagnostic 
capabilities in clinical settings remains a contentious 
point of discussion.2 Nevertheless, their utility in terms 
of stratifying cohorts of participants into high and low 
risk groups based entirely on their genetic variation con-
tinues to improve. This is predominantly due to samples 

sizes for genome-wide association studies (GWAS) con-
tinuing to grow in scale, which are conventionally used to 
identify weights for PRS.3

As an individual’s inherited genetic variants are typi-
cally fixed at conception, one of the major strengths of 
PRS is that they can be applied to identify participants at 
elevated risk of disease at an early stage in the lifecourse. 
A recent study by Khera et al explored this by harness-
ing a large number of genetic variants from across the 
human genome and constructing PRS in a longitudinal 
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cohort of young individuals from the ALSPAC (Avon Lon-
gitudinal Study of Parents and Children).4–6 Their PRS 
was capable of accurately stratifying participants into 
high and low risk groups based on measures of weight 
during childhood, for example identifying a difference of 
3.5 kg between the top and bottom deciles of partici-
pants by age 8 years (P<0.0001).

In this study, we conducted large-scale GWAS of 10 
different cardiometabolic risk factors and circulating bio-
markers based on an adult population (mean age: 56.5 
years) enrolled in the UKB (UK Biobank) study.7 Find-
ings from these analyses were then leveraged to derive 
whole genome PRS within the ALSPAC cohort to inves-
tigate the proficiency of PRS to stratify individuals during 
childhood (mean age, 9.9 years) into low and high risk 
groups based on their measures of each of these 10 
different traits.

MATERIALS AND METHODS
Because of the sensitive nature of the data collected for this 
study, requests to access the dataset from qualified research-
ers trained in human subject confidentiality protocols may 
be sent to the UK Biobank at https://www.ukbiobank.ac.uk/
enable-your-research/apply-for-access and ALSPAC at http://
www.bristol.ac.uk/alspac/researchers/access/.

GWAS in the UK Biobank
We conducted 10 GWAS in the UKB study on the follow-
ing traits; body mass index (field No. 21001), systolic blood 
pressure (field No. 4080), diastolic blood pressure (field No. 
4079), HDL-C (high-density lipoprotein cholesterol; field No. 
30760), LDL-C (low-density lipoprotein cholesterol; field 
No. 30780), triglycerides (field No. 30870), apolipoprotein 
B (field No. 30640), apolipoprotein A-I (field No. 30630), 
C-reactive protein (field No. 30710), and vitamin D (field No. 
30890; Table S1). The analysis protocol for these GWAS 
has been described in more details previously.8 Briefly, we 
excluded UKB participants on non-European descent based 
on K-means clustering (K=4) along with individuals with with-
drawn consent, mismatch between genetic and reported sex 
and putative sex chromosome aneuploidy. GWAS were then 
conducted using the BOLT-LMM software which accounts 
for population structure and cryptic relatedness in UKB using 
a linear mixed model.9 Analyses were additionally adjusted 

for age and sex with final sample sizes ranging between 
n=393 193 and n=461 460.

The Avon Longitudinal Study of Parents and 
Children
ALSPAC is a population-based cohort investigating genetic 
and environmental factors that affect the health and develop-
ment of children. The study methods are described in detail 
elsewhere.5,6 In brief, 14 541 pregnant women residents in 
the former region of Avon, United Kingdom, with an expected 
delivery date between April 1, 1991, and December 31, 
1992, were eligible to take part in ALSPAC. Detailed pheno-
typic information, biological samples, and genetic data which 
have been collected from the ALSPAC participants are avail-
able through a searchable data dictionary (http:// www.bris.
ac.uk/ alspac/ researchers/ our-data/). Written informed con-
sent was obtained for all study participants. Ethical approval 
for this study was obtained from the ALSPAC Ethics and Law 
Committee and the Local Research Ethics Committees.

We identified the same 10 traits as listed above in ALSPAC 
using data obtained from participants enrolled at mean age=9.9 
years old clinic (range=8.9 to 11.5 years old). Trait characteris-
tics in ALSPAC can be found in Table S2.

Statistical Analysis
We pruned the full list of genetic variants from GWAS results 
obtained from UKB analyses using linkage disequilibrium 
clumping. Our criteria was based on variants with an r2<0.1 and 
window distance of 1000 kbs using a previously derived refer-
ence panel of 10 000 random UKB European participants.10 
Next, we built PRS for each of the 10 cardiometabolic traits and 
circulating biomarkers using data from ALSPAC participants by 
summing trait increasing alleles weighted by their GWAS effect 
estimates. Linkage disequilibrium clumping and PRS construc-
tion were all performed using the software PLINK v2.0.11

We applied linear regression adjusting for age and sex to 
investigate the association between each whole genome PRS 
in ALSPAC in turn with their corresponding cardiometabolic 
trait or circulating biomarker. Analyses were repeated with 
additional adjustment for the top 10 genetic principal compo-
nents as a sensitivity analysis, although we did not envisage 

Nonstandard Abbreviations and Acronyms

ALSPAC  Avon Longitudinal Study of Parents and 
Children

GWAS genome-wide association study
HDL high-density lipoprotein
LDL low-density lipoprotein
PRS polygenic risk score
UKB United Kingdom Biobank

Highlights

• Using genetic data from up to 461 460 adults from 
the UK Biobank study, we derived weights to con-
struct whole genome polygenic risk scores for 10 
different cardiometabolic traits and biomarkers.

• We then built polygenic risk scores using data from 
a cohort of young individuals enrolled in the Avon 
Longitudinal Study of Parents and Children (mean 
age 9.9 years) who additionally had measures for 
each of the 10 different traits.

• Each of the 10 different polygenic risk scores were 
found to be strong genetic predictors capable of 
accurately stratifying participants into risk deciles 
during this early stage in the lifecourse.



CL
IN

IC
AL

 A
ND

 P
OP

UL
AT

IO
N 

ST
UD

IE
S 

- A
L

Richardson et al Polygenic Prediction in Young Individuals

364  March 2022 Arterioscler Thromb Vasc Biol. 2022;42:362–365. DOI: 10.1161/ATVBAHA.121.316650

that population stratification would influence findings given 
that all participants from the ALSPAC cohort were based in the 
country of Avon in the United Kingdom. Log transformations 
were conducted to ensure that traits were normally distrib-
uted. Next, we compared the proportion of variance explained 
between baseline models which just included age and sex with 
those additionally including the whole genome PRS.

Lastly, PRS were used to stratify the ALSPAC population 
into deciles and linear regression was applied again to inves-
tigate evidence of a linear trend across groups for each trait 
in turn. As a sensitivity analysis, we also compared the per-
formance of the apolipoprotein B PRS in stratifying ALSPAC 
participants into deciles based on their measure of non-HDL 
cholesterol. This was derived by subtracting ALSPAC indi-
viduals’ measures of HDL cholesterol from their measures 
of total cholesterol.

RESULTS
We found strong evidence of association between each 
of the 10 whole genome PRS and their corresponding 
traits measured in predominantly prepubertal individuals 
enrolled in the ALSPAC study (Table S3). As expected, 
repeating analyses with additional adjustment for the top 
10 genetic principal components made negligible differ-
ences to results (Table S4). Furthermore, the proportion 
of variance explained increased dramatically by includ-
ing PRS into baseline models (Table S5), with the largest 
change being identified for HDL cholesterol (r2=0.095). 
Additionally, we observed clear incremental trends across 
deciles after stratifying the ALSPAC sample according to 
each of the 10 whole genome PRS (Figure), with large 
mean differences found between top and bottom deciles. 
For example, in the analysis regarding apolipoprotein B, a 
risk factor for coronary artery disease in later life,8,12 the 
mean measure among participants allocated to the top 
decile was 65.4 mg/dL, which was markedly different to 
the mean level of those grouped in the bottom decile (52.6 
mg/dL). A strong linear trend was additionally found across 
deciles of non-HDL cholesterol using the apolipoprotein 
B PRS (P=3×10−64; Figure S1). The weakest evidence 

of a linear trend using these PRS was for C-reactive pro-
tein (P=7×10−05), which we postulate may be due to the 
factors contributing to GWAS associations identified in a 
population of adults having less influence during childhood. 
All other results from this analysis can be found in Table S6.

DISCUSSION
The findings of this work provide compelling evidence 
supporting the power of whole genome PRS in helping 
prioritize individuals with elevated levels of cardiometa-
bolic traits and biomarkers during early life. This is likely 
due in no small part to recent large-scale GWAS sample 
sizes, which are anticipated to grow exponentially over 
the forthcoming years. Ultimately, the future of polygenic 
prediction may exist when being applied in conjunction 
with nongenetic risk factors, such as molecular traits. For 
example, integrating PRS with data on DNA methyla-
tion, an epigenetic marker which unlike germline genetic 
variation may substantially vary throughout the lifecourse, 
may yield additive benefit to disease prediction.13 Like-
wise, information on family history may further improve 
polygenic prediction, with a recent study suggesting this 
may be particularly valuable for endeavours conducted in 
diverse populations of non-European ancestry.14 Future 
methodology in this space requires careful consideration 
regarding the most appropriate manner to integrate these 
types of data, particularly as combining them under the 
assumption of orthogonality (ie, whether 2 variables lie 
perpendicular to one another and, therefore, contribute 
independent information) is likely to inflate the predictive 
performance of these models.15 This is particularly attrac-
tive, given that the PRS leveraged in this study typically 
explained a relatively small proportion of variance in their 
corresponding traits, which has been reported by previous 
investigations of PRS.16 Furthermore, although GWAS 
performed in cohorts of adults are typically available in far 
larger sample sizes compared with those undertaken in 
young populations,17 it has been demonstrated recently 
that PRS weighted by GWAS estimates derived using 

Figure. Error plots illustrating the mean measurement and 95% CIs within deciles as determined using whole genome 
polygenic risk scores (PRS) applied within the ALSPAC (Avon Longitudinal Study of Parents and Children) cohort.
Each PRS was weighted using on findings from genome-wide association studies on their corresponding traits undertaken in populations of 
adults enrolled in the UK Biobank study. HDL indicates high-density lipoprotein; and LDL, low-density lipoprotein.
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childhood-based measures may be optimal in predicting 
complex traits in early life.18

CONCLUSIONS
While the potential use of PRS in a clinical setting 
remains premature, the findings of our study suggest 
that they may provide future merit in terms of consider-
ing interventions at an early stage in the lifecourse.
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