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Abstract

The outbreak of COVID-19 has affected the economy worldwide due to entire countries
being on lockdown. This has been highly challenging for governments facing constraints in
terms of time and resources related to the availability of testing kits for the virus. This paper
develops an optimal method for multiple-stage group partition for coronavirus screening
using a dynamic programming approach. That is, in each stage, a group of people is divided
into a certain number of subgroups, each will be tested as a whole. Only the subgroup(s)
tested positive will be further divided into smaller subgroups in the next stage or individuals
at the last stage. Our multiple-stage group partition scheme is able to minimize the total
number of test kits and the number of stages. Our scheme can help solve the test kit shortage
problem and save time. Finally, numerical examples with useful managerial insights for
further investigation are presented. The results confirm the advantages of the multi-stage
sampling method over the existing binary tree method.
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1 Introduction

The World Health Organization (WHO) declared a pandemic over a new coronavirus on
March 11th, 2020 after observing the spread of the virus over 114 countries with 118,000
cases and 4291 deaths (WHO, 2020). The spread of the new coronavirus has globally affected
the supply of goods and materials (Zandkarimkhani et al., 2020; Ivanov, 2020; Queiroz
et al., 2020). The supply chain disruption due to COVID 19 is causing economic downfall
worldwide, which is evident from the negative GDP growth rate in several countries around
the world (Saltzman (2020). The supply chain disruption is expected to persist till herd
immunity is achieved; till than, every country will reply on vaccination, and testing and
isolating coronavirus patients to minimize the spread of diseases.

An effective strategy to fight against the coronavirus is to aggressively test as many people
as possible. More testing helps to know the movement of the virus through the population,
tracing of the infected people, isolating their contacts, and identifying the hot spots for locking
down, all of which lead to the prevention of large-scale spread. However, almost every country
is suffering from the scarcity of testing kits to accurately track the new coronavirus. To help
deal with the scarcity of testing kits, many news and research articles advocate the group pool
testing method for coronavirus screening (Biswas, 2020; Conger, 2020; Cosh, 2020; Gossner
& Gollier, 2020, Eberhardt et al., 2020, Sinnott-Armstrong, (2020), Yelin et al., 2020, Brault
et al., 2021). The group pool testing method allows ruling out a considerable number of
samples with one test. According to Cosh (2020), Technion, Israel Institute of Technology
has conducted a successful trial of group pooling testing method using polymerase chain
reaction (PCR) for the presence of the coronavirus. The Group pool testing method mixes
multiple swabs and performs a single test for the whole group. If the group test result is
negative, then the whole group is ruled out for virus infection. Otherwise, further testing of
each individual is performed in the infected group to identify the infected people.

This paper exhibits a situation of group testing where a positive case is present. According
to Cosh (2020), the pooled test with 64 people at a time could yield a positive test result even if
only one person in the group is infected with the coronavirus. Thus, the remainder of the paper
assumes that a group pool testing of 64 people is possible with reasonable accuracy. This
paper finds an effective way to identify the person infected with coronavirus in a group of 64
samples, which has shown a positive report. We also propose and demonstrate a generalized
method for identifying infected persons among n samples.

The basic group pool testing approach states that if a group pooling test of 64 samples is
found to be positive, then further testing of individuals in the group is performed to identify
a person infected with the coronavirus. This testing method requires a total of 65 test kits to
identify the infected person. The basic group testing requires two times swab collection from
64 individuals. The first sample is collected for the group pool testing, and the second sample
is collected for the individual testing. Without loss of generality, we assume that the swab
collection is time-sensitive, and thus, multiple swab collections for later use can affect the
testing accuracy. If the 64 samples can be further divided into different subgroups, then the
number of required test kits can be further reduced. Although the subgroup testing increases
the number of swab collections, the additional cost can be used as a part of a trade-off with
the reduction of the required total number of test kits. The existing multi-stage group testing
method uses a binary tree method to identify the infected person. In the binary tree method, a
group with a positive report is further divided into two groups in the next stage. The existing
binary tree method is shown in Fig. 1 for a 16 sample.
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Fig. 1 A binary tree group testing method for 16 sample

A disadvantage of the existing multi-stage method is that it does not consider the minimiza-
tion of stages. To overcome this problem, the current paper proposes a general multi-stage
group testing method in which a group with a positive report can be divided into any num-
ber of groups in the next stage. The proposed multi-stage sampling method finds the optimal
regrouping strategy in different stages. The primary objective is to minimize the total number
of test kits, and the secondary objective is to minimize the number of stages.

This paper contributes to the literature in many ways. This paper introduces a deterministic
model as opposed to the probabilistic model in the group testing method. The group testing
model found in the literature considers the fixed number of subgroups at every stage. This
paper introduces a generalized version of the multi-stage group testing methods in which the
number of subgroups varies in each stage. In our knowledge, the dynamic programming (DP)
approach is the first time used in this paper to analyze the group testing methods. The dynamic
programming approach finds the optimal number of test kits for the group testing method. This
paper also illustrates how a basic optimization model can address medical/clinical/healthcare
questions.

The remainder of the paper is organized as follows. Section 2 provides a basic back-
ground of the stage sampling method with a numerical example. Section 3 briefly reviews
the literature on group pool testing and dynamic programming. Section 4 provides a general
problem definition for n samples and develops a dynamic programming method to solve the
proposed multi-stage problem. Section 5 provides numerical experiments and managerial
insights. Lastly, the paper is concluded in Sect. 6.

2 Problem background and multi-stage sampling method

This paper defines the term stage sampling method in which the stage represents the maximum
number of swab samples collected to identify the infected person. The one-stage-sampling-
method requires just one swab sample collection; the two-stage-sampling-method requires
two swab collections etc. Most countries are currently using the one-stage sampling method
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in which just one swab sample per person is collected to identify the infected person. The
basic group testing method falls under the category of two-stage-sampling-method because,
at maximum, it requires two swab sample collections per person. The first swab sample is
collected for group testing at the first stage, and the second swab sample is collected for
individual testing at the second stage.

We explain the three-stage-sampling-method using a numerical example. The example
seeks to find an infected person among 64 individuals. The objective is to minimize the
number of test kits. We assume that only one person is infected out of the 64 individuals.
In the three-stage-sampling-method, three swab samples are collected to identify the person
infected with the coronavirus. First, a group test of 64 samples is performed at the first stage.
In the second stage, 64 individuals are further divided into m sub-groups, and each sub-group
is tested. Since there is only one person infected among 64 individuals, only one of the
subgroups would show a positive report, and the remaining (m-1) subgroups would show a
negative report. The members from the subgroup with the positive report are finally tested
individually at the third level. In the three-stage-sampling-method, the number of feasible
solutions depends on the number of subgroups formation at the second stage. Some of the
feasible solutions are shown in Table 1. We do not list all the possible feasible solutions
because, after some point, the objective function starts increasing due to the convex property
of the problem.

We illustrate the calculation of objective function (i.e., number of test kits) for solution
2. In solution 2, the first 64 swab samples are tested at the first level. At the second level,
swab samples are collected for the second time for all 64 individuals, but they are divided
into three subgroups with 21, 21, and 22 samples, respectively. Finally, at the third level, all
22 individuals will be tested in the worst-case scenario. Solution 2 requires 1 test kit at the
first stage, 3 test kits at the second stage, and 22 test kits at the third stage. Therefore, a total
of 26 test kits is required under solution 2.

It is clear from Table 1 that when the number of subgroups increases at the second level,
the number of individual tests at the third level reduces, which eventually reduces the total

Table 1 A numerical example of the three-stage sampling method

Feasible Number of Size of group samples Individual Total
solution subgroups at the samples number of
second stage test Kits
Stage 1 Stage 2 stage 3

Solution 1 2 64 32,32 32 35
Solution 2 3 64 21,21,22 22 26
Solution 3 4 64 16, 16, 16, 16 16 21
Solution 4 5 64 12,13,13,13,13 13 19
Solution 5 6 64 10,10,11,11,11,11 11 18
Solution 6 7 64 9,10,10,10,10,10,10 10 18
Solution 7 8 64 8,8,8,8,8,8,8,8 8 17
Solution 8 9 64 7,1,1,1,1,1,1,1,8 8 18
Solution 9 10 64 6,6,6,6,6,6,7,7,7,7 7 18
Solution 10 11 64 5,5,6,6,6,6,6,6,6,6,6 6 18
Solution 11 12 64 5,5,5,5,5,5,5,5,6,6,6,6 6 19
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Fig. 2 Optimal group partition for 64 samples in three stages

number of required test kits. However, after some point, an increasing number of subgroups
does not bring any benefit in reducing the total number of required test kits. That is to say,
the total number of test kits required increases after some optimal level of subgrouping. If
the number of test kits is considered as a function of the number of groups at the second
level, then this function is convex. This property can be verified using the recursive equation
described in Sect. 4.

As shown in Table 1, the optimal solution (i.e., solution 7) has an objective function value
of 17. In solution 7, 64 samples are tested in the group at the first stage, and then these 64
individuals are divided into 8 groups with 8 members in each group. Finally, at the third level,
8 samples are tested individually. This sub-grouping method is shown in Fig. 2.

3 Literature review

The group testing problem has received considerable attention recently after the coronavirus
epidemic (e.g., Ben-Ami et al., 2020, Delaigle et al., 2020, Khodare et al., 2020). The pop-
ularity of the group testing can be seen from the number of articles available in medRxiv
archive, which provides an archive for unpublished manuscripts in the medical, clinical,
and related health science (https://www.medrxiv.org/). The research papers available in this
archive advocate the use of group testing for efficient screening of coronavirus (Yelin et al.,
2020, Sinnott-Armstrong, 2020). The general group testing problem aims to identify a small
set of k infected individuals out of population size (Aldridge et al., 2014, Aldridge, 2018). In
Aldridge et al. (2014), they focused on the group testing problem where the test structure is
given via a Bernoulli random process. They then compared the performance of four detection
algorithms via simulations. In Aldridge (2018), they studied nonadaptive probabilistic group
testing in the linear regime, where each item is defective independently.
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The group testing protocol was first introduced by Dorfman (1943) during World War II to
efficiently remove the Army men who had syphilis. The work of Dorfman (1943) was further
advanced in the literature, such as Saraniti (2006), Feng et al. (2010), and Li et al. (2014).
All these methods assumed that the test results were perfect. Specifically, Saraniti (2006)
proposed three pooled testing techniques for generic testing conditions and then applied
them to demonstrate potential costs savings for universal HIV screening in the United Stated
and Thailand. Feng et al. (2010) developed a general two-stage model that uses stochastic
dynamic programming at stage 2 for the optimal group sizes and nonlinear programming at
stage 1 for the optimal number of group-testable units. Li et al. (2014) developed group both
adaptive and non-adaptive testing algorithms to identify with high probability the subset of
defectives via nonlinear (disjunctive) binary measurements.

More recently, Aprahamian et al. (2019) studied the group testing method for subject-
specific risk characteristics and imperfect tests. They reduced the problem as a partition
problem and developed efficient algorithms to solve the problem.

Collier and Gossner (2020) advocated the group testing method as an efficient strategy for
identifying the presence of the virus. Specifically, they proposed a testing protocol to identify
an infected person by dividing a positively reported group into two subgroups for testing in
the next stage.

Assad et al. (2020) relied on numerical simulations to check the effectiveness of the group
testing protocol using the Binary Elimination Algorithm. They find that the total number of
testkits depends on the pool size and the percentage of positive samples, i.e., the percentage of
virus carries in the population. In particular, the group testing protocol can be ineffective for
reducing the number of required test kits if the percentage of positive samples is reasonably
large (e.g., 4%).

The method proposed by Collier and Gossner (2020) and Assad et al. (2020) can be named
a Binary Tree Method because it divides the group into two groups in every stage. Eberhardt
et al. (2020) developed a multi-stage testing scheme that tests samples in groups of various
pool sizes in multiple stages. This scheme is designed based on two integers: y (divisor) and k
(number of stages). The initial pool size N = y*~! is divided by y into each subsequent stage,
resulting in pool sizes y*~!, y¥=2, ... y0, where y° = 1. By setting y = 2, the multi-stage
group testing method reduces to the binary tree method.

The method proposed in this paper is a generalized version of the multi-stage group
testing method, which allows different groups in different stages. Furthermore, while the
group testing methods available in the literature do not consider the minimization of the
number of stages, our model considers the minimization of the number of stages along with
the minimization of the number of tests. In addition, our method provides an optimal solution
for a specified number of stages as well. The optimization in our model is implemented using
dynamic programming.

The group partition problem considered in this paper is closely related to the cluster
analysis problem in which the group is partitioned optimally. The application of a dynamic
programming approach for solving cluster analysis problems can be found as early as Jansen
(1969). The clustering problem is also known as the k-clustering problem because it involves
partitioning » entities into k disjoint and nonempty subsets such that some objective function
can be optimized. The recursive equation proposed by Jansen (1969) was improved by Van
et al. (2004) by removing the duplicate calculation. They proposed redundant and quasi-non
redundant methods to solve the clustering problem. Jessop (2010) considered a variant of the
k-clustering approach, which determines the number of clusters along with the members of
each cluster. Brusco et al. (2017) considered another variant of the k-clustering problem based
on Gaussian model-based partitioning criteria. Babaki et al. (2014) considered a constrained
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clustering problem, where the constraints considered are must link constraints, can not link
constraints and anti-monotone constraints on individual clusters. Aloise et al. (2012) proposed
column generation embedded with branch and bound to solve the problem. Our problem is
different from the k-clustering problem in the way that the objective function of the cluster
is equal to the size of the cluster. Also, our problem partitions a group into many stages, and
the grouping in a given stage depends on the grouping at the immediately preceding stage.

A dynamic programming approach has been used to solve various problems. The popular-
ity of dynamic programming can be seen from the fact that Google Scholar’s search with the
keyword “dynamic programming” produced more than 100 articles in the first 4 months of
the year 2020. Some examples of dynamic programming applications are lameness detection
in dairy herds (Kanyamattam et al., 2020); reservoir operation (Rani et al., 2020); peak detec-
tion in Genome data (Hocking et al. (2020)); power optimization (Xu et al., 2020); periodic
review model (Voelkel et al., 2020); aircraft maintenance scheduling problem (Deng et al.,
2020); and aeromedical evacuation dispatching (Robbins et al., 2020, Summers et al., 2020).
These studies confirm that the dynamic programming approach indeed has a wide variety of
applications.

4 Problem definition and dynamic programming approach

This section first presents the description of the multi-stage group testing (MSGT) problem,
and then it describes the dynamic programming approach to the MSGT problem with a known
number of stages.

4.1 Problem definition

The multi-stage group testing (MSGT) problem for coronavirus screening can be defined
as follows. There is a group of n people, and only one of them is the virus carrier. This
group can be tested either in a group or individually. Each test provides either a positive or
a negative report. If a group test is found to be negative, then every member of the group is
considered a negative. If a group test is found to be positive, then further testing is performed
in the next stage for the group. The complete test is performed in T stages. In the first stage,
a single group test of n samples is performed. From stage 2 to stage (7-1), group tests are
performed for more than one sample at each stage. In the second stage, n samples are divided
into the my groups. Similarly, in other stages, the required samples are divided into different
groups. Finally, at the T™" stage, an individual test is performed. Each group test and each
individual test require just one medical kit. The problem involves finding the optimal number
of subgroups for each stage from stage 2 to stage (7-1) (i.e., m3, m3, ..., m}._,) to identify
the member infected with the coronavirus. The first stage tests n samples in a group, while
the last stage tests remaining samples individually. Therefore, the first and the last stage do
not require finding optimal groups. The group partitioning problem for coronavirus testing
aims to minimize the number of medical kits of n samples in T stages.

4.2 Dynamic programming approach
The MSGT problem can be optimally solved using dynamic programming (DP) approach.

The proposed DP approach mainly solves 7-stage problem to find out the minimum number
of required test kits. The dynamic programming (DP) problem needs recursive equations
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to identify the minimum number of required test kits at 7th stage (Winston, 2004). The DP
requires the definition of ‘stage’ and ‘state’. The ‘stage’ defined in the problem represents
the ‘stage’ of DP. The number of group formation in the immediate next stage represents the
‘state’. We define the following terminologies to identify positive reports among n mixed
samples in T stages:

F"*'(I) The number of optimal required kits for / samples in remaining T — ¢ stages, if
my41 group tests are performed in the (1 4+ 1)'” stage.

F;(I) The number of optimal required kits for processing / samples in remaining 7 — ¢
stages.

f™ The number of required kits at the (r 4+ 1)" stage for testing m groups.

The proposed DP approach works in a backward direction. First, we find the optimal
solution for (T — 1)” stage and then move back towards stage 1.

4.2.1 Initialization and boundary condition

Our DP approach starts with the (7 — 1) stage which is the last stage when group test
is performed. The last stage is the T*" stage in which an individual test is performed. The
optimal number of test kits required at the (T — 1)/ stage can be initialized as follows.

Froi() = 14+1Vl=2,..n 1)

In this equation, one group test is performed at (T — 1)** stage and then [ individual test
is performed at the last stage (i.e., T*" stage). Hence, the total of 1 + [ test Kits is required
if the second last stage performs a group test of / samples. The boundary condition for one
sample at rth stage can be initialized as follows:

F(l) =coVt=1,...T—1 2)

The above equation indicates that a group test with only sample is not allowed at any stage
from 1Ist till (T — 1) stage.

4.2.2 Recursive equations of remaining stages

After initializing the (T — 1)'" stage, the DP programming finds optimal solution for remain-
ing T-2 stages, starting from (7' —2)" stage to the Ist stage. The following recursive equation
is used to calculate F,""*' (1):

F,m‘“(l) = f" 4 F(Tl/m)) Ym=2,..1 3)

In this equation, the first term represents the number of required test kits at the immediate
next stage. If m, | group tests are performed at the (¢ 4 1)” stage, m, 4 test kits are required
(i.e.,f™+!' = my41). The second term represents the optimal kits needed if [n/m] requires
further testing to identify the infected person in remaining 7' — ¢ stages. The term [n/m]
represents the nearest integer for //m rounded up.

Inthe (t+1)"" stage, the optimal m, | groups are formed from / samples. The optimal ;|
partition aims to minimize the number of samples with the largest group. Simple observation
shows that the size of the largest groups will be [I/m;41] in the optimal partitioning of /
samples in m; 11 groups. Consider a simple example of partitioning 13 samples into 5 groups.
In the optimal partitioning, 2 samples will be assigned to each group initially, which will
make a total 10 sample assignments to different groups. The remaining 3 samples can be
assigned to any three groups, with 1 sample in each group. Thus, the optimal 5 partitioning
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for 13 samples will be 2,2,3,3 and 3. In the worst-case scenario, the largest group will show
a positive report. In this case, further testing is required for the largest group with [I/m]
members in the remaining 7 — ¢ stages. The second term of Eq. (1) represents the optimal
solution for testing [//m] swab samples in ¢-1 stages. Given the definition of F,m’+1 (1), the
optimal value of F;(/) can be expressed as follows:

F1) = m,+1=r2i?,1/2+1 (F"'()) Yt =1,..,T -3 “4)

The value Fj(n) provides the optimal number of test kits for processing n samples in T’

stages. The primary objective of the MGMT problem is to minimize the required test kits for

a given value of T', while the secondary objective is to minimize the number of stages. The DP

approach described in this section is mainly designed for the primary objective. The problem
can be repetitively solved for different values of T to achieve the secondary objective.

5 Numerical results

The dynamic programming method proposed in this paper is a general approach with a few
lines of code in any language. We use C + + language to code the proposed DP problem.
We provide numerical experiments for 64 samples in Sect. 5.1. We then illustrate the optimal
partition for 64 samples and discuss the findings. The results for 64 samples are useful for
a country like Israel which has developed the method for testing up to 64 samples with
accuracy. In Sect. 5.2, we provide the optimal solution for sample sizes starting from 5 up
to 100. The results provided there can be used by any country based on their capability to
process group samples with accuracy. In Sect. 5.3, we provide managerial insights into the
proposed group testing method.

5.1 Numerical experiments for a sample size of 64

This subsection describes the optimal partition of 64 samples in T stages. The optimal solution
for a 3-stage sampling method for 64 samples is already illustrated in the problem background.
The summary of the optimal solution for the 3-stage group testing problem until the 7-stage
group testing problem is summarized in Table 2. We don’t need a group testing method with
more than 7 stages because dividing 64 samples into more than 7 stages brings 1 sample

Table 2 The optimal group partition for 64 samples

Number Size of group testing () Min

of Stages number

(M) Ist 2nd Stage 3rd 4th Sth 6th 7th of kits
Stage Stage Stage Stage Stage Stage

3 64 8,8,8,8,8,8,8,8 8* 17

4 64 16,16,16,16 4,444 4% 13

5 64 32,32 16,16 4444 4% 13

6 64 32,32 16,16 8,8 4.4 4% 13

7 64 32,32 16,16 8,8 4.4 22 2% 13

* Indicates individual tests
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test in some of the earlier stages, which increases the total number of kits requirements. Our
dynamic programming model provides a BigM value for more than 7 stages because of the
boundary condition shown in Eq. (4).

The results reported in Table 2 show that the 3-stage group testing method needs 17 kits.
The number of kits reduces to 13 for the 4-stage group testing method. The total number
of required kits does not decrease further for an increasing number of stages. The results
bring an interesting insight into the group partitioning problem. For a sample size of 64,
the binary testing method used in current literature seems to provide the optimal solution
(in terms of the number of kits) for the multi-stage group testing problem. In Table 2, the
binary testing method corresponds to the 7-stage group sampling method. In the 7-stage
group testing problem, groups are divided into two groups in every stage. The 7-stage group
testing problem requires 13 kits which is the minimum number of kits requirement. However,
the minimum number of kits requirements can be obtained at the 4-stage group sampling
problem as well as illustrated in Fig. 3. In the 4-stage sampling problem, the first 64 samples
are tested in the 1st stage. In the second stage, 64 samples are divided into 4 groups with
16 members in each group. One of these groups would show a positive report, and thus 16
members have divided again in the 3rd stage. In the 3rd stage, 16 members are divided into
4 groups with 4 members in each group. One of these groups will show a positive result
which is finally tested individually at the 4th stage. The 4-stage sampling requires 1 kit at the
first stage, 4 kits at the second, third, and fourth stage. Thus, for the optimal 4-stage group
sampling, the total number of kits required is 13.

Stage 1
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~N e e o o
N/ \_/ \_/ \_/ \_/ \_/
Tava aveve ala avalalelale )
U \J J O U ) U / OO O
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Fig. 3 Optimal grouping configuration for 64 samples in 4 stages

@ Springer



Annals of Operations Research

The results reported in Table 1 also indicate that the optimal number of kits for the
multi-stage group partition problem follows nonincreasing order with stages. Because of
this property, the proposed dynamic program can also be used to minimize the number of
stages along with the minimization of the number of kits. Thus, the optimal solution to the
group testing problem is the 4-stage group test, when the primary objective is to minimize
the number of test kits, and the secondary objective is to minimize the required number of
samples. The stage directly represents the maximum number of samples collected from an
individual to identify the person infected with the coronavirus. Since every country is trying
its best to flatten the curve of coronavirus cases, it is necessary to identify positive patients
quickly. The number of stage minimizations is directly related to the time minimization to
identify the positive case. The proposed MSGT model not only optimizes the total number
of required kits but also reduces the time required to identify the positive report.

5.2 Numerical experiments for different sample sizes

This subsection provides the optimal solutions for different sample sizes capacity. The sample
size capacity represents the ability of the country/province/organization/institute/laboratory
to perform a group test with reasonable accuracy. Different reports available in public indicate
that different organizations have developed methods to test the group pools of samples for a
different maximum capacity. Therefore, we provide the optimal solutions for different sample
sizes with the primary objective to minimize the number of test kits and secondary objectives
to minimize the number of stages. We also report the solution for the existing Binary Tree
group testing method for comparison purposes.

The results reported in Table 3 compare the solution in terms of the number of kits and
the number of stages for the binary tree method and the multi-stage group testing method
proposed in this paper. The results reported in Table 2 shows that our proposed method
produces a better solution than the existing binary tree method for both the number of kits
and the number of stages. For a sample size of 10, the MSGT method requires 8 kits and 3
stages while the binary tree method requires 9 kits and 5 stages. For a sample size of 99, the
MSGT method requires 14 kits and 5 stages, while the binary tree method requires 15 kits
and 8 stages.

The results reported in Table 3 can be used by an organization to determine the minimum
total number of kits required and the optimal number of sample collections according to their
ability to process group tests. If an organization can test the group of 10 samples, then they
need 8 kits in 3 stages. They need to collect swab samples 3 times to identify the person
infected with the coronavirus. If an organization has the capability to test the group of 99
samples, then they need just 14 kits and require 5 swab collections. The results reported
in Table 3 also indicate that the required test kits increase with sample size. However, the
increase in required kits with sample size is marginal. A sample size of 10 requires 8 test
kits, while a sample size of 99 requires 14 test kits. The results indicate that an ability to test
larger samples makes the coronavirus screening fast and efficient.

5.3 Managerial implications

The multi-stage group testing problem for coronavirus testing is an important and timely
study to identify potential threats resulting from the COVID-19 pandemic. Our approach
developed in this research can minimize the number of test kits required and the number of
stages when identifying infected persons. The optimization is carried out using the dynamic
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programming approach. The main challenge of implementing our method in real-life situation
is the capability to test a group of samples with acceptable accuracy. The publicly available
news article indicates that different countries have developed different methods to test group
samples. For example, researchers from the Stanford School of Medicine have developed the
capability to test 10 samples with reasonable accuracy, and they have successfully conducted
group pool tests in the Bay Area of USA (Conger, 2020). Researchers at the German Red Cross
Blood Donor Service in Frankfurt and the University Hospital Frankfurt have successfully
tested 10 samples for coronavirus using PCR (polymerase chain reaction) procedure (Pool
Testing of SARS-COV-02 (2020)). Researchers from the Israel Institute of Technology have
successfully tested 64 samples using the PCR procedure (Cosh, 2020. The results obtained in
this paper help to know the optimal group partition for different sample sizes, which depend
on the country’s capability to perform group tests.

Another managerial implication for our method is its ability to provide an optimal solution
for a specified number of stages. The number of stages is directly proportional to the time
taken to identify an infected person. Depending on the availability of resources and virus
growth, the administration can specify the number of stages to identify an infected person.
At the beginning of the pandemic (around mid-March 2020), many provinces in Canada
took one day to get the results for the COVID-19 test. In this situation, 4 stages would
have required 4 days to identify the infected person. During this period, positive cases were
moving exponentially. In this situation, the administration could have specified the shorter
stages (say 2 or 3 stages) for group testing. On the other hand, the administration can specify
longer stages when the prevalence rate is low.

Even though the problem considered in this paper is limited to a single positive case within
the group, it can easily be extended to assist in identifying multiple positive cases within the
group. This approach can motivate new research in other multi-stage group testing problems
to contain the spread of the coronavirus disease.

6 Conclusions and future research

In this paper, we have addressed the need of the hour and developed a dynamic programming
method for multi-stage group testing for screening viruses during the COVID-19 pandemic.
The proposed model advocates sampling different group sizes at different stages contrary to
the existing binary tree method, which uses just two groups in every stage. It also minimizes
the total number of test kits and the number of stages. The reduced number of test kits signifies
the optimal use of resources, while the number of stages reduces the time required to identify
the infected person. Both objectives ultimately help in the screening of coronavirus very
quickly which is the most vital parameter for every country to save their economy caused
by the pandemic lockdown. The approach developed in this paper also obtains an optimal
solution for a specified number of stages. Our model facilitates a formulation that more
closely conforms to real situations. This has been confirmed by several numerical examples
that address the proposed approach and illustrate its applicability in real-life situations.

The method developed in this paper and the results obtained in this paper can be used
for framing the policy of the group testing method because of its simplicity. The proposed
policy for 64 samples group testing would be testing 4 groups with 16 members in the second
stage, 4 groups with 4 members in the third stage and finally 4 individual testings. For other
samples, similar policies can be framed using the results reported in our paper. If implemented
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properly and timely, the proposed approach could prove to be a breakthrough in the proper
utilization of testing resources and thus flatten the infection curve.

One limitation of our multi-stage group partition method is the assumption of a single
positive case in the group. However, this paper provides a foundation for more general multi-
stage group testing methods. Future research can analyze the case of more than one infected
person in a group.

Funding The research is funded by: Canadian Network for Research and Innovation in Machining Technol-
ogy, Natural Sciences and Engineering Research Council of Canada (Grant # 213090), and CN through the
Centre for Supply Chain Management, Wilfrid Laurier University.
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