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Abstract

Background: Entomological surveillance for malaria is inherently resource-intensive and produces
crude population-level measures of vector exposure which are insensitive in low-transmission
settings. Antibodies against Anopheles salivary proteins measured at the individual level may serve
as proxy biomarkers for vector exposure and malaria transmission, but their relationship is yet to be
quantified.

Methods: A systematic review of studies measuring antibodies against Anopheles salivary antigens
(PROSPERO: CRD42020185449). Multilevel modelling (to account for multiple study-specific obser-
vations [level 1], nested within study [level 2], and study nested within country [level 3]) estimated
associations between seroprevalence with Anopheles human biting rate (HBR) and malaria transmis-
sion measures.

Results: From 3981 studies identified in literature searches, 42 studies across 16 countries were
included contributing 393 study-specific observations of anti-Anopheles salivary antibodies deter-
mined in 42,764 samples. A positive association between HBR (log transformed) and seroprevalence
was found; overall a twofold (100% relative) increase in HBR was associated with a 23% increase in
odds of seropositivity (OR: 1.23, 95% Cl: 1.10-1.37; p<0.001). The association between HBR and
Anopheles salivary antibodies was strongest with concordant, rather than discordant, Anopheles
species. Seroprevalence was also significantly positively associated with established epidemiological
measures of malaria transmission: entomological inoculation rate, Plasmodium spp. prevalence, and
malarial endemicity class.

Conclusions: Anopheles salivary antibody biomarkers can serve as a proxy measure for HBR and
malaria transmission, and could monitor malaria receptivity of a population to sustain malaria trans-
mission. Validation of Anopheles species-specific biomarkers is important given the global hetero-
geneity in the distribution of Anopheles species. Salivary biomarkers have the potential to transform
surveillance by replacing impractical, inaccurate entomological investigations, especially in areas
progressing towards malaria elimination.
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Editor's evaluation

We believe this systematic review on the use of serological data to monitor anopheline mosquito
exposure will add to the existing literature and help provide important insight into how these
markers may be used to understand malaria transmission.

Introduction

Sensitive and accurate tools to measure and monitor changes in malaria transmission are essential to
track progress towards malaria control and elimination goals. Currently, the gold standard measure-
ment of malaria transmission intensity is the entomological inoculation rate (EIR), a population measure
defined as the number of infective Anopheles mosquito bites a person receives per unit of time.
EIR is calculated as the human biting rate (HBR; measured at the population level by entomological
vector-sampling methodologies [gold standard: human landing catch]) multiplied by the sporozoite
index (proportion of captured Anopheles with sporozoites present in their salivary glands). However,
estimation of EIR and HBR via entomological investigations is inherently labour and resource inten-
sive, requiring trained collectors, specialised laboratories, and skilled entomologists. Furthermore,
these approaches provide a crude population-level estimate of total vector exposure at a particular
time and location, precluding investigation of heterogeneity and natural transmission dynamics of
individual-level vector-human interactions (Monroe et al., 2020). For example, indoor human landing
catches provide poor estimates of outdoor biting and thus total vector exposure (Mathenge et al.,
2005). The sensitivity of EIR is further compromised in low transmission settings where the number of
Plasmodium-infected specimens detected is low and often zero.

Evaluation of the human antibody response to Anopheles spp. salivary proteins has the potential
to be a logistically practical approach to estimate levels of exposure to vector bites at an individual
level. Several Anopheles salivary proteins have been shown to be immunogenic in individuals naturally
exposed to the bites of Anopheles vectors and have been investigated as serological biomarkers to
measure Anopheles exposure (Badu et al., 2012b; Drame et al., 2013a; Drame et al., 2010a; Drame
et al., 2010b; Drame et al., 2015; Rizzo et al., 2011a; Rizzo et al., 2011b; Stone et al., 2012,
Drame et al., 2012), malaria transmission (Londono-Renteria et al., 2015a; Ya-Umphan et al., 2017,
Noukpo et al., 2016), and as an outcome for vector control intervention studies (Drame et al., 2013a;
Drame et al., 2010a; Drame et al., 2010b; Noukpo et al., 2016, Idris et al., 2017). However, a major
shortcoming of the literature is that studies are largely descriptive and do not quantify the association
between entomological and malariometric measures and anti-Anopheles salivary antibody responses.
We undertook a systematic review with multilevel modelling to quantify the association between HBR,
EIR, and other markers of malaria transmission, with anti-Anopheles salivary antibody responses, and
to understand how these associations vary according to transmission setting and dominant Anopheles
vectors which can exhibit different biting behaviours. In particular, we were interested in comparing
the African context (where Anopheles gambiae and Plasmodium falciparum predominates) to non-
African settings (where An. gambiae is absent and where both P. falciparum and Plasmodium vivax are
prevalent). This knowledge is pertinent to advance the use of salivary antibody biomarkers as a vector
and malaria transmission serosurveillance tool.

Methods

Search strategy and selection criteria

We performed a systematic review with multilevel modelling according to the Meta-analysis of Obser-
vational Studies in Epidemiology (MOOSE) and Preferred Reporting ltems for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines (Moher et al., 2009; Stroup et al., 2000) (Reporting Standards
Document). Five databases were searched for published studies investigating antibodies to Anoph-
eles salivary antigens as a biomarker for mosquito exposure or malaria transmission published before
30 June 2020. The protocol (Appendix 1) was registered with PROSPERO (CRD42020185449).
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The primary criterion for inclusion in this systematic review was the reporting of estimates of sero-
prevalence or total levels of immunoglobulin (Ig) in human sera against Anopheles salivary antigens.
We considered for inclusion cross-sectional, cohort, intervention, and case—control studies of individ-
uals or populations living in all geographies with natural exposure to Anopheles mosquitoes. Studies
that were solely performed in participants not representative of the wider naturally exposed popula-
tion (i.e. mosquito-allergic patients, soldiers, returned travellers) were excluded.

Measures

Outcomes

The primary outcome of our systematic review was antibodies (seroprevalence or levels, including all
Ig isotypes and subclasses) against any Anopheles salivary antigens (full-length recombinant proteins,
peptides, and crude salivary extract). Study-reported salivary antibody data was extracted at the
most granular level (i.e. for each site; time point), with each observation of seroprevalence or levels
included as a study-specific salivary antibody observation. As measurement of antibody levels does
not produce a common metric between studies, only values of seroprevalence could be included in
multilevel modelling analyses. Therefore, to maximise data, authors of studies that reported only anti-
body levels were contacted and asked to classify their participants as ‘responders’ or ‘'non-responders’
according to seropositivity (antibody level relative to unexposed sera). Studies that provided antibody
levels or categorised seropositivity based upon arbitrary cut-offs are included in narrative terms only.

Exposures

The primary exposures of interest were the entomological metrics HBR (average number of bites
received per person per night) and EIR (infectious bites received per person per year). Secondary
exposures included study-reported prevalence of Plasmodium spp. infection (confirmed by either
microscopy, rapid diagnostic test (RDT), or polymerase chain reaction [PCR]) and seroprevalence of
antimalarial antibodies against pre-erythrocytic and blood stage Plasmodium spp. antigens. Where
exposure estimates were not provided, we attempted to source data from other publications by the
authors or used the site geolocation (longitude and latitude) and year to obtain estimates of EIR from
the Pangaea dataset (Yamba et al., 2018), P. falciparum rates in 2-10 year olds (PfPR,.,0), and domi-
nant vector species (DVS) from the Malaria Atlas Project (MAP; The Malaria Atlas, 2017). Malarial
endemicity classes were derived by applying established endemicity cut-offs to MAP PfPR,., esti-
mates (Bhatt et al., 2015). For the purposes of the modelling analyses, we defined DVS as where An.
gambiae sensu lato (s.l.) was the only DVS, where An. gambiae s.|. was present with additional DVS,
or where An. gambiae s.|. was absent. Studies of salivary antigens where exposure variables could not
be sourced and data could not be extracted were excluded.

Statistical analysis

Where observations of the seroprevalence of antibodies against the same salivary antigen and expo-
sure of interest were reported in more than one study, generalised linear multilevel modelling (mixed
effects, logistic) was used to quantify associations between the exposures of interest and salivary
antibody seroprevalence measurements (Song et al., 2019). Random intercepts for study and country
were estimated to account for nested dependencies induced from multiple study-specific salivary
antibody observations (level 1) from the same study (level 2) and studies from the same country (level
3). Additionally, study-level random slopes for the entomological and malariometric exposure param-
eters were estimated to model study-specific heterogeneity in the effect of the exposure of interest
(HBR/EIR/malaria prevalence/antimalarial antibody seroprevalence). The associations between the
various exposures and the different salivary antigens were analysed separately; however, observa-
tions of IgG seroprevalence against the recombinant full-length protein (gSGé6) and synthetic peptide
(9SG6-P1, the one peptide determined in all studies utilising peptides) form of the gSG6 antigen were
analysed together.

Potential effect modification of the associations between exposures and anti-Anopheles salivary
antibody responses was explored. In analyses quantifying the associations between HBR, as well as
EIR, and seropositivity, we included an interaction term with DVS and for vector collection method
(human landing catch or other indirect measures, e.g. light traps, spray catches, etc.). For the associa-
tion between Plasmodium spp. prevalence and seropositivity, interaction terms with malaria detection
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methodology (light microscopy or PCR) and malarial species (P. falciparum only, or P. falciparum and
P. vivax) were estimated.

For the exposure measures (HBR, EIR, malaria prevalence, and antimalarial antibody seropreva-
lence), the data were log transformed since there were non-linear associations between the exposure
measures on the original scale and seroprevalence — supported empirically by superior model fit as
indicated by Akaike's information criterion (AIC) and Bayesian information criterion (BIC) fit indices
(Appendix 1—table 1). To aid interpretation, we present our results as a relative increase in the odds
of the gSG6 IgG seropositivity for a twofold or, in other words, a 100% relative increase in the expo-
sures. Intraclass correlation coefficients (ICCs) were estimated for country- and study-specific hetero-
geneity using estimated model variance components. In order to explore the presence of study-level
influence in (HBR and EIR) effect estimate modelling, the Generalised Linear Latent and Mixed Models
(gllamm) package (Rabe-Hesketh et al., 2000) was used to produce Cooks distance statistics (Cook,
1977) at the study level from the generalised linear multilevel models. A conservative cut-off threshold
for Cooks distance (4 /n) was used to guide sensitivity analyses, where studies were excluded, in turn,
to assess outlier influence. All statistical analyses were performed using STATA v15.1.

Risk of bias in individual studies

Risk of bias was assessed by one reviewer using the Risk of Bias in Prevalence Studies tool (Hoy et al.,
2012). The risk of bias pertains to the reported observations of anti-Anopheles salivary antibody sero-
prevalence included in the multilevel modelling.

Database searches identify 3980 unique records

v

157 potentially relevant studies identified on basis of title and abstract
1 study identified from reference list of included studies

v v v \ 4
14 studies met the 28 studies met the 4 studies 112 studies did
incL; sion and inclusion and quality potentially met the not meet the
all:t criteria criteria, but other inclusion and inclusion and
quality crite data was requested quality criteria quality criteria
l \ 4 \ 4
Authors were Authors were
contacted and contacted and 112 studies were
relevant data relevant data excluded
requested requested
I
v v v
24 authors 4 authors did not 4 authors

respond to 3 responded
email attempts

v ;I_ v

responded

19 studies 4 studies
5:352?522 requested data requested data
P unavailable unavailable
| I
v 4 studies

A 4

23 studies contained
sufficient data for
inclusion

L
v

42 studies were included in the systematic review

excluded

Figure 1. Flow diagram of study identification. Excluded studies are detailed in Appendix 3.
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Results

Literature searches identified 158 potentially relevant studies, of which 42 studies were included in
the systematic review (Figure 1) and are described in Table 1. From these studies, we extracted n
= 393 study-specific observations of anti-Anopheles salivary antibodies determined from antibody
measurements in a total of 42,764 sera samples. These studies were performed in 16 countries mostly
in hypo- or mesoendemic areas of Africa (32 studies), with a minority performed in South America
(four studies), Asia (four studies), and the Pacific (two studies). Studies were classified according to
their DVS which reflected the region where the study was conducted. An. gambiae s.I. was a DVS in
all African study sites (n = 151 study-specific observations from 23 studies where An. gambiae s.|. was
the only DVS and n = 68 from 16 studies where An. gambiae s.|. was present with additional DVS [i.e.
Anopheles funestus, Anopheles pharoensis]), with the exception of one study, which together with
the 10 non-African studies contributed n = 174 study-specific estimates where An. gambiae s.|. was
absent. Most observations came from cross-sectional (n = 191 from 16 studies) or repeated cross-
sectional studies (n = 137 from 18 studies), with n = 60 from cohort studies (six studies) and n = 5 from
case—control studies (two studies).

The salivary antigen most commonly assessed was An. gambiae salivary gland 6 (gSG6), as a full-
length protein (n = 67 from 8 studies) and synthetic peptide (An. gambiae salivary gland 6 peptide
1 [gSG6-P1]; n = 270 from 24 studies). Additional salivary antigens assessed included An. gambiae
gSG6-P2 (n = 119 from three studies), recombinant cE5 (n = 15 from two studies), g-5'nuc (n = 3 from
one study), and recombinant An. funestus fSG6 (n = 6 from two studies) and f-5'nuc (n = 3 from one
study). Seven studies measured antibodies to whole salivary gland extracts (SGE) from An. gambiae
(n = 24 from four studies), Anopheles darlingi (n = 5 from two studies), Anopheles albimanus (n = 2
from one study), and Anopheles dirus (n = 3 from one study), while one study assessed antibodies
against synthetic peptides of An. albimanus (n = 2) (Table 1). All studies investigated total IgG and
only five determined an additional isotype or subclass (Drame et al., 2015; Lawaly et al., 2012, Rizzo
et al., 2014a; Rizzo et al., 2014b; Waitayakul et al., 2006). The paucity of studies investigating these
latter-mentioned antibody types and Anopheles salivary biomarkers precluded extensive multilevel
analyses; instead, we present their associations in narrative terms in Appendix 10. Analyses reported
below focus on quantifying the relationships between HBR, EIR, and markers of malaria transmission
with total IgG to An. gambiae gSG6. The distributions of exposure observations were: HBR (n =
197 from 24 studies, median: 3.0 bites per person per night, IQR: 0.9-12.1; range: 0-121.4), EIR (n
= 60 from 8 studies, median: 7.3 infectious bites received per person per year, IQR: 0-36.4; range:
0-585.6), and Plasmodium spp. prevalence (n = 266 from 22 studies, median: 9.1%; IQR: 4-22%,
range: 0-94.6%).

Generalised linear multilevel modelling (mixed effects, logistic) of n = 132 study-specific observa-
tions from 12 studies estimated a positive association between Anopheles spp.-HBR (log transformed)
and seroprevalence of IgG to An. gambiae gSGé salivary antigen (Drame et al., 2010a; Drame et al.,
2015; Rizzo et al., 2011a; Stone et al., 2012; Drame et al., 2012; Ya-Umphan et al., 2017; Soma
etal., 2018; Traoré et al., 2019, Sagna et al., 2013b; Sarr et al., 2012; Ali et al., 2012, Pollard et al.,
2019, Figure 2, Appendix 4—table 1). As we have log transformed HBR to account for the non-linear
relationship between HBR and log odds of gSGé IgG seropositivity, we have presented estimated
odds ratios for different incremental percent increases in HBR (Figure 2—figure supplement 1). For
example, the magnitude of the association was such that a twofold (100% relative) increase in HBR
was associated with a 23% increase (OR: 1.23; 95% CI: 1.10-1.37; p<0.001) in the odds of anti-gSGé
IgG seropositivity (Figure 2). Heterogeneity in the effect of HBR on gSGé across studies was observed
(likelihood ratio x2(1) = 109.25, p<0.001); the 95% reference range of study-specific effects for a
twofold increase in HBR ranged from a 12% reduction to a 70% increase in odds (OR: 0.88-1.70).
There was no evidence that the association between HBR and gSG6 IgG varied according to vector
collection method (human landing catch or other indirect methods; p=0.443) or study design (longi-
tudinal cohort or cross-sectional/repeated cross-sectional; p=0.138). Given the global heterogeneity
in the distribution of Anopheles species, we sought to quantify the extent to which the association
between An. gambiae gSG6 1gG seropositivity and HBR is moderated by DVS. We observed that the
magnitude of the association between An. gambiae gSG6 IgG seropositivity and HBR was greatest in
African studies where An. gambiae s.l. was the only dominant vector (p<0.001, Appendix 5); a twofold
increase in HBR was associated with a 37% increase (OR: 1.37; 95% CI: 1.19-1.58; p<0.001) in the
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Figure 2. Association between anti-gSG6 IgG seroprevalence and log, human biting rate (HBR). Figure shows the observed anti-gSGé (either

recombinant or peptide form) IgG seroprevalence (%) and HBR for each study-specific observation, as well as the predicted average anti-gSGé IgG
seroprevalence (predicted probability for the average study and country) with 95% confidence intervals (95% CI). Circles are proportional to the size
of the sample for each study-specific observation, with colours indicating sample size: black (<50), red (50-100), navy (100-150), and green (>150).

Association estimated using generalised linear multilevel modelling (mixed effects, logistic) to account for the hierarchical nature of the data, where

study-specific anti-gSG6 1gG observations are nested within study and study is nested within country (model output shown in Appendix 4; p<0.001).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Estimated relative change in odds of anti-gSG6 IgG seropositivity (?5% confidence interval) for given relative percent increases in
human biting rate (HBR) (bites/person/night).

odds of gSGé IgG seropositivity compared to an attenuated association for African studies where An.
gambiae s.|. was not the only DVS (OR: 1.14 per twofold increase in HBR; 95% ClI: 0.98-1.33; p=0.079)
and non-African studies where An. gambiae s.|. was absent (OR: 1.05 per twofold increase in HBR;
95% ClI: 1.03-1.08; p<0.001). In order to quantify the relationship between gSG6 IgG seroprevalence
and HBR, for given HBR values we estimated gSG6 IgG seroprevalence by producing model-based
predicted probabilities overall and by DVS (Figure 3). In African studies where An. gambiae s.l. is
the only DVS, predicted seroprevalence of An. gambiae gSG6 ranged from 21% (95% Cl: 0-45%)
to 86% (95% Cl: 67-100%) for an HBR of 0.1-100 bites per person per night, respectively (Figure 3,
Figure 3—figure supplement 1).

A positive association was also found between seroprevalence of anti-gSG6 IgG antibodies and
EIR in analysis of n = 38 study-specific observations from eight studies (Figure 4, Appendix 6) [Rizzo
et al., 2011b; Ya-Umphan et al., 2017, Soma et al., 2018; Ali et al., 2012; Ambrosino et al., 2010;
Perraut et al., 2017; Pollard et al., 2019; Badu et al., 2012b]. For a twofold increase in EIR, the odds
of anti-gSGé IgG seropositivity increased by 11% (OR: 1.11; 95% CI: 1.05-1.17; p<0.001), with hetero-
geneity in the study-specific effects (95% reference range: 1.00-1.24; likelihood ratio % %(1) = 15.02,
p<0.001). There was no evidence of effect modification by either vector collection method (p=0.095)
or DVS (p=0.080) on the association between seroprevalence of anti-gSG6 IgG and EIR.

Similar positive associations were also found between anti-gSGé6 IgG levels, HBR, and EIR in 11
studies [Drame et al., 2015, Drame et al., 2012, Stone et al., 2012; Soma et al., 2018; Ali et al.,
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Figure 3. Forest plots of predicted anti-gSG6 IgG seroprevalence (%) and Anopheles species-specific human biting rate (HBR). Panels show the
predicted average anti-gSGé6 1gG seroprevalence (predicted probability for the average study and country) with 95% confidence intervals for given HBR,
for all Anopheles spp. (using model output from Appendix 4) and for specific-dominant vector species (DVS): where An. gambiae s.l. is the only DVS,
where other DVS were present in addition to An. gambiae s.|. and where An. gambiae s.I. was absent (using model output from Appendix 5).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Association between anti-gSGé |gG seroprevalence and Anopheles species-specific log, human biting rate (HBR).

2012; Rizzo et al., 2011a; Rizzo et al., 2011b; Poinsignon et al., 2010b; Poinsignon et al., 2008a;
Charlwood et al., 2017, Sagna et al., 2013b] and 3 studies [Rizzo et al., 2011b; Ya-Umphan et al.,
2017, Ali et al., 2012), respectively, but 7 studies showed no association between HBR and levels of
I9G to gSG6 [Drame et al., 2010a; Ya-Umphan et al., 2017, Traoré et al., 2018; Traoré et al., 2019;
Sarr et al., 2012; Poinsignon et al., 2009, Pollard et al., 2019].

The association between anti-gSG6 1gG seroprevalence and population-level prevalence of Plas-
modium spp. infection was investigated. Generalised linear multilevel modelling (mixed effects,
logistic) of n = 212 from 14 studies that measured Plasmodium spp. prevalence contemporaneously
in their study [Badu et al., 2012b; Rizzo et al., 2011b; Ya-Umphan et al., 2017, Soma et al., 2018;
Koffi et al., 2015; Traoré et al., 2019, Badu et al., 2015; Sagna et al., 2013b; Sarr et al., 2012;
Perraut et al., 2017; Drame et al., 2010a; Idris et al., 2017; Proietti et al., 2013; Kerkhof et al.,
2016] showed that for a twofold increase in the prevalence of Plasmodium spp. infection the odds
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Figure 4. Association between anti-gSG6 IgG seroprevalence and log, entomological inoculation rate (EIR). Figure shows the observed anti-gSGé
(either recombinant or peptide form) IgG seroprevalence (%) and EIR for each study-specific observation, as well as the predicted average anti-gSGé6
1gG seroprevalence (predicted probability for the average study and country) with 95% confidence intervals (95% Cl). Circles are proportional to the
size of the sample for each study-specific estimate, with colours indicating sample size: black (<50), red (50-100), navy (100-150), and green (>150).
Association estimated using generalised linear multilevel modelling (mixed effects, logistic) to account for the hierarchical nature of the data, where
study-specific anti-gSG6 1gG observations are nested within study and study is nested within country (model output shown in Appendix 6; p<0.001).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Estimated change in odds of anti-gSG6 IgG seropositivity (?5% confidence interval) for given relative percent increases in
entomological inoculation rate (EIR) (infective bites/person/night).

of gSG6 IgG seropositivity increased by 38%, although the confidence intervals were wide (OR: 1.38;
95% Cl: 0.89-2.12; p=0.148) and heterogeneity in the study-specific effects was observed (95% refer-
ence range: 0.30-6.37; likelihood ratio % ?(1) = 235.5, p<0.001) (Figure 5 and Appendix 7). In the
association between gSG6 IgG seropositivity and Plasmodium spp. infection, there was no evidence
for a moderating effect of Plasmodium spp. detection method (light microscopy or PCR, p=0.968), or
species (African studies with P. falciparum versus non-African studies where P. falciparum and P. vivax
are co-prevalent, p=0.538).

Additionally, 14 studies reported observations of anti-gSGé IgG levels and the prevalence of Plas-
modium spp. infections measured contemporaneously in their study. The median anti-gSGé IgG anti-
body levels increased with increasing Plasmodium spp. prevalence in six of these studies (Drame
et al.,, 2010a; Ya-Umphan et al., 2017; Idris et al., 2017; Poinsignon et al., 2010b; Sarr et al.,
2012; Kerkhof et al., 2016), or in Plasmodium spp.-infected compared to non-infected individuals
(Londono-Renteria et al., 2015a; Montiel et al., 2020), but showed no association in eight studies
(Rizzo et al., 2011b; Soma et al., 2018; Koffi et al., 2015; Traoré et al., 2018; Traoré et al., 2019;
Badu et al., 2015; Sagna et al., 2013b; Poinsignon et al., 2009). Furthermore, we also investigated
associations with serological measures of malaria exposure and found that for a twofold increase in
pre-erythrocytic and blood stage antigen seroprevalence there was a 2.19-fold (OR: 2.19; 95% ClI:
1.18-4.04; p=0.013) and 41% to 5.69-fold (OR range: 1.41-5.69; p range: <0.001 to 0.523) increase in
the odds of anti-gSG6 IgG seropositivity, respectively (Appendix 8).
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Figure 5. The association between anti-gSG6 IgG seroprevalence (%) and log, Plasmodium spp. prevalence (%). Figure shows the observed anti-gSG6

(either recombinant or peptide form) IgG seroprevalence (%) and prevalence of any Plasmodium spp. infection (%) for each study-specific observation,
as well as the predicted average anti-gSGé IgG seroprevalence (predicted probability for average study) with 95% confidence intervals (95% Cl). Circles
are proportional to the size of the sample for each study-specific observation, with colours indicating sample size: black (<50), red (50-100), navy

(100-150), and green (>150). Association estimated using generalised linear multilevel modelling (mixed effects, logistic) to account for the hierarchical
nature of the data, where study-specific anti-gSGé IgG observations are nested within study. See Appendix 7 for model output.

To give epidemiological context, we estimated anti-gSG6 seroprevalence by producing model-
based predicted probabilities by malarial endemicity class (a categorical variable derived by applying
established cut-off values for the PPR,.,, extracted from MAP). Generalised linear multilevel model-
ling (mixed effects, logistic) on 297 study-specific salivary antibody observations from 22 studies
shows that the estimated anti-gSGé IgG seroprevalence is higher for the higher endemicity classes
(eliminating malaria: 20% [95% CI: 8-31%]; hypoendemic: 34% [95% Cl: 19-49%]; mesoendemic: 52%
[95 Cl: 35-68%]; hyperendemic settings: 47% [95% Cl: 27-64%]; holoendemic: 78% [95% CI: 67-90%];
p<0.001; Table 2). Interactions with DVS or region (Africa/non-Africa) could not be explored due to
collinearity with malaria endemicity class. Therefore, in addition using Bayes best linear unbiased
predictions (BLUPs) we estimated country-specific g5SGé 1gG seroprevalence from an intercept-only
multilevel model fitted to 301 study-specific salivary antibody observations from 22 studies. It showed
that IgG seroprevalence to An. gambiae gSG6 was lowest in countries in the Pacific region where
An. gambiae is absent (Vanuatu [31%] and Solomon Islands [32%]) and highest in countries where An.
gambiae is a DVS (Benin [72%] and Burkina Faso [65%]; Appendix 9).

Assessments of internal and external study validity revealed there was a moderate risk of selection
bias (Appendix 2) due to the study-specific inclusion criteria of populations at higher risk of malaria
which contributed gSGé seroprevalence observations. Sensitivity analyses exploring potential study-
level outlier influence on the estimated associations between anti-gSG6 IgG seroprevalence, HBR,
and EIR showed no evidence of bias (effect estimates for each sensitivity analysis were consistent
with model estimates overall) for studies identified as exhibiting potential influence (HBR: n = 6; EIR:
n = 6).
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Table 2. Association between gSG6 IgG seroprevalence (%) and malarial endemicity (PfPR,_,().
Table shows the odds ratio (OR), 95% confidence interval (95% Cl), p-value, as well as the predicted
gSGé IgG seroprevalence and associated 95%CI" for associations between endemicity class
(categorical: derived from P, falciparum parasite rates in 2-10 year olds [PfPR]) and anti-gSGé IgG
seropositivity.

Malaria endemicity class* OR  95% CI p-Value Predicted gSG6 IgG seroprevalence (%)  95% CI

Eliminating malariapepg <19 Ref. 20.0 8.3-31.7
Hypoendemicpg 1-10%) 204 1.43-290 <0.001 337 18.9-48.5
Mesoendemicesr 10.50%) 419 280-6.08 <0.001 515 34.6-67.7
Hyperendemicepr so.75%) 3.36 1.98-571 <0.001 465 27.4-63.8
Holoendemicpps -75% 144 972-21.36 <0.001 782 66.8-89.7

*Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between anti-gSGé
IgG seropositivity and endemicity class with random effects for study-specific heterogeneity in g5Gé IgG. Model
fitted to n = 297 study-specific observations from 22 studies. Of note, nine studies that measured Plasmodium
spp. prevalence and IgG antibodies to gSG6 were excluded from this analysis as eight only reported gSGé IgG
levels and one was a case-control study. Endemicity class membership is derived from PfPR from The Malaria
Atlas, 2017 (MAP) using cut-offs taken from Bhatt et al., 2015, or where MAP data were unavailable, endemicity
was included as indicated in the study.

"Predicted gSG6 IgG seroprevalence (predicted probability in the average study) is estimated from generalised
linear multilevel modelling (mixed effects, logistic).

Discussion

This systematic review and multilevel modelling analysis provides the first quantification of a positive
non-linear association between seroprevalence of An. gambiae gSG6 IgG antibodies and HBR and
demonstrated that its magnitude varied with respect to the DVS present in the area. Importantly, this
review identified a paucity of studies conducted outside of Africa, as well as investigating salivary anti-
gens representing different Anopheles spp. and antigenic targets. gSG6 antibodies were positively
associated with the prevalence of Plasmodium spp. infection as well as established epidemiological
measures of malaria transmission: malaria endemicity class and EIR. Overall, our results demonstrate
that antibody seroprevalence specific for Anopheles spp. salivary antigens has the potential to be
an effective measure of vector exposure and malaria transmission at the population and, potentially,
individual level.

An. gambiae gSG6 IgG seropositivity increased with increasing HBR, although these increases had
diminishing impact on An. gambiae gSGé IgG seropositivity at higher levels of HBR (approximately
greater than two bites per person per night). In our study, 17 studies performed across Africa (Angola,
Benin, Burkina Faso, Cote d'lvoire, and Senegal) and the Asia Pacific (Cambodia, Myanmar, and the
Solomon Islands) reported an HBR < 2, demonstrating the applicability of gSG6 as a biomarker of HBR
across a broad range of malaria-endemic regions. We also observed that the association was strongest
in areas where An. gambiae s.|. was the only DVS (i.e. concordant An. gambiae species-specific HBR
with An. gambiae gSG6 antibodies). Associations, albeit weaker, were also observed between discor-
dant species-specific HBR and gSG6, most likely because the An. gambiae SG6 gene shares moderate
sequence identity with vector species that are dominant in other regions (Africa: 80% An. funestus;
Asia: 79% Anopheles stephensi and Anopheles maculatus; 54% An. dirus; Pacific: 52.5% Anopheles
farauti), and is absent from the DVS of the Americas (An. albimanus and An. darlingi) (Arca et al.,
2017). The generalisability of An. gambiae gSG6 IgG as a biomarker of exposure to other Anopheles
spp. may therefore be limited. However, our review also identified a paucity of studies investigating
additional salivary antigenic targets and Anopheles species not present in Africa. The identification
of novel salivary antigens that are species-specific will be valuable in quantifying exposure to the
other Anopheles vectors that share limited identity with An. gambiae SGé (such as An. farauti and
An. dirus), as well as Anopheles spp. which lack SG6 (as done for An. albimanus and An. darlingi;
Londono-Renteria et al., 2020a; Londono-Renteria et al., 2020b). An Anopheles species-specific
serological platform could advance vector surveillance by more accurately capturing exposure to DVS
in the South American and Asia Pacific regions which exhibit diverse biting behaviours and vector
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competence (DVS typically bite outdoors during the night and day, respectively; The Malaria Atlas,
2017; Sinka et al., 2012; Sinka et al., 2010; Trung et al., 2005; Herrera et al., 2015, Chaumeau
et al., 2018), as well as the increasing threat of urban malaria from An. stephensiin Africa (Takken and
Lindsay, 2019, Sinka et al., 2020).

This review demonstrated that the prevalence of Anopheles salivary antibodies increased with
increasing prevalence of Plasmodium spp. infection (although confidence intervals were wide and
we observed heterogeneity in the effect between studies) as well as established epidemiological
measures of malaria transmission: malaria endemicity class and EIR. Anti-salivary antibodies, such as
SG6 1gG, may therefore have the potential to serve as a proxy measure for receptivity of a popula-
tion to sustain malaria transmission. Their application could be particularly relevant in pre-elimination
areas, or non-endemic areas under threat of imported malaria, where Anopheles salivary antibodies
are more readily detectable than parasites; salivary antibodies were predicted to be prevalent (20%)
in areas defined as eliminating malaria (<1% PfPR,.o). Furthermore, if SG6 IgG seroprevalence can be
effectively combined with a measurement of the sporozoite index, salivary antibodies as a marker of
HBR could help overcome sensitivity limitations of EIR in low transmission areas. Additional measures
could include estimates of malaria prevalence or serological biomarkers that are species- or life stage-
specific (e.g. Plasmodium spp. pre-erythrocytic antigens as biomarkers for recent parasite inocula-
tion). Indeed, positive associations between antibodies specific for Plasmodium spp. pre-erythrocytic
and blood stage antigens with gSGé were demonstrated in analyses of data from diverse malaria-
endemic areas. Serological tools combining salivary antigens with antigens specific for the different
Plasmodium spp. could be easy to employ and complement malaria surveillance programmes. These
tools may be particularly useful in the Asia Pacific, a region of relatively low malaria transmission
with goals of elimination, but the highest burden of P. vivax malaria where blood stage infection can
be caused by relapses from dormant liver stages. In these areas, parasite prevalence may therefore
overestimate ongoing malaria transmission, making vector surveillance tools essential to informing
elimination strategies in the Asia Pacific and other regions where P. vivax is endemic.

The gold standard entomological measures HBR and EIR provide crude population-level estimates
of vector and malaria exposure that are specific in space and time and preclude investigation of
individual-level heterogeneity and natural transmission dynamics. Our study demonstrated that sali-
vary biomarkers measured at the individual level, such as gSGé I1gG, can be used to quantify total vector
exposure at the population level, without requiring laborious entomological experiments. However,
validating an individual-level serological measure, which demonstrates considerable individual-level
variation, against the imperfect population-level gold standards of HBR and EIR is challenging and
reflected in the variation in study-specific estimates in the association between gSGé IgG and HBR in
modelling analyses. However, the accuracy of salivary antibodies to measure individual-level exposure
to Anopheles bites is yet to be validated; literature searches identified no studies investigating this
association at the individual level. Without detailed measurements of individual-level vector exposure,
or a detailed knowledge of the half-life of Anopheles salivary antibodies post biting event, the true
accuracy of salivary antibodies, such as SG6 IgG, to measure individual-level HBR remains unknown.
This knowledge is particularly pertinent where Anopheles salivary biomarkers might be applied to
assess the effectiveness of a vector control intervention or used to measure temporal changes in
malaria transmission; particularly in areas or populations where there is considerable heterogeneity
in individual-level risk of Anopheles exposure (e.g. unmeasured outdoor biting due to occupational
exposure for forest workers; Sandfort et al., 2020).

The broad nature of our inclusion and quality criteria was a key strength of our systematic review,
which aimed to provide a comprehensive analysis of all Anopheles salivary biomarkers and deter-
mine their associations with entomological and malariometric measures of transmission. However,
this review has two main limitations. First, despite the inclusive nature, assessment of the external
validity of the review revealed a moderate risk of bias; some studies exhibited a high risk of selection
bias as they were performed in specific high-risk populations not representative of the overall popu-
lation (i.e. children only). This is accounted for to some degree by specification of a random effect
(i.e. intercept) for study, which accounts for unmeasured study-specific factors that may introduce
study-specific measurement error to measurement of the outcome. Second, with respect to internal
validity, there may be potential selection bias introduced by the exclusion of studies reporting zero
HBR (7 observations from three studies; Rizzo et al., 2011b; Pollard et al., 2019, Sagna et al.,
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2013b), EIR (22 observations from three studies; Ya-Umphan et al., 2017; Rizzo et al., 2011b; Soma
et al., 2018), and malaria prevalence (15 observations from three studies; Idris et al., 2017, Sagna
et al., 2013b; Kerkhof et al., 2016) estimates, given we modelled the log of these factors. However,
adding a small constant (e.g. 0.001) to a zero value to permit modelling of a log estimate can also
introduce considerable bias (i.e. seemingly small differences between values become very large on
the log scale). In light of this, we also chose to provide estimates of association and gSGé 1gG sero-
prevalence according to a selected range of epidemiologically relevant hypothetical HBRs (no widely
accepted HBR classification exists in the literature) and according to widely accepted, discrete, ende-
micity classes according to MAP estimates (which permitted inclusion of all studies) to provide epide-
miological context. However, there is the potential for misclassification of malarial endemicity class
derived from geospatially extracted MAP predictions of PfPR,.;, which increase in uncertainty in areas
with scarce data. Similarly, we used MAP vector occurrence data to inform DVS categories for 7 (out
of 42) studies. Cross-referencing these 7 studies with a 2017 updated database for African vectors
(using data for the nearest neighbouring village) identified 10 discrepant datapoints from 3 studies
(from a total of 28 datapoints from 7 studies) (Snow, 2017). Any misclassification events may cause us
to underestimate the standard error in the effect of malaria endemicity class and DVS on gSGé6 IgG.

Conclusions

In order to advance progress towards malaria elimination, the World Health Organization has called
for innovative tools and improved approaches to enhance vector surveillance and monitoring and
evaluation of interventions (World Health Organization, 2017). Our systematic review has provided
evidence that Anopheles salivary antibodies are serological biomarkers of vector and malaria expo-
sure, by quantifying their positive association with Anopheles-HBR and established epidemiological
measures of malaria transmission. These salivary biomarkers have the potential to replace crude
population-level estimates of entomological indices with a precise and scalable tool that measures
Anopheles vector exposure at the individual level. This approach could be expanded into a sero-
surveillance tool to assess the effectiveness of vector control interventions, define heterogeneity in
malaria transmission, and inform efficient resource allocation that would ultimately accelerate prog-
ress towards elimination.
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Supplementary methodology
Search strategy

We performed a systematic review with multilevel modelling of the published literature according to
the MOOSE guidelines (Stroup et al., 2000) and the PRISMA specifications (Moher et al., 2009).
The protocol was registered with PROSPERO (CRD42020185449).

The electronic databases PubMed, Scopus, Web of Science, African Index Medicus, and the Latin
American and Caribbean Health Sciences Literature (LILACS) were searched for studies published
before 30 June 2020 investigating Anopheles salivary antigens as a biomarker for mosquito exposure
or malaria transmission. Search terms were as follows: Anophel* AND saliva* AND (antibod* OR sero*
OR antigen OR marker* OR biomarker* OR gSG6* OR gSG* OR SG* OR cE5). The reference lists
of included studies were screened for additional studies, and Google Scholar was used to identify
additional works by key authors. No formal attempt was made to identify unpublished population
studies as it would have required significant description of the design, methods, and analysis used in
these studies, and a review of ethical issues.

Selection criteria

The primary criterion for inclusion in this systematic review was the reporting of observations of
seroprevalence or total levels of Ig antibodies (including all isotypes and subclasses) in human
sera against recombinant or synthetic peptide Anopheles salivary antigens. We considered for
inclusion cross-sectional studies, cohort studies, intervention studies, and case—control studies of
individuals or populations (including sub-populations) living in all geographies with natural exposure
to Anopheles mosquitoes. Studies that were solely performed in participants not representative of
the wider population (i.e. mosquito-allergic patients, soldiers, returned travellers) were excluded.
The minimum quality criteria for inclusion in this review were antibody detection performed using
enzyme-linked immunosorbent assay (ELISA), multiplex or Luminex assays.

The exposure variables of interest included entomological and malariometric parameters,
including (i) HBR, defined as the number of bites received per person per unit of time; (i) EIR, defined
as the number of infectious bites per person per unit of time, calculated as the HBR multiplied by
the sporozoite index; (iii) estimates of malaria prevalence; and (iv) population-level seroprevalence
estimates against Plasmodium spp. malarial antigens. To ensure HBR estimates were given for the
same unit of time (bites per person per night), biting rates given per week were divided by 7, and
biting rates given per month we multiplied by 12 and divided by 365. Similar approaches were
employed to ensure consistent units for EIR (infectious bites per person per year). Plasmodium spp.
infections had to be confirmed by either microscopy, RDT, or molecular methods (PCR). Plasmodium
spp. diagnosis was included for all Plasmodium spp. combined and the species level if provided.
Where exposure estimates were not provided, we attempted to source data from other publications
by the authors or used the site geolocation and year to obtain estimates of EIR from the Pangaea
dataset (Yamba et al., 2018). P. falciparum rates in 2-10 year olds (globally, 2000-2017) and DVS
from the MAP (The Malaria Atlas, 2017). Studies of salivary antigens where exposure variables
could not be sourced and data that could not be extracted were excluded.

Selection of studies

One author performed database searches and screened reference lists to identify possible studies.
One author screened studies against inclusion criteria, with discussion and input from a second
reviewer.

Approaches to include all available studies

The authors of any studies that did not contain relevant information on the study design, populations,
eligibility criteria, or key study data were contacted and relevant data requested. Authors were
contacted via an initial email detailing the precise nature of the systematic review and the data
required. If the authors did not reply to three email requests or were unable to provide relevant
data, the studies were deemed to insufficiently meet inclusion/quality criteria and were excluded. As
measurement of antibody levels does not produce a common metric between studies, authors were
asked to classify their participants as ‘responders’ or ‘no-responders’ according to seropositivity
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(antibody level relative to unexposed sera) within each study to allow comparisons of seroprevalence
between studies (Cutts et al., 2020; Cutts et al., 2014; Fowkes et al., 2010). Studies that were
only able to provide antibody levels or categorised seropositivity based upon arbitrary cut-offs were
excluded from multilevel modelling analyses and included in narrative terms. Where the salivary
antibody response and exposure variable were measured in the same population and reported in
multiple publications, the study with the largest sample size was included, otherwise the earliest
study was included.

Data extraction

Data were extracted using a data collection form by one reviewer. Any data that was provided at
the sub-population level was extracted at the lowest level, that is, if a study was performed across
multiple sites, and an estimate for both salivary antibody seroprevalence/levels and the exposure of
interest is given for each site, it was included the site level, rather than an aggregated level.
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Measures

Outcomes

The primary outcome of interest of our systematic review was the reported antibody response
(both seroprevalence and levels of all Ig subclasses and isotypes) to Anopheles salivary antigens.
Multilevel modelling analyses were performed where the seroprevalence of antibodies against the
same antigen and the exposure of interest were reported in more than one study.

Exposures

The primary exposures of interest included in the multilevel modelling analyses were the HBR and
EIR, a measure of the average number of bites received per person per night and infectious bites
received per person per year, respectively. Secondary exposures assessed include the prevalence
of any Plasmodium spp. infection (including P. falciparum only, P. vivax only, or untyped infections).
Additional secondary exposures include the P. falciparum infection rate in 2-10 year olds extracted
from MAP, as well as the seroprevalence of antimalarial antibodies against pre-erythrocytic and
blood stage antigens.

Clinical and methodological heterogeneity were explored using prespecified variables to
minimise spurious findings. Variables considered for inclusion were study design (cohort, cross-
sectional, repeated cross-sectional), DVS, study participants (adults only, children only, adults
and children), preparation of salivary antigen (recombinant full-length protein, synthetic peptide),
malaria detection methodology (light microscopy, RDT, PCR), and entomological vector collection
methodology (human landing catch, light traps, and spray catches).

Statistical analysis

Where there were sufficient data to pool observations of the same exposure and outcome measures,
generalised linear multilevel modelling was used to undertake analyses quantifying associations
between the exposures of interest and salivary antibody seroprevalence measurements. Models
were generalised through use of the logit link function and binomial distribution (statistical notation
for HBR model shown below as Equation 1). Seroprevalence was modelled in binomial form as the
number of individuals seropositive to the total sample size. A three-level random effects model
with a nested framework was used to account for dependency in the data, with random intercepts
for country (level 3) and study (level 2) estimated. Hence, level 1 units represented multiple salivary
antibody observations within a study induced by the study design (i.e. multiple time points, sites, age
categories). Additionally, study-level random slopes for entomological and malariometric exposures
were estimated to permit the effects to vary across studies. Model structure was determined
empirically through likelihood ratio tests (p<0.05), with the exception of country at the third,level
which was included in HBR and EIR analyses to estimate country-specific seroprevalence estimates
of anti-salivary antibodies. The associations between the various exposures and the different salivary
antigens were analysed separately; however, observations of IgG seroprevalence against the
recombinant full-length protein (gSG6) and synthetic peptide (gSG6-P1, the one peptide determined
in all studies utilising peptides) form of the gSGé antigen were analysed together, with a fixed term
for antigen construct considered for inclusion in the model. Of note, gSG6 peptide 2 (gSG6-P2) was
excluded from being analysed with gSG6 and gSG6-P1 as the two studies that reported anti-gSG6-P2
IgG seroprevalence also reported the seroprevalence of anti-gSG6-P1 IgG and only one could be
included. Potential effect modification of the associations between the exposures of interest and the
anti-Anopheles salivary antibody responses was explored and undertaken by estimating interaction
terms for DVS (An. gambiae s.|. only, An. gambiae s.|. and other DVS, or An. gambiae s.|. absent) and
for vector collection method (human landing catch or other indirect measures, e.g. light traps, spray
catches, etc.). For the association between Plasmodium spp. prevalence and gSGé IgG seropositivity,
interaction terms for malaria detection methodology (light microscopy or PCR), and malarial species
type (P. falciparum only, or P. falciparum and P. vivax) were estimated. Other variables considered for
inclusion in adjusted models were study design, participant, and salivary antigen construct; however,
these variables showed no association with anti-gSGé I1gG and were thus excluded.

AIC and BIC fit indices were used to determine the best-fitting functional forms for the association
between log odds of gSG6 IgG seropositivity and HBR, EIR, and Plasmodium spp. prevalence —
linear, log, quadratic, and cubic functions were fitted, with a log transformation exhibiting superior
model fit (Appendix 1—table 1). To aid interpretation, we present our results as a relative increase
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in the odds of the gSG6 IgG seropositivity for a twofold (100% relative) increase in the exposures.
Additional relative percent changes in HBR and EIR are also presented.

Appendix 1—table 1. Model selection process, showing the log likelihood, Akaike's information
criterion (AIC), and Bayesian information criterion (BIC) fit indices for each model estimating
different functional forms for the association between gSGé IgG seropositivity and respective
exposures.

Model Log likelihood AIC BIC
HBR

Linear -1533.3 3076.6  3091.2
Log -1492.8 2995.7 3010.1
Quadratic -1523.7 3059.4  3077.0
Cubic -1523.7 3061.3  3081.9
EIR

Linear -1003.40 2016.80 2027.27
Log -530.65 1071.30 1079.49
Quadratic -1002.65 2017.30 2029.87
Cubic -976.36 1966.72  1981.38

Plasmodium spp.

prevalence

Linear -2777.45 5564.91 5582.03
Log -2597.24 5202.47 5215.90
Quadratic -2775.47 5562.95 5583.50
Cubic —2769.91 5553.82 5577.80

HBR: human biting rate; EIR: entomological
inoculation rate.

Empirical Bayes BLUPs were used to estimate the probability of gSG6 IgG seropositivity in
the average study and country, which is equivalent to an estimated gSGé6 IgG seroprevalence.
In order to maximise the number of included studies in our modelling, we predicted anti-gSGé
seroprevalence according to endemicity class, derived by applying established endemicity cut-offs
to PfPR,., estimates (Bhatt et al., 2015) extracted from MAP using site year and geolocation (if
MAP data unavailable endemicity as stated in study). ICCs and 95% reference ranges were estimated
for country-, study-, and slope-specific heterogeneity (where appropriate) using estimated model
variance components.

Statistical notation for the generalised linear multilevel model (mixed
effects, logistic) used to estimate the association between An. gambiae
gSG6 IgG seropositivity and HBR

The model can be formally written as

logit {Pr(yij = 1) ‘ Xijs Clj,CZi, C3j log (HBR)U} = f1+ prlog (HBR)U + Clj + (i + (3;log (HBR)ij "

where

Cij~ N, 1), i ~ N(O, 97) and (3jlog (HBR)U ~ N(O, ), (2)

where x;; is the vector of model covariates, $; is the model constant and represents the log odds
(probability) of gSGé6 IgG seropositivity for a log HBR of zero, 3; is the fixed effect for log HBR for
country j and study i, ¢j; is the random effect (i.e. intercept) for between-country heterogeneity in
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probability of gSGé 1gG seropositivity, (p;, is the random effect (i.e. intercept) for between-study
heterogeneity in probability of gSGé IgG seropositivity, and (3; is the random effect (i.e. coefficient)
for between-study heterogeneity in the effect of log HBR.

Risk of bias in individual studies

For cross-sectional, cohort or intervention studies, selection bias was assessed by reviewing the
studies’ inclusion and exclusion criteria. Any case—control studies or studies that presented salivary
antibody data stratified by malaria infection status were included in narrative terms only. Risk of
bias was assessed by one reviewer using the Risk of Bias in Prevalence Studies tool (Hoy et al.,
2012). The risk of bias pertains to the reported observations of anti-Anopheles salivary antibody
seroprevalence included in the multilevel modelling.
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Appendix 2

Risk of bias assessment

Risk of bias was assessed for each study by one independent reviewer using the Risk of Bias in
Prevalence Studies tool (Hoy et al., 2012). This tool comprises 10 items and a summary assessment
to assess the external validity (selection and non-response bias) and internal validity (measurement
bias) of the study’s seroprevalence observations. The risk of bias pertains to the reported observations
of anti-Anopheles salivary antibody seroprevalence included in the multilevel modelling.

With regard to external validity, seven of the studies included in the review were performed in
specific populations (i.e. children only) that were not representative of the national population and
were deemed to be at high risk of selection bias. Only seven studies included some form of random
sampling, and frequently insufficient detail was provided on the sampling frame; as such most studies
were included as high risk of selection bias. Furthermore, no studies reported participant response
rate, and as such were indicated as high risk of non-response bias.

In terms of internal validity, all studies had an acceptable case definition, with the same mode
of data collection, a valid instrument, and an acceptable prevalence period, so were all deemed to
be of low risk. However, 12 studies did not include a denominator, instead only reporting the study
sample size and prevalence estimate, and were included as high risk.

Overall, due to the specific nature of some of the sample populations for which these prevalence
observations are given (i.e. children only) and as participant non-response rate is not given, we
conclude that there is a moderate risk of study bias. According to the Risk of Bias in Prevalence
Studies tool (Hoy et al., 2012), this implies that future research is likely to have an impact on our
confidence in the prevalence observations.
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Appendix 2—figure 1. Risk of bias assessment. Red, high risk; orange, moderate risk; green, low risk.
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Reasons for study exclusion

Appendix 3—table 1. Reasons for study exclusion.

Studies Reason

Epidemiology and Global Health

References

Arca et al., 2017, Alvarenga

et al., 2010; Arca et al., 2005;
Calvo et al., 2007; Calvo et al.,
2006; Choumet et al., 2007,
Das et al., 2010; Di Gaetano

et al., 2018, Dixit et al., 2009,
Francischetti et al., 2014;
Francischetti et al., 2002;
Ghosh et al., 2009; Isaacs

et al., 2018; Jariyapan et al.,
2010; Jariyapan et al., 2006;
Jariyapan et al., 2012, Kamiya
et al., 2017; Khaireh et al.,
2012, Korochkina et al., 2006;
Lombardo et al., 2009, Pandey
et al., 2018, Pedro and Sallum,
2009; Phattanawiboon et al.,
2016; Pirone et al., 2017; Rawal
et al., 2016; Ronca et al., 2012;
Sarr et al., 2007, Scarpassa et al.,

Does not measure anti-salivary antibody responses in individuals/ 2019; Wells and Andrew, 2015;

30 populations

Zocevic et al., 2013

28 Review article

malERA Refresh Consultative
Panel on Tools for Malaria
Elimination, 2017, malERA
Refresh Consultative Panel

on Basic Science and Enabling
Technologies, 2017, malERA
Refresh Consultative Panel on
Characterising the Reservoir and
Measuring Transmission, 2017,
Andrade and Barral-Netto, 2011;
Andrade et al., 2005; Billingsley
et al., 2006; Cantillo et al.,

2014; Coutinho-Abreu et al.,
2015, Domingos et al., 2017,
Doucoure et al., 2015, Doucoure
and Drame, 2015; Drame et al.,
2013b; Fontaine et al., 2011a;
Foy et al., 2002; Gillespie

et al., 2000; Hopp and Sinnis,
2015, Hugo and Birrell, 2018,
Leitner et al., 2011, Lombardo
et al., 2006; Mathema and Na-
Bangchang, 2015, Peng et al.,
2007 Ribeiro and Francischetti,
2003, Sagna et al., 2017, Sa-
Nunes and De Oliveira, 2011,
Miot and Lima, 2014; Peng and
Simons, 2004; Pingen et al., 2017,
Sinden et al., 2012

Appendix 3—table 1 Continued on next page
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Appendix 3—table 1 Continued

Studies

Reason

Epidemiology and Global Health

References

20

Anopheles salivary antigens not assessed

Abonuusum et al., 2011; Badu
et al., 2012a; Chaccour et al.,
2013, Coulibaly et al., 2017,
Dhawan et al., 2017, Fontaine
et al., 2011c; Fontaine et al.,
2011b; Jeon et al., 2001; Kelly-
Hope and McKenzie, 2009;
Kusi et al., 2014; Li et al., 2005;
Londono-Renteria et al., 2015b,
Mwanziva et al., 2011; Sarr et al.,
2011, Satoguina et al., 2009,
Smithuis et al., 2013; Ubillos

et al.,, 2018; van den Hoogen
et al., 2020; Varela et al., 2020;
Wanjala and Kweka, 2016

Wrong antibody detection methodologies

Armiyanti et al., 2016, Brummer-
Korvenkontio et al., 1997
Cornelie et al., 2007, Fontaine
et al., 2012; Marie et al., 2014;
Owhashi et al., 2008; Penneys
et al., 1989; Sor-suwan et al.,
2014; Sor-Suwan et al., 2013,
Peng et al., 1998

Grey literature

Cornelie et al., 2008; Drame

et al., 2008; Drame et al.,
2010c; Poinsignon et al.,
2008b; Poinsignon et al., 2013;
Poinsignon et al., 2010a; Sagna
et al., 2018

Not performed in humans

Dragovic et al., 2018; King

et al.,, 2011; Vogt et al., 2018,
Wang et al., 2013; Almeida and
Billingsley, 1999, Boulanger et al.,
2011

Data already captured by our review from another publication

Kerkhof et al., 2015; Sagna et al.,
2013a; Ya-Umphan et al., 2018,
Aka et al., 2020

Unable to determine appropriate exposure estimate

Drame et al., 2013a; Noukpo
et al., 2016; Londono-Renteria
et al.,, 2010

Not in population with natural exposure

Manning et al., 2020; Mendes-
Sousa et al., 2018, Peng et al.,
2004

Hypothesis study

Londono-Renteria et al., 2016

Pooled sera

Owhashi et al., 2001

Does not provide estimate of seroprevalence/total levels of
antibodies against salivary proteins

Armiyanti et al., 2015

Study population not representative: mosquito-allergic patients

Opasawatchai et al., 2020

Study population not representative: soldiers with transient
exposure

Orlandi-Pradines et al., 2007
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Appendix 4
Association between gSG6 IgG seropositivity and HBR

Appendix 4—table 1. Unadjusted association between gSG6 IgG seropositivity and log human
biting rate (HBR).

Variable log odds ratio (SE) 95% CI p-Value RE
Fixed part

log HBR*," 0.29 (0.08) 0.14-0.45 <0.001

Random part

U 1.29

() 1.55

s 0.06
P18 0.21
ol 0.47

14 -1492.8

Model fit indices

Akaike’s information criterion 2995.7

Bayesian information criterion 3010.1

HBR association: log odds ratio and standard error (SE), 95% confidence interval (95% Cl), p-value, random-effect
components (RE): variances (¢ ), conditional intraclass correlation coefficient ICC ( o ),* and model log likelihood
(€) from generalised linear multilevel modelling (mixed effects, logistic).” This analysis is based upon n = 132 study-
specific observations from 12 studies. Of note, five studies that measured HBR and IgG antibodies to gSGé were

excluded from this analysis as they only reported gSG6 IgG levels.
wk+ -t '¢'nk

*o = T where ¥y through 1, are random-effect variance estimates pertaining to each of the
respec@ivé'vari'énce components (see table notes *") from the generalised linear multilevel modelling (mixed
effects, logistic) for a specific ICC estimate.

tGeneralised linear multilevel modelling (mixed effects, logistic) estimating the association between log
transformed HBR and anti-gSG6 IgG seropositivity with random effects for country-specific and study-specific
heterogeneity in gSGé6 IgG seroprevalence and study-specific heterogeneity in effect of HBR.

f1)1, Y2, and 13 represent variances of the random effects for country, study, and effect of HBR, respectively.
§p1 represents conditional ICC for salivary antibody observations from the same country but different study.

9p2 represents conditional ICC for salivary antibody observations from the same country and study with the
median HBR.
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Appendix 5

Association between gSG6 IgG seropositivity and HBR, moderated by
dominant vector species

Appendix 5—table 1. Association between gSG6 IgG seropositivity and log human biting rate
(HBR), moderated by dominant vector species.

Variable log odds ratio (SE) 95% Cl p-Value RE
Fixed part
log HBR 0.46 (0.11) 0.25-0.66 <0.001
DVS <0.001**

An. gambiae s.|. only Ref.

An. gambiae s.I. and other DVS 1.00 (0.18) 0.65-1.25 <0.001

Non-An. gambiae s.|. 1.09 (0.68) —0.24t02.42 0.109
log HBR by DVS <0.001**

An. gambiae s.l. only Ref.

An. gambiae s.|. and other DVS -0.26 (0.08) —-0.41 to -0.11 0.001

Non-An. gambiae s.|. -0.38(0.11) -0.59 to -0.17 <0.001
Random part
U 0.96
s 2.32
3 0.08
P18 0.14
P2l 0.51
14 -1488.8

Model fit indices

Akaike's information criterion 2995.5

Bayesian information criterion 3021.5

HBR x dominant vector species (DVS) association: log odds ratio and standard error (SE), 95% confidence interval
(95% Cl), p-value, random-effect components (RE): variances (¢ ), conditional intraclass correlation coefficient
(ICC) (p0),* and model log likelihood () from generalised linear multilevel modelling (mixed effects, logistic)." This
analysis is based upon n = 132 study-specific observations from 12 studies. Of note, five studies that measured

HBR and IgG antibodies to gSGé were excluded from this analysis as they only reported gSGé6 1gG levels.

p= w"+7+¢";2/3 , where 1 through ¥, are random-effect variance estimates pertaining to each of the

respe%fi-{—/é"c—azrzfgﬁ'—ce components (see table notes ") from the generalised linear multilevel modelling (mixed
effects, logistic) for a specific ICC estimate.

" Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between log
transformed HBR and anti-gSG6 IgG seropositivity including an interaction term between DVS and log HBR with
random effects for country-specific and study-specific heterogeneity in gSG6 IgG seroprevalence and study-
specific heterogeneity in effect of HBR.

* b1, ¥y, and 13 represent variances of the random effects for country, study, and effect of HBR, respectively.

§ p1 represents the conditional ICC for salivary antibody observations from the same country but different study.
1 pa represents the conditional ICC for salivary antibody observations from the same country and study with the
median HBR.

**indicates p-value from joint Wald test for polytomous variables.
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Appendix 6
Association between gSG6 IgG seropositivity and EIR

Appendix 6—table 1. Unadjusted association between gSGé IgG seropositivity log entomological
inoculation rate (EIR).

Variable log odds ratio (SE) 95% ClI p-Value RE
Fixed part

log EIR 0.15(0.04) 0.07-0.23 <0.001

Random part

U 1.02
() 2.15
s 0.01
P18 0.16
ol 0.49

14 -530.7

Model fit indices

Akaike’s information criterion 1071.3

Bayesian information criterion 1079.5

Entomological inoculation rate (EIR) association: log odds ratio and standard error (SE), 95% confidence interval
(95% Cl), p-value, random-effect components (RE): variances (¢ ), conditional intraclass correlation coefficient
(ICC) (p)* and model log likelihood (£) from generalised linear multilevel modelling (mixed effects, logistic). This
analysis is based upon n = 38 study-specific observations from eight studies.

o= 7 _;pk:"""kf";‘rzB , where Y through ¥y are random-effect variance estimates pertaining to each of the
respecfivé"vanénce components (see table notes ") from the generalised linear multilevel (mixed effects, logistic)
modelling for a specific ICC estimate.

" Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between log
transformed EIR and anti-gSGé 1gG seropositivity with random effects for country-specific and study-specific
heterogeneity in gSG6 IgG seroprevalence and study-specific heterogeneity in effect of EIR.

*)1, 1y, and 3 represent variances of the random effects for country, study, and effect of EIR, respectively.

$ p1 represents the conditional ICC for salivary antibody observations from the same country but different study.

Y p represents the conditional ICC for salivary antibody observations from the same country and study with the
median EIR
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Appendix 7

Association between gSG6 IgG seropositivity and malaria prevalence

Appendix 7—table 1. Unadjusted association between gSGé6 IgG seropositivity and log
Plasmodium spp prevalence.

Variable log odds ratio (SE) 95% CI p-Value RE
Fixed part

log Plasmodium spp. prevalence 0.46 (0.32) -0.16-1.08 0.148

Random part

U 17.21
() 1.25
P18 0.85

14 -2597.2

Model fit indices

Akaike’s information criterion 5202.5

Bayesian information criterion 5215.9

Any Plasmodium species infections (including prevalence estimates of P. falciparum only, P. vivax only, both P
falciparum and P. vivax and untyped infections): log odds ratio and standard error (SE), 95% confidence interval
(95% Cl), p-value, random-effect components (RE): variances (¢ ), conditional intraclass correlation coefficient
(ICC) (0),* and model log likelihood (£) from generalised linear multilevel modelling (mixed effects, logistic)." This
analysis is based upon n = 212 study-specific observations from 14 studies. Of note, six studies that measured
Plasmodium spp. prevalence and IgG antibodies to gSGé were excluded from this analysis as five only reported

gSG6 IgG levels and one was a case—control study.

P Uit ot Yk . . L
P=3 ”k+"ﬁ2/3 , where 1y through ¥y are random-effect variance estimates pertaining to each of the

+ .t : X . . .
respeclﬂve vafiance components (see table notes **'¥%) from the generalised linear multilevel modelling (mixed
effects, logistic) for a specific ICC estimate.

" Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between the log
prevalence of any Plasmodium spp. infection and anti-gSGé 1gG seropositivity with random effects for study-
specific heterogeneity in gSGé IgG seroprevalence and study-specific heterogeneity in effect of Plasmodium spp.
prevalence.

*4)1 and 1Y, represent variances of the random effects for study and effect of Plasmodium spp. prevalence,
respectively.

$ p1 represents the conditional ICC for salivary antibody observations from the same study and with the median
Plasmodium spp. prevalence.
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Appendix 8

Association between gSG6 IgG seropositivity and antimalarial antibody
seroprevalence

Antibodies against P. falciparum pre-erythrocytic stage antigens

The pooled analysis of 159 study-specific observations from eight studies showed that a twofold
increase in PfCSP IgG seropositivity was associated with a 2.19-fold (OR: 2.19; 95% Cl: 1.18-4.04;
p=0.013) increase in odds of anti-gSG6 IgG seropositivity (Stone et al., 2012; Ya-Umphan et al.,
2017; Koffi et al., 2015; Koffi et al., 2017; Ambrosino et al., 2010; Perraut et al., 2017; Proietti
et al., 2013; Kerkhof et al., 2016). Furthermore, we observed that gSGé IgG levels increased with
increasing PfCSP IgG seroprevalence in four studies (Ya-Umphan et al., 2017, Koffi et al., 2015;
Koffi et al., 2017, Kerkhof et al., 2016), with another study contributing only a single estimate
(Stone et al., 2012).

Antibodies against P. falciparum blood stage antigens

Furthermore, we observed a twofold increase PFAMA1 IgG seroprevalence was associated with a
2.47-fold (OR: 2.47; 95% Cl: 2.25-2.71; p<0.001) increase in odds of gSG6 IgG seropositivity based
upon 62 study-specific observations from eight studies (Stone et al., 2012; Ya-Umphan et al., 2017,
Koffi et al., 2015; Koffi et al., 2017, Perraut et al., 2017, Yman et al., 2016; Proietti et al., 2013;
Idris et al., 2017). A similar association was observed for PIMSP1,, IgG, with twofold increase in
seroprevalence associated with 2.49-fold (OR: 2.49; 95% ClI: 1.21-5.12; p=0.014) increase in odds of
gSG6 IgG seropositivity. This association was derived from 163 study-specific observations from 10
studies (Stone et al., 2012; Ya-Umphan et al., 2017, Koffi et al., 2015; Koffi et al., 2017; Perraut
et al., 2017; Proietti et al., 2013; Yman et al., 2016; Badu et al., 2015; Kerkhof et al., 2016;
Idris et al., 2017). Analysis of 47 study-specific observations from three studies indicated that a
twofold increase in PIMSP2 IgG seroprevalence was associated with a 41% (OR: 1.41; 95% Cl: 1.21-
1.65; p<0.001) increase in odds of gSG6 IgG seropositivity (Ya-Umphan et al., 2017; Perraut et al.,
2017; Yman et al., 2016). While 17 study-specific observations from two studies showed a twofold
increase in PIMSP3 IgG seroprevalence was associated with a 2.66-fold (OR: 2.66; 95% Cl: 2.36-3.00;
p<0.001) increase in odds of gSGé IgG seropositivity (Stone et al., 2012; Yman et al., 2016).

The pooled analysis of 128 study-specific observations from five studies showed that a twofold
increase in PfGLURP IgG seroprevalence was associated with a 3.05-fold (OR: 3.05; 95% CI:
2.58-3.61; p<0.001) increase in odds of gSGé IgG seropositivity (Koffi et al., 2015; Koffi et al.,
2017; Ambrosino et al., 2010; Perraut et al., 2017; Kerkhof et al., 2016). And 18 study-specific
observations from five studies indicated that a twofold increase in P. falciparum schizont extract IgG
seropositivity was associated with a 5.69-fold (OR: 5.69; 95% Cl: 0.03-1188.69; p=0.523) increase
in odds of gSG6 IgG seropositivity (Idris et al., 2017, Koffi et al., 2015; Sarr et al., 2012; Perraut
et al., 2017, Koffi et al., 2017).

We observed that increasing seroprevalence of IgG antibodies against PFAMA1 saw increased
levels of anti-gSG6 IgG in three studies (Idris et al., 2017, Koffi et al., 2015; Koffi et al., 2017),
but no association in another (Ya-Umphan et al., 2017). The levels of gSG6 IgG increased with
increasing PIMSP 1,5 IgG seroprevalence in three studies (Idris et al., 2017, Koffi et al., 2015; Badu
et al., 2015), but showed no association in three other studies (Ya-Umphan et al., 2017, Koffi et al.,
2017; Kerkhof et al., 2016). No association between gSG6 IgG levels and MSP2 IgG seroprevalence
was observed in one study (Ya-Umphan et al., 2017). PfGLURP IgG seroprevalence and gSGé6 IgG
antibody levels were reported in three studies, with one study reporting increased levels (Koffi
et al., 2015), one study reporting no association (Kerkhof et al., 2016), and one study reporting
decreased levels of anti-gSG6 IgG with increasing anti-PfGLURP seroprevalence (Koffi et al., 2017).
One study showed increasing gSGé IgG levels with increasing P. falciparum schizont extract IgG,
while three other studies showed no association (Koffi et al., 2015; Koffi et al., 2017, Sarr et al.,
2012). Of note, one study provided a single seroprevalence estimate of antibodies against PFAMA1,
PfMSP1,,, and PfMSP3 so no relationships can be drawn (Stone et al., 2012).

Antibodies against P. vivax antigens

In pooled analyses of 115 study-specific observations from two studies (Idris et al., 2017, Kerkhof
et al., 2016), we observed that a twofold increase in the seroprevalence of PvAMA1 was associated
with a 3.87-fold (OR: 3.87; 95% CI: 3.46-4.32; p<0.001) increase in the odds of anti-gSGé IgG
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seropositivity. Furthermore, in 103 study-specific observations from two studies (Idris et al.,
2017, Kerkhof et al., 2016), a twofold increase in PvMSP1,, IgG seroprevalence was associated
with a 2.37-fold (OR: 2.37; 95% CI: 2.26-2.50; p<0.001) increase in the odds of anti-gSGé IgG
seropositivity. However, neither study showed an association between the levels of gSG6 IgG and
the seroprevalence of PvAMA1 and PvMSP1,, I9G (Idris et al., 2017, Kerkhof et al., 2016).

Appendix 8—table 1. Associations between anti-gSGé IgG seropositivity and log of antimalarial
antibody seroprevalence.

log odds ratio Study-specific
Exposure (SE) 95% ClI p-Value n Studies References
Pre-erythrocytic
antigens
Stone et al., 2012, Ya-Umphan
et al., 2017; Koffi et al., 2015;
Koffi et al., 2017; Ambrosino
et al., 2010; Perraut et al., 2017;
log PfCSP 1gG Proietti et al., 2013; Kerkhof et al.,
seroprevalence (%) 1.13(0.45) 0.24-2.01 0.013 159 8 2016
Blood stage antigens
Stone et al., 2012; Ya-Umphan
et al., 2017; Idris et al., 2017; Koffi
et al., 2015; Koffi et al., 2017,
log PTAMAT IgG Perraut et al., 2017, Yman et al.,
seroprevalence (%) 1.30 (0.07) 1.17-1.44 <0.001 62 8 2016; Proietti et al., 2013
Stone et al., 2012, Ya-Umphan
et al., 2017, Idris et al., 2017; Koffi
et al., 2015; Koffi et al., 2017;
Badu et al., 2015; Perraut et al.,
log PIMSP14 19G 2017, Proietti et al., 2013; Yman
seroprevalence (%) 1.31 (0.53) 0.27-2.36 0.014 163 10 et al., 2016; Kerkhof et al., 2016
log PIMSP2 1gG Ya-Umphan et al., 2017; Perraut
seroprevalence (%) 0.50(0.11) 0.27-0.72 <0.001 47 3 et al.,, 2017, Yman et al., 2016
log PfMSP3 19G Stone et al., 2012, Yman et al.,
seroprevalence (%) 1.41 (0.09) 1.24-1.58 <0.001 17 2 2016
Koffi et al., 2015; Koffi et al.,
2017, Ambrosino et al., 2010;
log PfGLURP IgG Perraut et al., 2017, Kerkhof et al.,
seroprevalence (%) 1.61(0.12) 1.37-1.85 <0.001 128 5 2016
log PfSchizont extract Idris et al., 2017, Koffi et al., 2015;
1gG seroprevalence Koffi et al., 2017, Sarr et al., 2012,
(%) 2.51(3.93) -5.20 to 10.22 0.523 18 5 Perraut et al., 2017
log PvAMAT1 IgG Idris et al., 2017; Kerkhof et al.,
seroprevalence (%) 1.95 (0.08) 1.79-2.11 <0.001 115 2 2016
log PYMSP1 19G Idris et al., 2017, Kerkhof et al.,
seroprevalence (%) 1.25 (0.04) 1.17-1.32 <0.001 103 2 2016

Effects for each exposure represent separate generalised linear multilevel modelling (mixed effects, logistic) analyses estimating the
association between the log of the seroprevalence of antimalarial antibodies and the seroprevalence of anti-gSGé IgG, with the inclusion
of a random intercept for study-specific heterogeneity and a random coefficient to allow the effect of the antimalarial antigen to vary
across studies. Table shows log odds ratio and standard error (SE), 95% confidence interval (95% Cl), and p-value, number of study-specific
salivary antibody observations (Study-specific n) and studies, with associated references. Random effects not shown. Of note, one study
that measured antimalarial antibody seroprevalence and IgG antibodies to gSGé could not be included in analyses as it only reported
gSG6 IgG levels.

" Studies did not include a random coefficient (i.e. slope); as empirical support was not shown.
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Appendix 9

Country and study-specific predicted probability of gSGé6 IgG
seropositivity

In order to obtain estimates of gSG6 IgG seroprevalence for each country and study, an intercept-
only three-level random-effects logistic regression was fitted to 301 study-specific observations from
22 studies. The predicted probability of gSGé IgG seropositivity was calculated at the country level
(Appendix 9—figure 1), indicating that the seroprevalence was lowest in the Pacific region (Vanuatu
[31%] and Solomon Islands [32%]) and highest in Benin (72%) and Burkina Faso (65%). Furthermore,
the predicted probability of gSGé IgG seropositivity was calculated at the study level (Appendix 9—
figure 2), indicating that the seroprevalence was lowest in Ambrosino et al., 2010 (13%) and highest
in Drame et al., 2015 (91%).
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Appendix 9—figure 1. Predicted gSGé IgG seroprevalence by country. Predicted probabilities of gSG6 IgG
seropositivity including country-specific random effects with 95% confidence intervals. Estimated from intercept-
only three-level random-effects logistic regression to account for the hierarchical nature of the data, with study-
specific anti-gSG6 IgG observation nested within study nested within country. Based upon n = 301 study-specific
observations from 22 studies. Of note, nine studies that measured IgG antibodies to gSGé were excluded from this
analysis as eight only reported gSG6 IgG levels and one was a case—control study.
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Appendix 9—figure 2. Predicted gSGé IgG seroprevalence by study. Predicted probabilities of g5G6 19G
seropositivity including study-specific random effects with 95% confidence intervals. Estimated from intercept-

only three-level random-effects logistic regression to account for the hierarchical nature of the data, with study-
specific anti-gSG6 IgG observation nested within study nested within country. Based upon n = 301 study-specific
observations from 22 studies. Of note, nine studies that measured IgG antibodies to gSGé were excluded from this
analysis as eight only reported gSG6 IgG levels and one was a case—control study.
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Appendix 10

Association between alternative salivary biomarkers and exposures of

interest

Our systematic review identified a paucity of studies that assessed the relationship between our
exposures of interest and most alternate Anopheles salivary biomarkers (i.e. non-An. gambiae gSGé
IgG), thus preventing the estimation of a pooled association. The exceptions being that we observed
that a twofold increase in HBR was associated with a 12% increase (OR: 1.12; 95% Cl: 1.02-1.24;
p=0.017) in odds of anti-An. funestus fSG6 IgG seropositivity (six study-specific observations from
two studies; Rizzo et al., 2011a; Ali et al., 2012; Appendix 10—table 1), as well as a 12.97-fold (OR:
12.97; 95% Cl: 10.95-15.36; p<0.001) and 4.04-fold (OR: 4.04; 95% Cl: 3.60-4.54; p<0.001) increase
in odds of anti-gSG6-P2 IgG seropositivity associated with a twofold increase in seroprevalence of
PfCSP and PfGLURP IgG, respectively (115 and 116 study-specific observations from two studies,
respectively; Ambrosino et al., 2010; Kerkhof et al., 2016, Appendix 10—tables 2 and 3). The
associations between exposures of interest and the additional salivary biomarkers are further
discussed in narrative terms in below.

Appendix 10—table 1. Association between fSG6 IgG seropositivity and human biting rate (HBR).

Variable log odds ratio (SE) 95% ClI p-Value RE
Fixed part
log HBR 0.17 (0.07) 0.03-0.31 0.017
Random part
Yr' 0.47
P18 0.13

Association between HBR and fSG6 IgG: log odds ratio and standard error (SE), 95% confidence interval (95% Cl),
p-value, random-effect components (RE): variances (¢ ), conditional intraclass correlation coefficient (ICC) (¢ )*
and model log likelihood (£) from generalised linear multilevel modelling (mixed effects, logistic).” This analysis is
based upon n = 6 study-specific observations.

* p= 7 Yt ot Yk

> » Where ¥ through 1, are random-effect variance estimates pertaining to each of the
+ ot Ut 7213 fand§ . . . .
respeclf\ve variance components (see table notes ) from generalised linear multilevel model (mixed-effects,
logistic) for a specific ICC estimate.

T Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between anti-An.
funestus fSG6 |gG seropositivity and log transformed HBR with random effects for study-specific heterogeneity in
fSG6 I1gG seropositivity.

)1 represents variance of the random effect for study.
$ p1 represents conditional ICC for salivary antibody observations from the same study.

Human biting rate

In addition to the increased odds of An. funestus fSGé seropositivity with increasing HBR, the
majority of studies reported a positive association between HBR and the seroprevalence and levels
of anti-gSG6-P1 IgM (Drame et al., 2015), the levels of gSG6-P2 IgG (Poinsignon et al., 2008a), the
seroprevalence and levels of anti-cE5 IgG (Rizzo et al., 2014a), the levels of anti-fSG6 IgG (Rizzo
et al., 2011a; Ali et al., 2012), the seroprevalence and levels of anti-f5'nuc IgG (Ali et al., 2012),
and the median levels of anti-An. gambiae SGE IgG and IgG4 (Drame et al., 2010b; Lawaly et al.,
2012; Remoue et al., 2006). One study reported similar median levels of anti-gSGé 1gG1 across
populations and time points, whilst reporting that anti-gSGé 1gG4 titre increased with increasing
HBR in one of the populations, but not in the other (Rizzo et al., 2014b). Similarly, there was no
consistent association between HBR and the levels of anti-cE5 IgG (Marie et al., 2015), levels of
anti-An. gambiae SGE IgE (Lawaly et al., 2012) and the seroprevalence and levels of anti-g5'nuc
IgG (Ali et al., 2012).

Entomological inoculation rate

Ali et al., 2012 reported higher seroprevalence and levels anti-fSG6 IgG and anti-f5'nuc IgG with
increasing EIR, while anti-g5'nuc IgG seroprevalence and levels were not associated with EIR. An
additional study reported gSG6-P2 IgG seroprevalence estimates of 0% for three sites, irrespective
of EIR (Ambrosino et al., 2010).
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Malaria prevalence

Two studies showed that increased Plasmodium spp. prevalence was associated with higher median
levels of anti-An. gambiae SGE IgG (Drame et al., 2010b; Brosseau et al., 2012), while another study
showed different anti-An. gambiae SGE IgG levels for very similar prevalence of malaria and slightly
lower levels of anti-An. gambiae SGE IgE and IgG4 for the time point with greater malaria prevalence
(Lawaly et al., 2012). Kerkhof et al., 2016 showed increasing levels of anti-gSG6-P2 IgG for higher
prevalence of any Plasmodium spp. infection, while Londono-Renteria et al., 2020a showed lower
levels of IgG antibodies against TRANS-P1, TRANS-P2, PEROX-P1, PEROX-P2, and PEROX-P3 in
the site with higher PCR-confirmed malaria prevalence. Additionally, several case-controlled studies,
and two cross-sectional study, reported median antibody levels stratified by malaria infection status.
These studies show higher levels of anti-An. darlingi SGE I1gG (Andrade et al., 2009), anti-An.
gambiae SGE IgG (Remoue et al., 2006), anti-An. dirus SGE IgG and IgM (Waitayakul et al., 2006),
and IgG antibodies against SGEs of two Colombian strains of An. albimanus in Plasmodium spp.-
infected individuals compared to non-infected (Montiel et al., 2020). While Montiel et al., 2020
observed no association between anti-An. darlingi SGE IgG levels and infection status.

Antimalarial antibody seroprevalence

Our multilevel modelling indicated that there were 12.97-fold (OR: 12.97; 95% CI: 10.95-15.36;
p<0.001) and 4.04-fold (OR: 4.04; 95% Cl: 3.60-4.54; p<0.001) increase in odds of anti-gSG6-P2
IgG seropositivity associated with a twofold increase in the seroprevalence of PICSP and PfGLURP
I9G, respectively (Ambrosino et al., 2010; Kerkhof et al., 2016; Appendix 10—table 2 and
Appendix 10—table 3). However, we observed weak positive associations between the levels of
IgG antibodies against gSG6-P2 peptide and the seroprevalence of IgG antibodies against PFIMSP 1,
PfGLURP and PvMSP1,,, but no association with PfCSP or PvAMA1 (Kerkhof et al., 2016).

Appendix 10—table 2. Association between gSG6-P2 IgG seropositivity and log PfCSP IgG
seroprevalence.

Variable log odds ratio (SE) 95% CI p-Value RE
Fixed part
log PfCSP IgG seroprevalence 3.70(0.12) 3.45-3.94 <0.001
Random part
v 25.2
P18 0.88

Association between log PfCSP seroprevalence and gSG6-P2 IgG: log odds ratio and standard error (SE), 95%
confidence interval (95% Cl), p-value, random-effect variances (¢ ), conditional intraclass correlation coefficient

(ICC) (0 )* and model log likelihood (€) from logistic mixed-effects modelling.” This analysis is based upon n = 115
study specific observations.
= % where ¥ through 9, are random-effect (RE) variance estimates pertaining to each

+
of thewrespecqteve variance components (see table notes *2"¢ %) from generalised linear multilevel model (mixed
effects, logistic) for a specific ICC estimate.

T Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between log PfCSP
seroprevalence and anti-gSG6-P2 IgG seropositivity with random effects for study-specific heterogeneity in
gSG6-P2 IgG seropositivity.

)1 represents variance of the random effect for study.

$ p1 represents conditional ICC for salivary antibody observations from the same study.

Appendix 10—table 3. Association between gSG6-P2 IgG seropositivity and log PfGLURP IgG
seroprevalence.

Variable log odds ratio (SE) 95% ClI p-Value RE
Fixed part
log PIGLURP IgG seroprevalence 2.01(0.09) 1.85-2.18 <0.001
Random part
Pt 24.3

Appendix 10—table 3 Continued on next page
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Appendix 10—table 3 Continued
Variable log odds ratio (SE) 95% ClI p-Value RE
P18 0.88

Association between log PIGLURP seroprevalence and gSG6-P2 IgG: log odds ratio and standard error (SE), 95%
confidence interval (95% Cl), p-value, random-effect variances (¢ ), conditional intraclass correlation coefficient
(ICC) (0 )* and model log likelihood (2) from logistic mixed-effects modelling." This analysis is based upon n = 116
study-specific observations.

*0 =, where ¢, through ¢, are random-effect (RE) variance estimates pertaining to each of the respective
variance components (see table notes ' 2" %) from generalised linear multilevel model (mixed effects, logistic) for a
specific ICC estimate.

'Generalised linear multilevel modelling (mixed effects, logistic) estimating the association between log PfGLURP
seroprevalence and anti-gSG6-P2 IgG seropositivity with random effects for study-specific heterogeneity in
gSG6-P2 IgG seropositivity.

*¢ ; represents variance of the random effect for study.

$ o, represents conditional ICC for salivary antibody observations from the same study.
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