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Abstract

Generating a novel and optimized molecule with desired chemical properties is an essential part 

of the drug discovery process. Failure to meet one of the required properties can frequently lead 

to failure in a clinical test which is costly. In addition, optimizing these multiple properties is a 

challenging task because the optimization of one property is prone to changing other properties. 

In this paper, we pose this multi-property optimization problem as a sequence translation process 

and propose a new optimized molecule generator model based on the Transformer with two 

constraint networks: property prediction and similarity prediction. We further improve the model 

by incorporating score predictions from these constraint networks in a modified beam search 

algorithm. The experiments demonstrate that our proposed model, Controlled Molecule Generator 

(CMG), outperforms state-of-the-art models by a significant margin for optimizing multiple 

properties simultaneously.
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1 INTRODUCTION

Drug discovery is an expensive process. According to Dimasi et al. [8], the estimated 

average cost to develop a new medicine and gain FDA approval is $1.4 billion. Among this 

amount, 40% of it is spent on the candidate compound generation step. In this step, around 

5,000 to 10,000 molecules are generated as candidates but 99.9% of them will be eventually 

discarded and only 0.1% of them will be approved to the market. This inefficient nature 

of the candidate generation step serves as motivation to design an automated molecule 
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search method. However, finding target molecules with the desired chemical properties is 

challenging because of two reasons. First, an efficient search is not possible because the 

search space is discrete to the input [22]. Second, the search space is too large that it reaches 

up to 1060 [28]. As such, this task is currently being tackled by pharmaceutical experts and 

takes years to design. Therefore, this paper aims to accelerate the drug discovery process by 

proposing a deep-learning (DL) model that accomplishes this task effectively and quickly.

Recently, many methods of molecular design have been proposed [3, 5, 10, 12, 14, 

23, 27, 32, 33, 42]. Among them, Matched Molecular Pair Analysis (MMPA) [13] and 

Variational Junction Tree Encoder-Decoder (VJTNN) [21] formulated molecular property 

optimization as a problem of molecular paraphrase. Just as a Natural Language Process 

(NLP) model produces paraphrased sentences, when a molecule comes in as an input 

to these models, another molecule with improved properties is generated by paraphrase. 

Although MMPA was the first to try this approach, it is not effective unless many rules 

are given to the model [21]. To mitigate this problem, Jin et al. [21] proposed VJTNN, an 

end-to-end molecule optimization model without the need for rules. By efficiently encoding 

and decoding a molecule with graphs and trees, it is the current state-of-the-art (SOTA) 

model for optimizing a single property (hereby referred to as a single-objective optimization 

task). However, it cannot optimize multiple properties at the same time (a multi-objective 

optimization task) because the model inherently optimizes only one property. As noted 

by Shanmugasundaram et al. [34] and Vogt et al. [39], the actual drug discovery process 

frequently requires balancing of multiple properties.

With these motivations, we propose a new DL-based end-to-end model that can optimize 
multiple properties in one model. By extending the preceding problem formulation, we 

consider the molecular optimization task as a sequence-based controlled paraphrase (or 

translation) problem. The proposed model, controlled molecule generator (CMG), learns 

how to translate the input molecules given as sequences into new molecules as sequences 

that best reflect the newly desired molecule properties. Our model extends the Transformer 

model [38] that showed its effectiveness in machine translation. CMG encodes raw 

sequences through a deep network and decodes a new molecule sequence by referencing 

that encoding and the desired properties. Since we represent the desired properties as a 

vector, this model inherently can consider multiple objectives simultaneously. Moreover, we 

present a novel loss function using pre-trained constraint networks to minimize generating 

invalid molecules. Lastly, we propose a novel beam search algorithm that incorporates these 

constraint networks into the beam search algorithm [26].

We evaluate CMG using two tasks (single-objective optimization and multi-objective 

optimization) and two analysis studies (ablation study case study)1. We compare our model 

with six existing approaches including the current SOTA, VJTNN. CMG outperforms all 

baseline models in both benchmarks. In addition, our model is trained once and evaluated 

for all tasks, which shows practicality and generality. The ablation study not only shows 

the effectiveness of each sub-part, but demonstrates the superiority of CMG itself without 

1Code and data are available at https://github.com/deargen/cmg
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the sub-parts. Lastly, the case study demonstrates the practicality of our method through the 

target affinity optimization experiment using an actual experimental drug molecule.

Contribution

The contributions of this paper are summarized as below;

• A new formulation of the multi-objective molecule optimization task as a 

sequence-based controlled molecule translation problem

• A new self-attention based molecule translation model that can reflect the 

multiple desired properties through constraint networks

• New loss functions to incorporate the pre-trained constraint networks

• A novel beam search algorithm using the pre-trained constraint networks

2 RELATED WORK

Molecule property optimization:

Molecule property optimization models can be divided into two types depending on the 

data representation: sequence representations and graph representations. One of the earlier 

approaches using sequence representations utilizes encoding rules [40], while the recent 

ones [12, 23, 33] are based on DL methods that learn to reconstruct the input molecule 

sequence. This is related to our work in terms of the input representation, but they offer 

subpar performance when compared to the SOTA models. Another group of research uses 

graph representations conveying structural information [4, 6, 19, 24, 31]. Among them, 

VJTNN [21] and MMPA [6, 9, 13] are closely related to our work because they formulate 

the molecule property optimization task as a molecule translation problem. From the model 

perspective, MMPA is a rule-based model and VJTNN is a supervised DL model. Although 

our approach is also based on a DL method, there is a big difference in practical use cases. 

A single VJTNN model is capable of optimizing a single property, while CMG can optimize 

multiple properties by using the controlled decoder. With these differences, we formulate 

the molecule property optimization task as a “controlled” molecule “sequence” translation 

problem. Other molecule generation methods include Junction Tree Variatinal Auto Encoder 

(JT-VAE) [20], Variational Sequence-to-Sequence (VSeq2Seq) [1, 12], Graph Convolutional 

Policy Network (GCPN) [43], and Molecule Deep Q-Networks (MolDQN) [44].

Natural Language Generation Model:

Our model is inspired by the recent success in molecule representation using the self-

attention technique [36]. By adopting the BERT [7] architecture to represent molecule 

sequences, their model becomes the SOTA in the drug-target interaction task. In terms of 

the model architecture, our work is related to Transformer [38] because we extend it to be 

applicable to the molecule optimization task. There is a controlled text generation model 

[17] in NLP domain. It is related to ours because they feed the desired text property as 

one of the inputs. However, all of these methods are designed for NLP tasks, therefore, 

they cannot be directly applied to molecule optimization tasks for two reasons. Firstly, the 

similarity constraint of the molecule optimization is an important feature, however, a typical 
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NLP model can’t reflect this. Secondly, NLP models take categorical properties while ours 

is designed for numerical ones, which is more realistic in a molecule optimization.

Transfer learning:

DL-based transfer learning by pre-training has been applied to many fields such as computer 

vision [11, 30], NLP [16], speech recognition [18, 25], and health-care applications [35]. 

They are related to ours because we also pre-train the constrained networks and transfer the 

weights to the main model.

3. CONTROLLED MOLECULE GENERATOR

3.1 Problem Definition

Given an input molecule X, its associated molecule property vector pX, and the desired 

property vector pY, the goal is to generate a new molecule Y with the property pY with 

the similarity of (X, Y ) ≥ δ. Note that δ is a similarity threshold and the similarity measure 

is Tanimoto molecular similarity over Morgan fingerprints [29]. Formally, for two Morgan 

fingerprints, FX and FY, where both of them are binary vectors, the Tanimoto molecular 

similarity is sim FX, FY =
FX ∩ FY
FX ∪ FY

.

3.2 Model Overview

Our model extends the Transformer [38] to a molecular sequence by incorporating molecule 

properties and additional regularization networks. Inspired by the previous success in 

applying the self-attention mechanism to represent a molecule sequence [36], we treat each 

molecule just like a sequence. However, this NLP technique cannot be directly applied, 

because the structure of the molecular sequence differs from natural languages, where the 

hierarchy is a letter-word-sentence. Not only that, there is no training data available that 

is collected for the molecule translation task, while there are ample datasets in the NLP 

domain. To fill these gaps, we propose the controlled molecule generation model (Figure 

1) and present how we gather the training data for this network (Section 4.1). We optimize 

CMG using three loss functions as briefly shown in Figure 1a. In addition, we propose 

two constraint networks (Section 3.4, Figure 3), the property prediction network and the 

similarity prediction network to train the model more accurately. Lastly, we also present how 

we modify the beam search algorithm [26] to best exploit the existing auxiliary networks, as 

briefly shown in Section 3.5 and Figure 1b.

3.3 Molecule Translation Network

We apply two modifications to the Transformer model [38]. First, unlike Transformer which 

uses word embeddings, we use character embeddings because the molecule sequence is 

comprised of characters representing atoms or structure indicators. To mark the beginning 

and the end of a sequence, we add “[BEGIN]” token at the first position of the sequence 

and “[END]” token at the last. Another modification is that we add chemical property 

awareness to the hidden layer of the Transformer model. We enrich token vectors of the last 

encoder by concatenating property vectors to each of the token vectors as shown in Figure 

2. Formally, let zi be the token vectors in the last encoder. Then, the new encoding vector 
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becomes zi′ = zi, pX, pY ∈ ℝd + 2k, where k represents the number of properties. Although 

it might be seen as a simple method, this empirically shows the best result among other 

types of configurations, such as property embeddings, disentangled encodings (property 

and non-property encodings), and concatenating property differential information instead of 

providing two raw vectors. The cost function of this network is the cross entropy between 

the target (yi) and predicted molecule (yi). Therefore, it is formally defined as,

ℒT θT ; X, pX, pY = − 1
N

1
M ∑

n ∈ N
∑

j ∈ M
∑

v ∈ V
yv, j, n ⋅ log yv, j, n

where θT denotes all parameters of the Transformer and N, M,V represent the number of 

training samples, the length of a sequence, and the size of the vocabulary, respectively.

3.4 Constraint Networks

We hypothesize that the cost function of the Transformer network (ℒT) is not enough to 

teach the generating model, because the error signals from this loss function can hardly 

capture the valuable information, such as if a predicted sequence pertains to the desired 

property or if it satisfies the similarity constraint. With this motivation, we add two 

constraint networks as follows.

3.4.1 Property Prediction Network.—The property prediction network (PropNet) 

takes the predicted molecule sequence (yi) as an input (on the top of Figure 3). The left-to-

right LSTM [15] layer and the right-to-left one encode input vectors (yi) into hidden vectors, 

ℎ i ∈ ℝd and ℎ j ∈ ℝd, respectively. Since the last vectors for each direction summarize the 

sequence, they are concatenated ℎprop = (ℎM, ℎ M ∈ ℝ2d  and fed into a dense network with 

two hidden layers. With the predicted property, pY  and the desired property (pY) from the 

input, we can create a loss function, which will enrich error signals by adding property 

awareness in predicting a molecule. This is formally written as,

ℒP θT ; X, pX, pY = 1
N ∑

n ∈ N
pYn − pY n

2

We pre-train PropNet using molecules in the training set, and the properties are calculated 

using a third-party library. Once pretrained, the parameters are transferred to the CMG 

network and frozen when training the CMG.

3.4.2 Similarity Prediction Network.—The input of the similarity prediction network 

(SimNet) is composed of the predicted molecule sequence (yi) and the input molecule 

sequence (xi) (on the bottom of Figure 3). We posit that adding estimated similarity error 

signals to the loss function could be useful for satisfying the similarity requirement because 

this is relatively direct information in the generation modeling. We employ one layer of 

BiLSTM for SimNet, which is shared by two different inputs. Two inputs (yi and xi) is 
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passed to the BiLSTM layer to produce each corresponding feature vector, ℎM
Y ∈ ℝ2d and 

ℎM
X ∈ ℝ2d (M indicates the last token index). We concatenate these two feature vectors as 

(ℎM
Y , ℎM

X ) ∈ ℝ4d, so that the next two dense networks can capture the similarity between the 

two. After applying two-layered dense network, we get the binary prediction (sn) whether 

the two input molecules are similar or not according to the threshold δ. With this prediction 

(sn) and the label (sn), we can create the last loss function, formally written as

ℒS θT ; X, pX, pY = 1
N ∑

n ∈ N
snlogsn + 1 − sn log 1 − sn

We transfer the pre-trained SimNet weights into the CMG model and freeze the SimNet 

weights when training the CMG network.

3.4.3 CMG Loss Function.—By combining all cost functions (ℒT , ℒP , ℒS), we can 

obtain the CMG loss function as

ℒCMG = ℒT + λpℒP + λsℒS

where λp and λs are weight parameters.

3.5 Modified Beam Search with Constraint Networks

When generating a sequence from CMG at testing, there is no gold output sequence that 

it can reference. Therefore we need to sequentially generate tokens until we encounter the 

“[END]” token, like other sequence-based algorithms. At this process, a typical way

Algorithm 1

Modified Beam Search

1: Input: Candidate molecules: C1, C2, ⋯, Cb,

   Corresponding beam scores: s1, s2, ⋯, sb
   Input molecule: X
   Desired property vector: pY

2: for i = 1 to b do

3:  pi PropNet Ci
4:  pd pY − pi
5:  spn reduce_mean 1 − pd
6:  ssn SimNet X, Ci
7:  si si + spn + ssn
8: end for

9: best_index ← arg maxsi

10: Output: Cbest_index
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is the beam search, where the model maintains top b number of best candidate sequences 

when predicting each token. When all candidate sequences are complete and ready, the 

model outputs the best candidate in terms of a beam score, a cumulative log-likelihood 

score for a corresponding candidate. However, the standard beam search does not account 

for the multi-objective nature of our task. For example, there is a possibility that low 

ranked molecules could be closer to the desired properties than the top molecule selected 

by the beam search. Therefore, we propose a modified beam search algorithm (Algorithm 

1) using our constraint networks. For the property evaluation, we first get the predicted 

property of each candidate and get the absolute difference from the desired property (Line 

3–4 in Algorithm 1). Since this difference is desired to be small, we calculate the property 

evaluation score (spn) by subtracting them from one (Line 5 in Algorithm 1). The property 

could have multiple values, therefore, we take an average of all elements of this difference 

vector. For the similarity evaluation, we get the predicted similarity between the input X and 

each candidate Ci (Line 6 in Algorithm 1). Since we expect a candidate should be similar 

(label 1) to the input, we regard the predicted similarity as the raw score from SimNet. By 

adding these two predicted scores to the original beam scores, we obtain the modified beam 

scores (Line 7 in Algorithm 1). With this new score, we can select the best candidate (Line 

9–10 in Algorithm 1)

3.6 Diversifying the Output

Unlike other variational models (VSeq2Seq and VJTNN), CMG encodes a fixed vector that 

is able to generate a single output for one input. In order to diversify the output for a fixed 

input, we re-parameterize the desired vector, (p1,p2,p3), as random variable by adding a 

Gaussian noise with a user-specified variance, pk ∼ N (pk,σk). For example, if the desired 

property vector is (p1, p2, p3), we feed (p1 + α, p2 + β, p3 + γ), where α, β and γ are 

samples drawn from N (0, σ1), N (0, σ2), and N (0, σ3).

4 EXPERIMENTS

We compare CMG with state-of-the-art molecule optimization methods in the following 

tasks. Single Objective Optimization (SOO): This task is to optimize an input molecule 

to have a better property while preserving a certain level of similarity between the input 

molecule and the optimized one. Since developing a new drug usually starts with an 

existing molecule [2], this task serves as a good benchmark. Multi-Objective Optimization 
(MOO): This task reflects a more practical scenario in drug discovery, where modifying 

an existing drug involves optimizing multiple properties simultaneously, such as similarity, 

lipophilicity scores, drug likeness scores, and target affinity scores. Since improving one 

property might often result in sacrificing other properties, this task is harder than a single-

objective optimization task. To present multifaceted aspects of CMG, we additionally 

perform the following experiments. Ablation Study: For ablation study, we report the 

validity of the constraint networks both in training testing phases. Case Study: To evaluate 

the effectiveness of CMG, we present the result of an actual drug optimization task with 

an existing molecule in an experimental phase. More precise information regarding the 

reproducibility can be found in the supplementary material.

Shin et al. Page 7

ACM CHIL 2021 (2021). Author manuscript; available in PMC 2022 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1 Datasets

Since CMG is based on sequence translation, we need to appropriately curate the dataset.

Training Set for CMG: We use the ZINC dataset [37] (249,455 molecules) and the 

DRD2 related molecule dataset (DRD2D) [27] (25,695 molecules), which result in 260,939 

molecules for our experiments. This is the same set of molecules on which Jin et al. [21] 

used to evaluate their model (VJTNN). From these 260k molecules, we exclude molecules 

that appear in the development and the test set of VJTNN, resulted in 257,565 molecules. 

With these molecules, we construct training datasets by selecting molecule pairs (X,Y) with 

the similarity is greater than or equal to 0.4, following the same procedure in [6, 21]. Jin et 

al. [21] used the small portion of these pairs by excluding all property-decreased molecule 

pairs. The main difference from their curation processes is that we don’t have to exclude 

many property-decreased molecule pairs because our model can extract useful information 

even from them. By doing this, we provide a more ample dataset to a deep model, so that it 

could be helpful in finding more useful patterns. As a result, the number of pairs in training 

data is significantly bigger than theirs. Among all possible pairs (257K × 257K = 67B), we 

select 10,827,615 pairs that satisfies similarity condition (≥ 0.4). With the same similarity 

condition, Jin et al. [21] gathered less than 100K due to additional constraints of training 

sets, which is only property increased molecule pairs can be used as training data. As 

previous works [21, 23] did, we pre-calculate the three chemical properties of all molecules 

(pX and pY ) in the training set: Penalized logP (PlogP) [23] is a measure of lipophilicity 

of a compound, specifically, the octanol/water partition coefficient (logP) penalized by 

the ring size and synthetic accessibility. Drug likeness (QED) is the quantitative estimate 

of drug-likeness proposed by Bickerton et al. [2] and Dopamine Receptor (DRD2) is a 

measure of molecule activity against a biological target, the dopamine type 2 receptor.

Training Set for PropNet: Among 260,939 molecules, we excluded all molecules in the 

test sets of the two tasks; single-objective optimization, multi-objective optimization. The 

number of these remained molecules is 257,565. We construct the dataset for PropNet by 

arranging all molecules as inputs and the corresponding three properties as outputs. We 

randomly split this into the training and validation sets with a ratio of 8:2.

Training Set for SimNet: We use a subset of all 10,827,615 pairs in the CMG training 

set due to the simpler network configuration of SimNet. When sub-sampling pairs, we tried 

to preserve the proportion of the similarity in the CMG dataset to best preserve the original 

data distribution. The reason behind this effort is that preserving the similarity distribution 

could possibly contribute to the SimNet accuracy although SimNet only uses binary labels. 

In addition, we try to preserve the similar/not-similar ratio to be about to the same. By 

sampling about 10% of data, we gathered 997,773 number of pairs and the ratio of the 

positive samples is 49.45%. We randomly split this into the training and validation set with a 

ratio of 8:2.

4.2 Pre-Training of Constraint Networks

We pre-train the two constraint networks using the training sets described in Section 4.1. 

We choose the pre-trained PropNet that recorded the mean square error of 0.0855 and 
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the the pre-trained SimNet of 0.9759 accuracy through the best model evaluated on each 

corresponding development set. The pre-trained weights of the two networks are transferred 

to the corresponding part in the CMG model and frozen when training CMG and predicting 

a new molecule using it. The details of the configuration is described in the supplement 

material.

4.3 Single Objective Optimization

The first task is the single objective optimization task proposed by Jin et al. [20]. The goal 

is to generate a new molecule with an improved single property score under the similarity 

constraint (δ = 0.4). We used the same development and test sets provided by Jin et al. [20]. 

Our model is trained once and evaluated for all tasks (SOO, MOO and the case study).

Baselines: We compare CMG with the following baselines; MMPA, JT-VAE, GCPN, 

VSeq2Seq, MolDQN, and VJTNN introduced in Section 2. Since Jin et al. [21] ran and 

reported almost all of the baseline methods on the single property optimization task (PlogP 

improvement task) with the same test sets, we cite their experiment results. For MolDQN, 

which is published after VJTNN, we referenced the scores from MolDQN paper [44].

Metrics: Since the task is to generate a molecule with an improved PlogP value, we 

measure an average of raw increments and its standard deviation among valid molecules 

with the similarity constraint met. Following the VJTNN procedure [21], one best molecule 

is selected among 20 generated molecules. We also measure the diversity defined by Jin et 

al. [21]. Although this diversity measure has been used by previous researches, it is limited 

in that it encourages the outputs to have low similarity around the threshold. However, 

this could be beneficial in a practical situation where the model needs to generate various 

molecules around the similarity threshold.

Result: After we train the model we generate new molecules by feeding input molecules 

and desired chemical properties to the trained model. As discussed in Section 3.6, we 

add offsets to desired properties so that the output can be diversified. Since the number 

of generated samples for each input is set to 20, we use the desired property vector of 

{XP log P, 0.0, 0.0} with a total of 20 combinations of (α,β,γ) that are sampled from 

the user-defined distributions. We select the best model using the development set, and the 

test set performance of that model is reported in the left part of Table 1. In the PlogP 

optimization task, CMG outperforms all baselines including the current SOTA, VJTNN, in 

terms of both the average improvement and the diversity by a large margin. Considering the 

two recently proposed methods (MolDQN and VJTNN) are competing in 0.18 difference, 

CMG surpasses the current SOTA by 0.37 improvement. The same trend can be found in the 

diversity comparison. For QED and DRD2 cases, however, CMG underperforms the others 

(the scores are in the supplemental material). The primary reason is that the CMG model 

is trained once for the MOO task. This model is then re-used and evaluated on the SOO 

tasks. More specifically, the proportions of improved QED and DRD2 pairs in the training 

set are just 5.9% and 0.08%, respectively. Therefore, when optimizing solely for QED or 

DRD2, CMG could not fully extract the useful information from the training set. Since our 

model is trained once for all tasks (SOO, MOO, and the case study), this small portion of 
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information can negatively impact certain single property optimizations, such as QED and 

DRD2. However, considering SOO is less practical in drug discovery, the focus should be on 

the MOO results.

4.4 Multi Objective Optimization

We set up a new benchmark, multi-objective optimization (MOO) because the actual drug 

discovery process frequently requires balancing of multiple compound properties [34, 39]. 

In this task, we jointly optimize three chemical properties for a given molecule. We set up 

the success criteria of the generated molecules in the MOO task as follows:

• sim(X,Y) ≥ 0.4

• PlogP improvement is at least 1.0

• QED value is at least 0.9

• DRD2 value is over 0.5

We created the above four conditions by combining the existing single optimization 

benchmarks from VJTNN [21] as one simultaneous condition2.

To create the development set of this task, we merge all three different development sets 

provided by VJTNN, consisting of 1,038 molecules. Among those molecules, we exclude 

any molecules that already satisfy the above criteria. Then, the final development set 

contains 985 molecules. We perform the same procedure for the test set, which reduces 

the number of molecules to 2,365.

Baselines: For this task, we include the top two baselines (MolDQN and VJTNN) from 

the SOO task. While MolDQN can perform the MOO task by simply modifying the 

reward function, VJTNN can’t perform as it is because it is designed for a single property 

optimization. Here are how we prepare those baselines for the MOO task.

• MolDQN: The reward function of MolDQN for this task is defined as

r = 1
81(sim(X, Y ) ≥ 0.4)

+ 1
81(P logP (Y ) − P logP (X) ≥ 1.0)

+ 1
8 1(QED ≥ 0.9) + 1

81(DRD2 > 0.5)

+ 1
8sim(X, Y ) + 1

8P logP (Y ) + 1
8QED(Y ) + 1

8DRD2(Y )

The first four terms represent the exact goal of the task, and the last four 

terms provide continuous information about the goals. Unlike VJTNN and 

CMG that require mere evaluation of the trained models, MolDQN should be 

re-trained from the beginning for each test sample, which requires significant 

2For the PlogP improvement, we set a hard number of 1.0 instead of measuring the magnitude of improvements to transform the 
criteria into a binary condition.
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time. Therefore, evaluating MolDQN for all 2,365 samples requires 2,365 times 

of training that is estimated as more than three months with a 96-CPUs server.

Therefore, we sub-sample the test set (n = 50) while preserving the original 

distribution3 and we use it for the proxy evaluation of MolDQN. For each input, 

we generate 60 samples after training the model (with exploration rate set to 

zero) and report success if at least one of them satisfies the success criteria 

defined above.

• VJTNN: We sequentially optimize an input molecule using three trained models 

from VJTNN (models for PlogP, QED, and DRD2). Firstly, the PlogP model 

generates 20 molecules for an input molecule. We select the most similar 

molecules that satisfy PlogP criteria. Then, we repeat this process for QED and 

DRD2 models using the output of a preceding model as an input. Finally, we 

report success if any output of DRD2 model satisfies the success criteria.

Result: We only compare VJTNN for all samples due to the infeasible running time of 

MolDQN as mentioned above. As the right part of Table 1 shows, CMG is almost two 

times more successful in this task. The sub-sample experiment shows similar performance 

for VJTNN and ours, while MolDQN is not able to generate any successful samples.

4.5 Ablation Study

To illustrate the effect of the two constraint networks and the modified beam search, we 

present the result of the ablation study in Table 2. We use the MOO task for this comparison, 

and the result of VJTNN is also included for the reference. It’s worthwhile to note that CMG 

without any constraint networks and the modified beam search still outperforms VJTNN 

by 1.77% point. The component with the biggest contribution is SimNet that improves the 

performance by 0.72% point from the model without it. Another interesting thing is the 

success rates of the last two models in Table 2 are identical. The possible explanation is 

that if a model is trained without any constraint networks, the neurons generating candidate 

molecules could not properly convey any information about similarity and properties that 

can be exploited in the modified beam search.

4.6 Case Study

The purpose of this case study is to test how well a model can maintain other properties 

unchanged when optimizing one property. Therefore, we try to improve only the Dopamine 

D2 receptor (DRD2) score, and keep other properties unchanged as much as possible. We 

performed this case study using an actual drug that is under the experimental stage targeting 

DRD2. From Drugbank [41], we first enlist all DRD2 targeting drugs that are in either 

experimental or investigational stages. Among these 28 drugs, we select the lowest DRD2 

scored drug, named Aniracetam (COC1=CC=C(C=C1)C(=O)N1CCCC1=O) for this study. 

The goal is to improve DRD2 score with minimum perturbation of other properties. This can 

be seen as SOO, however it’s a MOO, because DRD2 should be increased while others need 

to be unchanged.

3When sub-sampling, we tried to preserve the proportion of the PlogP values to best get unbiased samples.
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Baselines: Since one VJTNN model optimizes one property, we just run the DRD2 

VJTNN model trained by Jin et al. [21] by feeding Aniracetam. For MolDQN, the reward 

function becomes simpler as r = 1
21(sim(X, Y ) ≥ 0.4) + 1

2DRD2(Y ).

Result: In Figure 4, we compare the molecules generated 

by MolDQN (C=C(c1ccc(OC) cc1)N1CCCC1) and ours (COc1ccccc1N1 

CCN(C2CC(C(=O)N3CCCC3=O)=C2c2ccccc2)CC1), excluding the result of VJTNN, 

because VJTNN didn’t generate valid (sim(X,Y) ≥ 0.4) molecules. In terms of the predicted 

DRD2 scores, our molecule reached 0.77 whereas MolDQN’s molecule only recorded 0.03. 

For the other two properties which should be unchanged, our molecule seems to be stable 

with changes in PlogP by −0.35 and QED by −0.03 when compared with the MolDQN 

molecule that showed larger changes especially in PlogP. Although one case study cannot 

prove the general superiority of CMG, it consistently outperforms other baselines in all 

benchmarks (SOO, MOO, and the case study).

5 CONCLUSION

This paper proposes a new controlled molecule generation model using the self-attention 

based molecule translation model and two constraint networks. We pre-train and transfer 

the weights of the two constraint networks so that they can effectively regulate the output 

molecules. Not only that, we present a new beam search algorithm using these networks. 

Experimental results show that CMG outperforms all other baseline approaches in both 

single-objective optimization and multi-objective optimization by a large margin. Moreover, 

the case study using an actual experimental drug shows the practicality of CMG. In the 

ablation study, we present how each sub-unit contributes to model performance. It’s worth 

to note that our model is trained once and evaluated for all tasks (SOO, MOO and the case 

study), which shows practicality and generalizability.
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CCS CONCEPTS

• Computing methodologies → Neural networks.
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Figure 1: 
Controlled Molecule Generator (CMG) at training and prediction.
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Figure 2: 
The molecule translation network.
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Figure 3: 
Two Constraint Networks.
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Figure 4: 
A case study: The molecule produced by CMG has a better DRD2 score while keeping other 

properties less perturbed. On the other hand, the molecule produced by MolDQN is less 

improved in terms of DRD2 score, and more perturbed in terms of the other two. We exclude 

the result of VJTNN because it didn’t generate any valid (sim(X, Y) ≥ 0.4) molecules.
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Table 1:

Single and multi objective optimization performance comparison on the penalized logP task. For the single 

one, MolDQN results are from [44], and the scores of other baselines are from [21]. The reported scores of the 

multi objective optimization task is a success rate. CMG outperforms the baselines in both of the two tasks.

Single Obj. Opt. Multi Obj. Opt.

Method Improvement Diversity All Samples Sub Samples

MMPA 3.29 ± 1.12 0.496 - -

JT-VAE 1.03 ± 1.39 - - -

GCPN 2.49 ± 1.30 - - -

VSeq2Seq 3.37 ± 1.75 0.471 - -

MolDQN 3.37 ± 1.62 - - 0.00%

VJTNN 3.55 ± 1.67 0.480 3.56% 4.00%

CMG 3.92 ± 1.88 0.545 6.98% 6.00%
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Table 2:

Ablation study on the Multi Objective Optimization task. MBS is modified beam search, PNet is PropNet, and 

SNet is SimNet. It’s worthy to note that CMG without any constraints networks and the modified beam search 

still outperforms VJTNN in the MOO task.

Method Success Rate ±

VJTNN 3.56 −3.42

PNet SNet MBS

CMG

☑ ☑ ☑ 6.98 −

☑ ☑ □ 6.72 −0.26

□ ☑ ☑ 6.77 −0.21

☑ □ ☑ 6.26 −0.72

□ □ ☑ 5.33 −1.65

□ □ □ 5.33 −1.65
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