
1280–1296 Nucleic Acids Research, 2022, Vol. 50, No. 3 Published online 20 January 2022
https://doi.org/10.1093/nar/gkac006

Variational autoencoding of gene landscapes during
mouse CNS development uncovers layered roles of
Polycomb Repressor Complex 2
Ariane Mora 1, Jonathan Rakar2, Ignacio Monedero Cobeta2,3, Behzad
Yaghmaeian Salmani 2,4, Annika Starkenberg2, Stefan Thor 2,5,* and Mikael Bodén 1,*

1School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia,
2Department of Clinical and Experimental Medicine, Linköping University, SE-58185 Linköping, Sweden,
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ABSTRACT

A prominent aspect of most, if not all, central ner-
vous systems (CNSs) is that anterior regions (brain)
are larger than posterior ones (spinal cord). Studies
in Drosophila and mouse have revealed that Poly-
comb Repressor Complex 2 (PRC2), a protein com-
plex responsible for applying key repressive histone
modifications, acts by several mechanisms to pro-
mote anterior CNS expansion. However, it is unclear
what the full spectrum of PRC2 action is during em-
bryonic CNS development and how PRC2 intersects
with the epigenetic landscape. We removed PRC2
function from the developing mouse CNS, by mutat-
ing the key gene Eed, and generated spatio-temporal
transcriptomic data. To decode the role of PRC2, we
developed a method that incorporates standard sta-
tistical analyses with probabilistic deep learning to
integrate the transcriptomic response to PRC2 inac-
tivation with epigenetic data. This multi-variate anal-
ysis corroborates the central involvement of PRC2 in
anterior CNS expansion, and also identifies several
unanticipated cohorts of genes, such as proliferation
and immune response genes. Furthermore, the anal-
ysis reveals specific profiles of regulation via PRC2
upon these gene cohorts. These findings uncover
a differential logic for the role of PRC2 upon func-
tionally distinct gene cohorts that drive CNS ante-
rior expansion. To support the analysis of emerging
multi-modal datasets, we provide a novel bioinfor-
matics package that integrates transcriptomic and

epigenetic datasets to identify regulatory underpin-
nings of heterogeneous biological processes.

INTRODUCTION

The embryonic central nervous system (CNS) is patterned
along the anterior–posterior (A–P) axis, evident by e.g. the
expression of brain-specific transcription factors (TFs) in
anterior regions and the Hox homeotic genes in posterior
regions. A–P patterning of the CNS has two key conse-
quences: first, the generation of distinct cell types in differ-
ent regions, and second, the striking expansion of the brain
relative to the spinal cord. Studies in Drosophila have re-
vealed that anterior CNS expansion is driven by a longer
phase of neural progenitor proliferation, more prevalent
daughter cell divisions and faster cell cycle speeds in an-
terior regions, combining to generate much larger average
lineages anteriorly (1). This A-P ‘stemness’ gradient fur-
ther manifests, and is driven, by an A–P gradient of neu-
ral progenitor TF (e.g. SoxB family) and cell cycle gene ex-
pression (1–3). These expression gradients are in turn pro-
moted by the selective expression of the A–P patterning TFs
(3–5). However, it is unclear if the principles uncovered in
Drosophila are fully conserved in mammals.

The selective expression of TFs along the A-P axis is un-
der control of epigenetic cues, where the Polycomb Repres-
sive Complex 2 (PRC2) plays a prominent role (6). PRC2
mono-, di- and tri-methylates Histone 3 upon residue Ly-
sine 27 (H3K27me1/2/3), typically resulting in proximal
gene repression (7,8). Inactivating PRC2 during Drosophila
or vertebrate CNS development, by mutating either one
of the core complex genes Ezh2 or Eed (DrosophilaE(z)
and esc, respectively), induces ectopic expression of Hox
genes in the anterior CNS (5,9), and reduces brain-specific
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TFs expression (4,5). PRC2 inactivation leads to under-
growth of the anterior CNS (5,9–12), while not affecting
the spinal cord growth (5). The reduced brain growth fol-
lowing PRC2 inactivation appears to be, at least in part,
due to reduced proliferation, in particular of daughter cells
(5,13). The reduced proliferation observed in both mouse
and Drosophila PRC2 mutants appears to result from (I)
the down-regulation of brain-specific TFs, (II) upregula-
tion of Hox genes, and (III) downregulation of neural pro-
genitor stemness genes, (IV) decreased expression of pro-
proliferative genes and (V) increased expression of anti-
proliferative genes (2,4,5). However, it is unclear if PRC2
acts directly and/or indirectly upon the five gene groups as-
sociated with these roles, what the full spectrum of PRC2 ac-
tion is during embryonic CNS development, and how PRC2
intersects with the epigenetic landscape.

Data integration across multi-modal datasets typically
occurs after statistical tests have been used to group data
points, referred to as ‘late integration’. However, this ap-
proach can obscure inter-dataset dependencies. In contrast,
‘early integration’ aims to retain these dependencies, by
identifying salient patterns across datasets prior to statis-
tical analysis (14,15). However, a lack of generalisability,
interpretability and capacity to manage realistic scales of
data have so far hindered widespread use of early integra-
tion across modalities (16).

Motivated by the need to integrate multiple epigenetic
marks to label the chromatin landscape, ChromHMM
(Chromatin Hidden Markov Model) uses a multi-variate
hidden Markov model (17). The model is trained from
genome-wide assays, such as ChIP-seq of histone modifica-
tions, across conditions to capture latent chromatin states
manifested in co-occurring marks. ChromHMM was re-
cently used to recover two distinct states that implicate
H3K27me3 during mouse embryonic development (18).
However, as the transcriptome was not incorporated at an
early stage it is unclear how ChromHMM chromatin states
relate to gene expression during development. Moreover,
how distinct chromatin states support the biological het-
erogeneity and A–P patterning of the CNS was not inves-
tigated.

Variational autoencoders (VAEs) (19) are generative la-
tent variable models able to encode relationships in mixed
and multi-modal data types (20–22). VAEs learn to map
data into a lower-dimensional space akin to methods such
as principal component analysis (PCA), uniform manifold
approximation and projection (UMAP) (23), t-distributed
stochastic neighbour embedding (tSNE) (24) and potential
of heat-diffusion for affinity-based transition embedding
(PHATE) (25). Unlike these methods, which use eigen de-
composition or neighbour embeddings to perform dimen-
sionality reduction, VAEs cross features via successive lay-
ers of representation with ‘deep’ learning, a process that
captures dependencies between data types, which in turn
are accessed via latent variables. VAEs have been applied
to interpret single cell RNA-seq (26–29), bulk RNA-seq
(30,31), DNA methylation arrays (32) and histone modifi-
cation ChIP-seq (33).

VAEs have also been used to integrate multi-omic data
where each data point represents the genome-wide, multi-
modal state of a patient (31). Indeed, the ability of VAEs to

learn meaningful embeddings from high-dimensional data
has sparked the development of a number of tools to anal-
yse single cell data (29,34,35); all of these approaches map
selected genome-wide observations to a heavily reduced la-
tent space. Similarities at different levels, i.e. between in-
dividual and between successively larger groups of data
points, have been shown to be preserved in the latent space
to a degree not seen in comparable approaches (36). Here,
we take a novel angle but still leveraging such capabilities:
to identify genes co-regulated in time and space, and un-
cover specific regulatory cues in resulting states, we turn the
data matrix ‘on its side’. A gene is represented as a data
point defined by a set of experimental features collected at
different times and in different tissues. Hence, the VAE is
tasked to extract patterns evident in groups (or ‘cohorts’)
of genes that are representative of specific biological func-
tion. Here, we sought to identify what regulatory cues PRC2
deploys, and ultimately explain the undergrowth of brains
when PRC2 is inhibited.

To understand the role of PRC2 in establishing the CNS
A–P axis we generated 64 transcriptomes from wild type
(WT) and PRC2 knock-out (Eed-cKO) mouse embryos,
at different developmental stages, and from the forebrain
(FB), midbrain (MB), hindbrain (HB), and spinal cord (SC)
regions of the CNS. We developed a workflow to analyse
these data, which involves three stages: (i) differential anal-
ysis of transcriptomes; (ii) statistical analysis of genes strat-
ified by expression changes and wild type histone modi-
fication data; (iii) VAE analysis to extract latent gene de-
scriptors from transcriptomic and epigenetic data. The VAE
analysis identified five functionally distinct gene cohorts
with shared dependency on PRC2: (i) posterior genes, (ii)
anterior genes, (iii) development genes, (iv) proliferation
genes and (v) immune response genes. Surprisingly, analysis
of the mode of regulation for each gene cohort reveals that
while the first three cohorts appear primarily directly reg-
ulated, the latter two display a mix of direct and in-direct
regulation by PRC2. Thus, our novel integrative approach
identifies and stratifies genes by mode of regulation across
CNS development.

MATERIALS AND METHODS

In vivo mouse models

Eedfl/fl (37) was obtained from the Jackson Laboratory
Stock Center (Bar Harbor, Maine; stock number #022727).
Sox1-Cre (38) was provided by J. Dias and J. Ericson,
Karolinska Institute, Stockholm. Both lines were main-
tained on a B6:129 background. Mice were housed at the
Linköping University animal facility in accordance with re-
gional animal ethics regulations (Dnr 69-14). Pregnant fe-
males were sacrificed and embryos dissected between stages
E11.5 and E18.5. Primers used for genotyping were: Cre1:
GCG GTC TGG CAG TAA AAA CTA TC. Cre2: GTG
AAA CAG CAT TGC TGT CAC TT. Eed1: GGG ACG
TGC TGA CAT TTT CT. Eed2: CTT GGG TGG TTT
GGC TAA GA. Sixteen mouse embryos were extracted
from 8 female mice (16 Eedfl/fl). Two embryos were extracted
from each mouse at E11.5, E13.5, E15.5, and E18.5 respec-
tively.
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RNA-seq

Mouse embryos (E11.5, E13.5, E15.5 and E18.5) were dis-
sected to extricate the CNS (the posterior-most part of the
SC was not included). The CNS was then cut into four
pieces, FB, MB, HB and SC. The E18.5 embryos were
killed by decapitation, and then dissected (in line with eth-
ical permits and regulations). The samples were stored at
−80◦C until RNA isolation, using Qiagen RNeasy Mini
kit Cat.74104. RNA sequencing library preparation used
the NEBNext Ultra RNA Library Prep Kit for Illumina by
following manufacturer’s recommendations (NEB, Ipswich,
MA, USA). The sequencing libraries were multiplexed and
clustered. Samples were sequenced on Illumina HiSeq 2500,
using a 50 bp Single End (SE) read configuration for E13.5
embryos, 150 bp Paired End (PE) read configuration for
E11.5, E15.5 and E18.5, with a depth of ∼50–60 million
reads (GeneWiz, New Jersey, NJ, USA). The RNA-seq files
are available at GEO (GSE123331). Samples from the same
age were litter mates, to ensure that the WT and Eed-cKO
are as close as possible stage-wise.

Immunohistochemistry

Embryos were fixed for 18–36 h in fresh 4% PFA at 4◦C. Af-
ter this they were transferred to 30% sucrose at 4◦C until sat-
urated. Embryos were embedded and frozen in OCT Tissue
Tek (Sakura Finetek, Alphen aan den Rijn, Netherlands)
and stored at −80◦C. 20 and 40 �m cryosections were cap-
tured on slides, and treated with 4% fresh PFA for 15 min at
room temperature. They were thereafter blocked and pro-
cessed with primary antibodies in PBS with 0.2% Triton–
X100 and 4% horse serum overnight at 4◦C. Secondary anti-
bodies, conjugated with AMCA, FITC, Rhodamine-RedX
or Cy5, were used at 1:200 (Jackson ImmunoResearch,
PA, USA). Slides were mounted in Vectashield (Vector,
Burlingame, CA, USA). Primary antibodies were: Goat �-
Sox2 (1:250, #SC-17320, Santa Cruz Biotechnology, Santa
Cruz, CA, USA), Rabbit �-H3K27me3 (1:500, #9733, Cell
Signaling Technology, Leiden, Netherlands), Isolectin GS-
IB4-ALEXA647 conjugate (‘IB4’) (5–20 �g/ml, #I32450,
Molecular Probes, Thermo Fisher Scientific, Waltham,
MA, USA), Rabbit anti-Pax2 (1:100, #ab232460, Abcam,
Cambridge, UK). IB4 and DAPI were included in the sec-
ondary antibody solutions. Confocal microscopes (Zeiss
LSM700 or Zeiss LSM800) were used for fluorescent im-
ages. Confocal series were merged using LSM software or
Fiji software (39). Images and graphs were compiled in
Adobe Illustrator. The ratios between Sox2, IB4 and DAPI
staining were calculated by taking the 100 × 500 × z-stack
�m3 of staining volume for each marker in each stack of im-
ages, along the telencephalic ventricle and thresholded via
ImageJ manual methods; ‘Huang’ for DAPI and ‘Moments’
for Sox2 and IB4.

RNA-seq processing

FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) (version 0.11.9) was used to per-
form quality control (QC), along with multiQC (40)
(version 1.8). The PE samples contained adapter
content thus were trimmed using cutadapt (41)

(version 2.10). Adapters used for trimming were:
AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
(read 1) and AGATCGGAAGAGCGTCGTGTAGGG
AAAGAGTGT (read 2), these were trimmed with an error
tolerance of 5%, overlap of 3, and minimum Phred quality
of 20. FastQC on the trimmed sequences passed QC for
adapter content. RNA-seq data were then aligned to the
mm10 genome using Hisat2 (42) (version 2.1.0), mm10
index was generated using the Hisat2 scripts. Reads from
E13.5 were aligned using default parameters for SE reads
(-U), with the other time points using default parameters
for PE reads, the only parameters changed were: number of
seeds set to 5; and number of primary alignments (k) also
set to 5. Hisat2 reported an overall alignment rate >90%
for all files. Reads were sorted using samtools (43) (version
1.10). FeatureCounts from subread (11) was used to count
the reads mapping to genes. Exon feature was used for
both SE and PE reads. The PE reads were aligned such
that pair fragments with both ends successfully aligned
were counted without considering the fragment length
constraint and excluding chimeric fragments (-p -C -B -t
exon -T). Default parameters were used for the E13.5 reads
(-t exon). FeatureCounts reported an average mapping to
genes of ∼70% for PE and ∼60% for SE.

Differential expression

Differential expression analysis was performed using DE-
Seq2 (44) (version 1.28.1), R (version 4.0.2). Genes were fil-
tered if they had less than 10 counts in half of the samples.
DE analysis was performed between each tissue, in each
condition, using tissue as a factor and time as a batch fac-
tor. Then, for each tissue we used the three later time points,
E13.5, E15.5 and E18.5, for differential expression between
Eed-cKO and WT. E11.5 samples were omitted from DE
as H3K27me3 is gradually lost between E10.5-E11.5 (5).
We performed a similar analysis on the time points, group-
ing anterior tissues (FB, MB) and posterior tissues (HB,
SC), resulting in eight DE analyses on WT versus Eed-
cKO for time points using the tissue as a batch factor. Re-
sults were considered significant if a gene had an adjusted
P-value (Benjamini–Hochberg (FDR-BH)) of less than or
equal to 0.05. Py-venn (https://pypi.org/project/venn/) (ver-
sion 0.1.3) and matplotlib-venn (https://pypi.org/project/
matplotlib-venn/) (version 0.11.5) were used for displaying
Venn diagrams and seaborn (45) (version 0.10.0) was used
for all other visualisations. Sox1-3, FB, MB, HB and SC
markers (Supplementary Table S1) were annotated on vol-
cano plots if they were significant (P < 0.05) and exhibited
an absolute log2FC >1.5.

ChIP-seq processing

ChIP-seq data (NarrowPeak files, IDR reproducible peaks
selected) for mm10 mouse FB, MB and HB tissues at em-
bryonic time points were downloaded (November 2019)
from ENCODE (46). Peaks were annotated to entrez (47)
(NCBI, database) gene IDs by using scie2g (version 1.0.0),
and scibiomart (version 1.0.0) (both developed as part of
the package we publish with this paper) using the anno-
tation (mmusculus Ensembl GRCm38) from Biomart, En-
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sembl (48). Peaks were assigned to a gene if they were lo-
cated within 2.5 kB upstream of the TSS or within 500 bp
of the gene body, except for H3K36me3 which was assigned
if it fell on the gene body (upstream 2.5 kB of the TSS and
500 bp window after the gene ends). Peaks were retained if
their adjusted P-value was <0.05. If multiple peaks were as-
signed to a gene then the peak with the greatest signal was
retained. Signal and widths were recorded for each peak. If
no peak was mapped to a gene, this gene was assigned a zero
value. Annotations from Gorkin et al. (18). were assigned
to genes when overlapping the TSS (±10 bp). If a gene had
multiple annotations, the first one was considered, thereby
reducing the number of annotated genes (by Ensembl ID)
from 53 254 to 52 772. These were then mapped to Entrez
IDs. Fisher’s Exact test in scipy (49) (version 1.5.3) was used
to compare annotations between a foreground and back-
ground dataset, P-values were adjusted for multiple tests
using statsmodels (50) (0.12.1) package, with alpha as 0.1
and FDR-BH correction used.

Label stratified analysis

Integration was performed in Python (version 3.8.2). Code
and visualisations are made available and documented as
a fully executable Jupyter Notebook (Jupyter Core 4.6.3).
Analysis results are fully reproduced by stepping through
the Notebook. Pandas (51) (version 1.0.3) was used to
merge the FeatureCounts files on Entrez gene ID, yielding
a dataset of 27 179 rows. Gene names were annotated to
merged data frame using Ensembl mappings from Entrez to
gene name, from this, there were 6279 genes without gene
names (predicted or nc-RNA), which were omitted from
the subsequent analysis, leaving 20 900 genes. RNA-seq
data were normalised by using EdgeR’s (52) (version 3.30.3)
TMM method, the log2 + 1 was then taken of the TMM
counts using numpy (53) (version 1.18.2). Peak data were
merged on assigned Entrez ID as per the ChIP-processing
section above.

We performed a simple stratification to annotate genes
based on changes in expression and repressive mark pres-
ence. We labelled each gene as unaffected, partly affected or
consistently affected, by using the expression response to
PRC2 in-activation as per the DE analyses. Partly affected
genes refers to expressed genes (average TMM > 0.5 in ei-
ther WT or Eed-cKO) displaying a significant difference in
expression between WT and Eed-cKO in at least one of the
DE analyses of FB, MB, HB, SC, or the anterior tempo-
ral analyses (E11.5, E13.5, E15.5, E18.5). Consistently af-
fected refers to genes meeting the partly affected require-
ment and exhibiting an absolute log2FC >1.0 in ≥3 of the
eight DE analyses. We then labelled each gene as marked or
unmarked based on the presence of a H3K27me3 ChIP-seq
peak in WT FB, MB, or HB E16.5 within 2.5 kB of the TSS.

VAE analysis

VAEs are implemented in scivae (developed by us for this
project) (version 1.0.0), which in turn uses Tensorflow (ver-
sion 2.3.1) (54) and Keras (https://keras.io/) (version 2.4.3).
VAEs were created using the consistently affected genes as
input (randomly sub-divided into a training set with 85%

genes). Input was the normalised transcriptome (64 fea-
tures), the log2 of the H3K27me3 signal (21 features) and
the log2FC from the DE analyses was used (12 features).
All input data were scaled between 0 and 1. Mean squared
error was used as the loss metric, with Maximum Mean
Discrepancy (MMD) kernel as the distance between distri-
butions for the sampling function, with a MMD weight of
1.0. The VAE was trained for 250 epochs using a batch size
of 50. Different numbers of latent nodes were tested, rang-
ing from 1 to 32. Selu activation functions were used for
the first input and final output layers with Relu used for
internal layers; adam optimiser was used with parameters:
beta1 = 0.9, beta2 = 0.999, decay = 0.01, and a learning
rate of 0.01. Gene cohorts were calculated for each latent di-
mension from the 3 node, consistently affected dataset, with
genes having a value ±1.25 standard deviation (SD) from
the mean (0). This resulted in six gene cohorts (two for each
node) with 62, 180, 80, 223, 165 and 121 genes, respectively,
these were used in subsequent functional analyses.

We compared VAE to PCA and tSNE from scikit-
learn (version 1.0.1), UMAP from umap-learn (23) (version
0.4.2), PHATE from phate (25) (version 1.0.7). Default pa-
rameters were used, except for changing the number of com-
ponents (3 or 6) and for tSNE, running ‘method=exact’,
when n components = 6. Given tSNE, UMAP, PHATE
and the VAEs may vary in terms of projection based on a
seed, 20 runs were evaluated. To evaluate how well meth-
ods grouped genes, we downloaded gene sets from AmiGO
(55) associated with ‘Positive regulation of proliferation’,
‘Spinalcord development’, ‘Hindbrain development’, ‘Mid-
brain development’, and ‘Forebrain development’. The re-
sulting gene lists were filtered to contain genes that were
uniquely annotated with one term. We use the Silhouette
score from sklearn to compute how well genes with each
term were separated from genes with any other term, for
each tool, in D = 3 and D = 6. The same test was per-
formed with both consistently affected and all affected
genes.

Functional and statistical analysis

Over representation analysis on the gene cohorts was per-
formed in R using enrichGO from clusterprofiler (56), (ver-
sion 3.16.1). Entrez IDs were used and BH correction with
FDR alpha of 0.1, using all GO annotations. Gene set en-
richment analysis was performed using fgsea (57) (version
1.14.0).

Statistical tests use Mann–Whitney U with Bonferroni
correction (from statsmodels, (50)) unless stated otherwise
and use the following P-value annotation: NS: 0.05 < P ≤
1, *: 0.01 < P ≤ 0.05, **: 0.001 < P ≤ 0.01, ***: 0.0001
< P ≤ 0.001****: P ≤ 0.0001. Human gene expression
data (RPKM) were downloaded from PsychEncode (March
2021) (58), and mapped to mouse genes using biomart.
Genes were matched if there was > 80% similarity between
the mouse homolog and the human gene. Only embryonic
samples were considered and these were grouped into the
following age groups W1–W4 (W1: 8–9 postconceptional
weeks (PCW), W2: 12–13 PCW, W3: 14–18 PCW, W4: 18–
22 PCW) (58).

https://keras.io/
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Reproducible, generative methods applicable for other dy-
namic systems

Our model of the developing mouse CNS is available as
a downloadable package where the profile of any mouse
gene can be queried in terms of its PRC2 response, in addi-
tion to an interactive website (http://bioinf.scmb.uq.edu.au:
81/cnsvae/static/). We also provide a Python package with
tutorials in R and Python for using the VAE for other dy-
namic systems where researchers are interested in integrat-
ing epigenetic and expression information. Our packages
have been optimised for reproducibility by enabling saving
of the VAE state, visualisation, and logging.

RESULTS

PRC2 is critical for the anterior–posterior CNS axis

To inactivate the PRC2 complex in the mouse CNS, Sox1-
Cre was used to conditionally delete Eedfl/fl in the CNS (de-
noted Eed-cKO herein). This resulted in the inactivation of
Eed at E8.5, with a gradual reduction of the H3K27me3
mark, presumably due to replication-mediated dilution, un-
til it is undetectable by immunostaining in the CNS proper,
at E11.5 (5), visualized at E13.5 herein (Figure 1A). Eed-
cKO embryos displayed a striking upregulation of posterior
genes, such as Pax2 (Figure 1B), in the FB/MB, and severe
brain underdevelopment (Figure 1C), in large part due to a
truncated proliferation phase (5).

We conducted a total of 64 RNA-seq experiments across
wild type (Eedfl/fl; referred to as WT) and Eed-cKO, at four
developmental stages E11.5, E13.5, E15.5 and E18.5, and
of four tissues FB, MB, HB and SC. We opted to perform
these experiments with bulk technology, enabling statisti-
cally robust assessment of genes associated with temporal
and spatial specificity, which in turn, can guide future de-
termination of cell type heterogeneity from single cell data
(28).

Analysing the WT RNA-seq data for expression of the
neural progenitor stemness genes Sox1/2/3 (59) under-
scored the spatio-temporal stemness gradient (Figure 1D).
In Eed-cKO, both the FB and MB displayed a more rapid
downregulation of Sox1/2/3, while the HB and SC were
less affected (Figure 1D). Analysis of spatially distinct TF
markers (Supplementary Table S1) in WT revealed the ex-
pected selective gene expression along the A-P axis (Figure
1E, F). In contrast, in Eed-cKO mutants FB, MB and HB
markers were downregulated in their specific regions, and
ectopically upregulated in adjacent regions (Figure 1F, G).
SC markers (e.g. 35 of the 39 Hox genes) were ectopically
expressed in anterior regions (Figure 1E–G). The mutant
effects were less pronounced at E11.5 (Figure 1E), in line
with the gradual loss of the H3K27me3 mark during E10.5-
E11.5 (5). These results revealed that Eed-cKO mutants dis-
played a striking ‘flattening’ of the CNS A–P axis, evident
from the downregulation of brain TFs, the ectopic expres-
sion of Hox genes in the brain, and anterior downregulation
of stemness genes.

PRC2 inactivation results in posteriorization of the anterior
CNS

Analysing the global gene expression differences along the
CNS A–P axis, we found major differences in the baseline

WT transcriptomes, with FB and MB being strikingly dif-
ferent from the SC (Figure 2A). When compared to SC, the
FB showed 4771 differentially expressed genes (DEGs) and
MB 4881 DEGs (|log2FC| >0.5, P < 0.05, where log2FC
is the log2 transformed fold change; pooled time points)
(Figure 2A). In addition, all other comparisons revealed
substantial gene expression differences, underscoring the
uniqueness of each axial level (Figure 2A).

These axial differences were reduced in Eed-cKO mu-
tants, with gene expression differences almost halved when
comparing FB to SC, and MB to SC (Figure 2A). The FB
was most affected, with 4414 DEGs, while SC displayed
considerably smaller effects, with only 717 DEGs (Figure
2A, Supplementary Figures S1–S3). Surprisingly, only 389
genes were shared across all four tissue analyses, indicating
that for the majority of DEGs the role of PRC2 is specific to
each axial level (Figure 2B). While PRC2 inactivation gen-
erally caused upregulation (e.g. Hox genes), analysis of the
FB revealed that a number of brain-specific TFs were down-
regulated (Figure 2C).

To investigate temporal variation throughout develop-
ment, we grouped the FB and MB into ‘anterior’, and the
HB and SC into ‘posterior’ sections. This revealed that the
A-P axis differences between WT and Eed-cKO were most
pronounced in the anterior CNS at E18.5 (Figure 2D).
However, the largest increase in DEGs occurred between
E11.5 and E13.5, in both the anterior and posterior tissues
(Figure 2D).

PCA of normalised RNA-seq profiles (Figure 2E) indi-
cated that Eed-cKO mutants are posteriorized along the A-
P axis. Specifically, the mutant FB transcriptome was more
similar to the WT MB, and the mutant MB to the WT HB.
This trend was most evident at E13.5 but observed at all
later stages (Figure 2E). The posteriorization of each Eed-
cKO tissue was also evidenced by quantification of the nor-
malised sum of square differences between the transcrip-
tomes (Supplementary Table S2) and correlation between
anterior samples (Figure 2F).

PRC2 inactivation does not trigger extensive ectopic expres-
sion of non-CNS genes

To address if CNS-specific PRC2 inactivation resulted in
ectopic expression of peripherally expressed genes, we sur-
veyed for genes that were not expressed in the CNS at any
axial level or stage but were activated in Eed-cKO mutants
(mean TMM expression ≥ 0.5). Somewhat surprisingly, we
only identified 213 genes in this category (Supplementary
Figure S4, Supplementary Table S2). Hence, in contrast
to the extensive A–P gene expression changes within the
CNS, inactivation of PRC2 in the CNS did not result in
widespread breakdown of germ layer barriers of gene ex-
pression (Supplementary Figure S4A–D).

H3K27me3 only partly explains widespread effects of PRC2
inactivation

Publicly available WT H3K27me3 ChIP-seq data (46) re-
vealed that the region- and gene-specific profiles for sev-
eral of the spatially restricted genes, Foxg1, En2 and Hoxc9,
were consistent with a direct repressive role of the PRC2
complex (Figure 3A).

http://bioinf.scmb.uq.edu.au:81/cnsvae/static/
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Figure 1. PRC2 gates the CNS A-P landscape. (A) Immunostaining for H3K27me3 and Sox2 (progenitors) in the WT and Eed-cKO telencephalon (Tel),
at E13.5. At E13.5, deletion of Eedfl/fl by Sox1-Cre results in loss of H3K27me3 from the CNS and staining is only observed outside of the CNS and
in infiltrating blood vessels and blood cells. (B) Staining for DAPI (nuclei) and Pax2 in WT and Eed-cKO at E18.5 reveals ectopic expression of Pax2 in
the entire FB and MB in the mutant. (C) WT and Eed-cKO littermate brains show undergrowth in the mutant. (D) In WT, there is a spatio-temporal
gradient of progenitor gene expression (Sox1/2/3), i.e. a gradient of ‘stemness’ in the CNS, evident by prolonged expression of Sox1/2/3 in the FB and
MB. In Eed-cKO, the stemness phase in the FB and MB is shortened and the anterior CNS becomes more similar to the posterior region. (E) 35 of the
39 Hox homeotic genes show ectopic anterior expression in Eed-cKO mutants. (F) In WT, expression of spatial marker genes is restricted to specific A-P
regions. In Eed-cKO, posterior genes (e.g. Pax2) are ectopically expressed in the brain, and anterior genes are reduced in the FB and MB and ectopically
expressed in the HB and SC. The effects are less pronounced at E11.5, in line with the gradual loss of H3K27me3 at E10.5–E11.5. (G) A flattening of the
expression is observed (mean and standard error) for each of the marker gene groups along the A–P axis, exemplified by trends in E18.5 (genes are listed
in Supplementary Table S1).
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Figure 2. Eed-cKO mutation flattens the CNS A-P gradient. (A) Comparative DEG analysis between different CNS levels, in WT and Eed-cKO, based
upon pooled time points. In WT, adjacent CNS tissues display fewer differences than distal ones, especially when compared to SC (DEGs; log2FC > 0.5,
P < 0.05, where log2FC is the log2 transformed change). In Eed-cKO, the number of comparative DEGs are strongly reduced. Eed-cKO strongly affects
anterior tissues while the SC is less affected. (B) Similar tissues (e.g. FB and MB) have a larger overlap between genes identified with a significant effect
between Eed-cKO vs. WT. (C) Eed-cKO versus WT expression in FB shows that Hox genes are upregulated while brain-specific genes are downregulated.
(D) DEG analysis over time for combined anterior (FB and MB) and posterior (HB and SC) tissues reveals that Eed-cKO affects the anterior more than the
posterior CNS, and that the effects increase over time. (E) PCA of normalised RNA-seq count profiles labelled with tissue, condition (WT versus Eed-cKO)
and time (E13.5–E18.5; E11.5 omitted); arrows indicate the A–P shift induced by Eed mutation. (F) Correlation between late stage anterior tissues showing
a reduction of tissue specificity in Eed-cKO.

However, gene expression changes caused by PRC2 in-
activation may result from layers of regulation when con-
sidered across the developmental trajectory. To begin ad-
dressing this issue in a systematic manner, we performed a
‘label-stratified’ analysis, sorting genes into categories based
on gene expression response along with histone modifica-
tion profiles. We labelled each gene as unaffected, partly af-
fected or consistently affected, by using the expression re-
sponse to PRC2 inactivation as per the DE analyses (Figure
3B). Thereby, the H3K27me3 state and expression response
to Eed-cKO jointly defined six exclusive categories of genes
(Figure 3B), see Materials and Methods for details.

Given PRC2’s role in maintaining tissue specificity, we hy-
pothesised that genes in each category would display chro-
matin profiles that were specific to tissue. Within each gene
category histone modifications in FB, MB, HB, neural crest
(eCNS), embryonic facial prominence (EFP), limb, heart
and liver, at E16.5 (46) were surprisingly similar, but be-
tween categories differences appeared (Figure 3C). Specif-
ically, genes in the three H3K27me3-marked categories

were commonly marked with H3K4me2/3 marks, but not
H3K36me3, indicating their bivalent status (Figure 3C).
Within the three H3K27me3-unmarked categories, active
marks (H3K36me3, H3K27ac, H3K4me2/3) were primar-
ily observed in the partly affected category (Figure 3C).

To further investigate the relationship between the
H3K27me3 mark and gene expression, we computed the
correlation between FB log2FC and H3K27me3 signal in
the consistently affected gene category (Figure 3D). We
found a limited positive correlation (� = 0.35, P < 0.01) be-
tween H3K27me3 and FB log2FC. This exceeded the cor-
relation between the log2FC in all other tissues and the
H3K27me3 signal, specifically SC log2FC: � = 0.24, and
P < 0.01, (Figure 3D) HB log2FC: � = 0.08, NS, and MB
log2FC: � = 0.24, P < 0.01 (Supplementary Figure S5A).

The limited correlation between H3K27me3 and gene
expression changes prompted us to investigate whether
a combination of histone marks i.e., chromatin states
in a gene promoter could provide greater insight into
the gene’s response to PRC2 inactivation. To this end,
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Figure 3. Direct and indirect control by PRC2. (A) H3K27me3 signal for three markers genes, at E13.5 in WT, showing a direct relation between H3K27me3
and expression (Figure 1E, F). (B) Data stratification based upon labels representing expression response to Eed-cKO mutation and the presence of
H3K27me3. (C) Chromatin profiles in the CNS and reference tissues of genes stratified by expression changes and wild type H3K27me3 state. (D) FB
log2FC and SC log2FC from consistently affected genes show minor correlation with the median H3K27me3 signal across brain tissues. (E) Enrichment
of ChromHMM chromatin states, expressed as the odds ratio between positives in each gene category vs. all genes. (F) Functional Gene Ontology (GO)
enrichment analysis of partly affected and unaffected genes shows greater similarity between marked groups irrespective of response to PRC2. (G) GO
enrichment analysis of consistently affected and marked genes identifies terms related to embryonic development along the A–P axis. (H) GO enrichment
of consistently affected and unmarked genes reveals ‘inflammatory response’ and ‘positive regulation of immune system process’ (edges represent shared
genes between GO terms).
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we assigned ChromHMM-predicted epigenetic states to
each gene, based upon FB at E16.5 (18). We found
that genes in all three H3K27me3-marked categories (un-
affected, partly affected and consistently affected) ex-
hibited similar epigenetic states, with strong signals for
the Pr-B (promoter-bivalent) and Hc-P (heterochromatin-
permissive) states (Figure 3E). The enrichment of these
H3K27me3-implicated states was considerably higher for
the consistently affected category, showing that if a gene is
marked by H3K27me3 at E16.5 in the FB, it is likely to be
affected by knocking out Eed (Figure 3E). The consistently
affected unmarked genes stood out, with higher enrichment
of enhancer states: En-Sd (Enhancer-Strong-TSS-distal),
En-W (Enhancer-Weak-TSS-distal) and En-PD (enhancer-
poised-TSS-distal) (Figure 3E), suggesting that these genes
are indirectly regulated by PRC2. There were approximately
equivalent numbers of genes in the consistently affected cat-
egories that were unmarked and marked (Figure 3B) indi-
cating that lack of the H3K27me3 mark did not rule out
effects in Eed-cKO.

To understand the functional heterogeneity of genes
within and between each category, we also tested for over-
represented Gene Ontology (GO) terms associated with
their proteins (Figure 3F–H). For the H3K27me3-marked
categories, both partly and consistently affected genes were
enriched for A–P axis related terms, (e.g. pattern specifica-
tion) (Figure 3F, G). Surprisingly, H3K27me3-marked but
unaffected genes were also enriched for regulation and de-
velopment, indicating that not all marked developmental
genes were affected by Eed-cKO (Figure 3F). Unmarked
and partly affected genes were associated with RNA pro-
cessing terms (Figure 3F), while the unmarked, consistently
affected genes were primarily enriched for immune response
genes (Figure 3H).

Variational Autoencoder finds latent codes for mixture of fea-
tures

Genes marked by H3K27me3 in the CNS tended to be af-
fected by Eed-cKO. However, the effect on unmarked genes
was nebulous e.g., correlating the log2FC of the response
with the experiment-wide median H3K27me3 state revealed
only a weak correlation (FB: � = 0.35, P < 0.01, SC: �
= 0.24, P < 0.01), underscoring the limited ability of the
H3K27me3 mark alone to predict the expression response
to Eed-cKO (Figure 4A). These findings suggested that la-
belling genes without jointly including details of develop-
mental stage and tissue obscured features required to iden-
tify co-regulated genes.

We defined a PRC2 profile of prioritised features (97) rep-
resenting each gene for input to the VAE: RNA-seq data for
WT and Eed-cKO, log2FC from the DE analyses, and WT
H3K27me3 signal. Our goal was to integrate the data into a
relatively small set of features and use the model to interro-
gate relationships between the WT H3K27me3 signal and
the gene expression response to Eed-cKO (Figure 4B).

A VAE was trained on PRC2 profiles, to find a latent
‘code’ for each gene (Figure 4B). Because the results were re-
producible and robust to parameter perturbations, the VAE
architecture and parameters were chosen with minimal tun-
ing (see Materials and Methods). When the VAE used three

or more hidden nodes, referred to as latent dimensions (D),
we observed only minor reconstruction loss (Supplemen-
tary Figure S6). Hence, at D ≥ 3, intermediate layers cap-
tured sufficient information to successfully decode essential
variation across the full data set. We tested two versions of
the data set: the 1371 consistently affected genes (as defined
above), and all of the 12 797 affected genes, with D = 3 and
D = 6. Based upon these findings, we subsequently used the
VAE with D = 3, trained with the consistently affected gene
data set.

VAE latent code places genes along A–P axis

While no pair of VAE dimensions correlated measurably (|� |
< 0.1 for all pairs), as anticipated, the VAE dimensions cor-
related with a number of input features (Figure 4A). For in-
stance, dimension 2 correlated negatively with the median
H3K27me3 signal (� = −0.93, P < 0.01) and mildly with
FB log2FC (� = −0.42, P < 0.01).

To further validate that the VAE latent code uncovered
biologically relevant CNS features, we tracked the afore-
mentioned marker genes (Supplementary Table S1). We
noted that the FB, MB, HB and SC genes were placed
along a latent version of the A-P axis (Figure 4C). In ad-
dition, investigating the placement of proliferation genes
(Supplementary Table S1) we noticed that pro-proliferative
genes were placed in the vicinity of FB genes, while two well
known anti-proliferative genes (Cdkn2a and Cdkn2b) were
placed adjacent to the SC genes, in agreement with the en-
hanced anterior proliferation (Figure 4C). Markers for neu-
rons and glia did not group along the latent A–P axis, rather
projecting onto a distinct segment orthogonal to the axis, in
line with the generation of these cell types at all axial levels
during the embryonic stages analysed (Figure 4C).

The VAE latent space also captured several other key fea-
tures of PRC2 control of the developing CNS. These in-
cluded the graded involvement of PRC2 along the A-P axis,
with extensive gene upregulation in the Eed-cKO FB and
smaller effects in the HB (Figure 4D). We also observed a
temporal reduction in the H3K27me3 mark, as evident in
the MB from E10.5 to E16.5 (Figure 4D).

VAE latent dimensions identify co-regulated but functionally
diverse genes

The variation captured by the VAE enabled the discovery of
new cohorts of genes that coincided with each latent dimen-
sion. We grouped genes by their existence at the extremes of
each dimension, with membership determined by being in
the tail of the distribution (±1.25SD from mean), resulting
in six non-exclusive cohorts of genes. One cohort was omit-
ted from further analysis, as it contained genes that exten-
sively overlapped with the other five cohorts (Supplemen-
tary Figure S13A). For the five remaining cohorts we used
GO term enrichment and gene expression patterns to man-
ually label the cohorts, yielding: (i) posterior genes, (ii) ante-
rior genes, (iii) development genes, (iv) unmarked prolifer-
ation genes and (v) immune response genes (Figure 5A–E).
The identification of immune response genes was unantici-
pated, because Sox1-Cre was previously found to not delete
Eed in the blood vessels and blood cells (5). To probe the un-
derpinnings of this effect we stained for IB4, which revealed
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Figure 4. Integrated PRC2 profile forms latent A-P axis. (A) Spearman’s � across all consistently affected genes between VAE latent codes and selected
observed summary features. (B) Simplified VAE model and the gene-specific input to the VAE, supplying a range of experimental observations (example
genes shown) to a (non-linear, trainable) ‘encoding function’, which defines a latent code for each gene. A ‘decoding function’ is trained to reconstruct
profiles for each gene, subject to VAE constraints. (C) Selected marker genes plotted in VAE D = 3 latent space, showing an A–P gradient. (D) Consistently
affected genes plotted in VAE latent space, coloured (top row) by log2FC Eed-cKO versus WT in FB, MB and HB, and (bottom row) the median signal in
H3K27me3 across developmental time points.

a higher ratio of blood cells and blood vessels in comparison
to the CNS tissue in the Eed-cKO (Supplementary Figure
S14).

The posterior gene cohort was repressed in the FB and
MB in WT and upregulated in Eed-cKO (Figure 5A). This
cohort was enriched for ChromHMM bivalent promoter
states, suggesting that these genes are directly controlled by
PRC2 and are selectively expressed (Figure 5A). The ante-
rior gene cohort tended to exhibit an opposing RNA ex-
pression profile to the posterior genes, with a decrease in ex-
pression over time, and limited enrichment of H3K27me3-
associated chromatin states (Figure 5B). The development
cohort included a mixture of genes that were mostly upreg-
ulated in Eed-cKO, and whose ChromHMM profile indi-
cated both direct and indirect PRC2 effects (Figure 5C).
The unmarked proliferation cohort was enriched for cell

cycle genes, mostly those with pro-proliferative function
(Figure 5D). In WT, genes in this cohort displayed a log-
ical downregulation as neurogenesis comes to an end in
both FB and SC. Relative to WT, PRC2 inactivation ac-
celerated the decrease in expression of this cohort in all
tissues, but most distinctly in FB (Figure 5D). Lastly, the
immune response cohort was weakly upregulated in Eed-
cKO and enriched for the absence of PRC2-associated
ChromHMM marks, indicating an indirect effect of PRC2
(Figure 5E).

To address if the WT profile of gene cohorts were con-
served in humans, in particular regarding the expression of
the genes in the marked anterior cohort, we analysed pub-
licly available data from PsychEncode (58). We found sim-
ilar expression patterns across the mouse and human or-
thologs, with the marked anterior genes displaying signifi-
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Figure 5. VAE identifies functionally diverse gene cohorts. (A–E) Different cohorts of genes identified at tails of one or more VAE latent dimensions
(±1.25 SD from mean). (A) In the WT, the marked posterior gene cohort is repressed in the FB and expressed in the SC, while in Eed-cKO mutants, they
are overexpressed in FB, while the SC is unaffected. Top-10 genes in this group are predominantly Hox genes, marked by H3K27me3 in both FB and
HB. Enrichment of ChromHMM chromatin states and GO terms show bivalent and repressive states, and enriched gene regulation terms, respectively.
(B) In WT, the marked anterior gene cohort is repressed in SC and expressed in FB. In the Eed-cKO mutants, they are mostly downregulated in FB and
upregulated in SC. Top-10 genes display tissue specific response to Eed-cKO. Marked anterior genes show minimal enrichment of specific chromatin states.
FB differentiation and development GO terms are enriched. (C) The development gene cohort increases in expression over time and is more highly expressed
in SC than FB, a trend more pronounced in the mutant. Top-10 genes display upregulation in the mutant. There is no enrichment of specific chromatin
states. Embryonic development associated GO terms are enriched. (D) The unmarked proliferation gene cohort decreases in expression over time, in both
the WT and Eed-cKO, which is pronounced in Eed-cKO. Enriching for active and weak promoter chromatin states and GO cell cycle functions, suggesting
that active genes are important for cell growth and the rate of proliferation. (E) The unmarked immune response gene cohort displays no specific expression
profile in WT, but are upregulated in the mutant. Top-10 genes show a homogenous response to Eed-cKO, in particular a strong upregulation in HB. These
genes are enriched for the no signal (NS) ChromHMM chromatin state and immune response GO terms.
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cant tissue specific effects in human embryonic brains (Sup-
plementary Figure S15A).

The recovery of relevant gene groups is method dependent

VAE allows low-dimensional codes to capture non-linear
relationships from a high-dimensional input space, stag-
gered at each intermediate layer (60). The layout of the la-
tent codes reveals genes that share systematic and relevant
expression changes and repressive states across time points
and space, PRC2 perturbed or not.

To quantify the extent and nature of organisation of
the VAE relative to representative dimensionality reduction
methods, including PCA, UMAP, tSNE and PHATE, we
performed a number of tests.

First, we asked if each method at D = 3 and at D = 6 had
the capacity to find latent codes that distinguished genes
with known but different A–P association (defined by Gene
Ontology, see Materials and Methods) in both the consis-
tently affected and affected datasets. Using the Silhouette
score as a measure for set separability, we found that VAEs
outperformed the other methods in the majority of cases
(Supplementary Figure S7A, B). However, the low Silhou-
ette scores highlight the inherent difficulty in separating the
gene sets, which are distinguished only by their association
with the A–P axis in development.

Second, we asked whether the groups that were formed by
each method displayed similar biological enrichment. This
test involved for each method selecting genes at the tails of
each component at D = 3; these gene groups were then eval-
uated for enrichment in GO terms and biological pathways.
All methods were able to distinguish the most salient func-
tional groups, e.g., the posterior group. However, only the
VAE and tSNE were able to distinguish an anterior gene co-
hort (Figure 5B, Supplementary Figures S8 and S9). PCA
and UMAP had duplicate groups relevant to cell cycle (Sup-
plementary Figure S10 and S11), while PHATE uniquely
identified a group containing ‘membrane’ and ‘signalling’
terms (Supplementary Figure S12). The gene cohorts we
defined using the VAE analysis were broadly captured by
tSNE, which in turn showed to be less capable of separat-
ing GO-defined sets (Supplementary Figure S7B).

PRC2 regulates cell cycle genes directly or by proxy TFs

A key phenotype of Eed-cKO mutants is a striking reduc-
tion of proliferation of the FB (Figure 1C) (5). Moreover,
the VAE analysis identified many genes (180 genes), in the
‘unmarked proliferation’ cohort (Figure 5D). These find-
ings prompted us to focus on the expression of the main
cell cycle genes (32 genes; Supplementary Table S1), to ex-
plore the regulation of pro- and anti-proliferative genes (see
Supplementary Figure S15B for workflow). Looking first at
WT, we observed that the majority of pro-proliferative and
anti-proliferative genes were expressed in opposing gradi-
ents along the A–P axis (Figure 6A, D). In Eed-cKO mu-
tants, we found that the majority of cell cycle genes (29/32)
were affected, with eight consistently affected and 21 partly
affected (Figure 6A, Supplementary Table S1). With few ex-
ceptions, pro-proliferative genes were downregulated while

anti-proliferative genes were upregulated relative to WT,
and these effects were most pronounced in the anterior
CNS (FB and MB, Supplementary Figure S15C), result-
ing in a general flattening of the gene expression gradients
(Figure 6A, D, E). Two outliers were the pro-proliferative
genes Ccnd1/2, which were strongly upregulated in the pos-
terior CNS (HB and SC) (Figure 6A). The H3K27me3 pro-
files of the anti-proliferative genes were comparatively pro-
nounced, although several pro-proliferative genes, such as
Ccnd1/2 and Ccna1, were also marked (Figure 6A).

Because the majority of pro-proliferative genes appeared
to be indirectly affected by PRC2, we sought to identify
which TFs could be targeting the proliferation genes. We
again focused on the Sox1/2/3 stemness genes, as well as
E2f1, a core TF in the cell cycle machinery (61). Sox1/2/3
were marked by H3K27me3, while E2f1 showed limited
marks, if any (Figure 6A). However, all four genes were
downregulated in Eed-cKO (Figure 6A). Previous ChIP-seq
studies have probed the genome-wide occupancy of three of
these four TFs (62–64). These data revealed that Sox2 and
-3 bind to a number of proliferation genes, including E2f1
and other E2f genes, and that E2f1 binding showed exten-
sive overlap with the Sox2/3 binding profiles (Figure 6B).
These findings suggest that PRC2 action is layered – acting
both directly and indirectly, via Sox1/2/3 and E2f1/2/3, to
control cell cycle gene expression.

To investigate whether the cell cycle gene expression pro-
files are evolutionarily conserved, we tested whether the
WT profile of early activation of consistently affected pro-
proliferative genes is conserved in humans. We again used
the publicly available data from PsychEncode (58) and
confirmed a significant reduction over time in the pro-
proliferative genes in human embryonic brain development
(Figure 6C).

DISCUSSION

PRC2 promotes the developing CNS A–P axis

The developing CNS displays evolutionarily conserved pat-
terning along the A–P axis, evident by the selective expres-
sion of brain-specific TFs anteriorly and Hox homeotic
genes posteriorly (65,66). Studies in Drosophila have also re-
vealed an A–P expression gradient of neural stemness genes
(2). In Drosophila, the selective expression of brain-TFs,
Hox genes and neural stemness genes is accompanied by
and (to a great extent) drives gradients in pro- and antipro-
liferative gene expression, which in turn results in faster cell
cycles, and the expansion of the anterior CNS (2–5). Studies
in mouse have indicated that many of these developmental
features are conserved in mammals, although the degree of
conservation is unclear (5). Moreover, while PRC2 plays a
key role in promoting these A–P differences, its precise roles
have hitherto not been comprehensively addressed in mam-
mals.

We observed striking gene expression gradients of stem-
ness, pro- and anti-proliferative genes, demonstrating that
these features are also conserved from Drosophila to mouse.
We found that PRC2 inactivation resulted in extensive gene
expression changes in the CNS. Looking specifically at the
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Figure 6. Layered cell control by PRC2. (A) Cell cycle gene response to PRC2 inactivation shows strong upregulation of some marked and consistently
affected anti-proliferative genes, while the majority of pro-proliferative genes are downregulated and unmarked. Sox genes are marked and downregu-
lated. (B) Proposed mechanism of action for the indirect regulation of the Sox genes on the cell cycle genes. (C) Consistently affected pro-proliferative
genes (E2f1, Ccna2, Ccnb1, Cdc25c and Ccnd1) exhibit a reduction in expression over embryonic development. This trend is observed in mice across
the anterior brain regions (FB and MB), and in human embryonic samples (human homologs: ENSG00000134057/CCND1, ENSG00000101412/E2F1,
ENSG00000145386/CCNA2, ENSG00000110092/CCND1) (W1: 8–9 postconceptional weeks (PCW), W2: 12–13 PCW, W3: 14–18 PCW, W4: 18–22
PCW) (58), also across the brain (dorsolateral prefrontal cortex). (D) Select cell cycle genes exhibit evidence of an A–P gradient in WT. (E) Grouping all
affected cell cycle genes reveals a trend (mean and standard error) for A–P flattening. (F) PRC2 ensures that Hox homeotic genes are only expressed in the
SC and HB, and brain TFs only in the FB and MB, and promotes gradients of stemness, anti- and pro-proliferative gene expression. These A–P differences
in regulatory gene expression underpin A–P differences in proliferation, creating a gradient of CNS growth

aforementioned developmental genes we found that PRC2
inactivation reduced brain-TF expression and upregulated
Hox genes anteriorly. The gene expression gradient of stem-
ness and pro-proliferative genes appeared flattened, and
there was an upregulation of anti-proliferative genes. Hence,
PRC2 plays a fundamental role in promoting anterior CNS
development, with anterior tissues posteriorizing and re-
ducing their stemness in Eed-cKO mutants (Figure 6F).
These regulatory effects generally accumulate over time, i.e.
once a gene becomes dysregulated it remains so.

PRC2 inactivation causes extensive direct and indirect effects

Comprehensive analyses of H3K27me3 suggest that PRC2
plays a significant role in development and disease (67).
However, metrics based on repressive marks alone are un-
able to explain the effects on the substantial number of un-
marked genes. To understand the extent PRC2 acts in a di-
rect or indirect manner upon the affected genes, we merged
our 64 transcriptomes with relevant histone modification
profiles. We then stratified the data based on cut-offs, sub-
setting genes into six categories.
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All partly/consistently affected gene categories with
H3K27me3 were enriched for GO terms related to embry-
onic patterning, which aligns well with the observed effect
of Eed mutation i.e., a flattening of the CNS A-P axis. This
finding, combined with their ChromHMM states, indicates
that this gene group is directly regulated by PRC2. The
H3K27me3-marked and unaffected gene category was en-
riched for similar GO terms, i.e. regulation and develop-
ment, showing that a subset of H3K27me3-marked devel-
opmental genes are not affected by Eed-cKO.

There were many partly/consistently affected genes with-
out H3K27me3, suggesting that the indirect effect of PRC2
inactivation is both comprehensive and diverse.

VAEs distinguish gene cohorts relevant to A-P axis control

While we could have extended our label stratified analysis to
include other factors, e.g. ‘up’ or ‘down’ in each DE anal-
ysis, the number of gene categories increases exponentially.
In contrast, using a dimensionality reduction method, such
as the VAE, constrains our comparisons while minimising
the information loss. The VAE was able to distinguish be-
tween genes with qualitatively different functional profiles
and multi-variate trends across the datasets. Moreover, sev-
eral genes within each cohort were surprisingly varied in
terms of both expression changes and chromatin state, indi-
cating that the multi-variate nature of the VAE analysis un-
covers a spectrum of biologically relevant, gene groupings
across gene expression and histone modification features.

Recent single cell annotation methods have highlighted
the utility of incorporating ‘gene sets’ to guide cell type
identification, (27), while others emphasise the importance
of feature selection to improve analyses (28,68). Using
VAEs and multi-omic bulk-data we are able to robustly
identify co-regulated genes relevant to A-P axis control,
suggesting gene cohorts that could guide the recovery of key
cell types in time and space, even in inherently sparse single
cell data, such as multi-omic single cell assays (69).

Immune response genes may be affected by several mecha-
nisms

Unexpectedly, immune response genes were identified as a
salient function affected by PRC2. Using Sox1-Cre to delete
Eed only removes gene function in the CNS itself, and not
in the blood cells or blood vessels (Supplementary Figure
S14; (5)). It is therefore possible that the increased expres-
sion of immune response genes in the undergrown FB and
MB in Eed-cKO mutants may simply result from a higher
ratio of blood vessels/immune cells to CNS cells, thereby
increasing the transcriptome signal in an indirect manner.
Indeed, our finding of increased IB4 staining, a marker for
microglia and blood vessels, in relation to both the Sox2 and
DAPI staining supports this notion (Supplementary Figure
S14). However, two other plausible causes of activation of
immune response genes are (I) a CNS-autonomous effect,
as PRC2 has been linked to immune responses in human
cancer (70) and/or (II) that the developmental defects in
Eed-cKO mutants lead to a breakdown of the blood brain
barrier and/or an immune response to a malforming CNS.
Indeed, our previous studies did reveal that apoptosis oc-

curred at earlier stages in the Eed-cKO CNS (5). The lat-
ter explanation would also be supported by the increased
IB4 staining. Further studies i.e., spatio-temporal single cell
RNA-seq, would be required to determine why the immune
response genes are activated.

Layered control of proliferation by PRC2

Cell cycle genes (Supplementary Table S1) were scattered
across marked and unmarked, and differently affected cat-
egories obscuring the biological signal in the label strati-
fied analysis. In contrast, VAE analysis highlighted consis-
tently affected pro-proliferative genes in a proliferation co-
hort, suggesting a common regulatory regimen, and that
we probe the regulation of cell-cycle genes further. In gen-
eral, pro-proliferative genes were downregulated and anti-
proliferative genes upregulated, and there was a general flat-
tening of their A–P expression gradients. These gene ex-
pression changes are likely directly responsible for the un-
dergrowth phenotype observed in the mutant FB and MB.
Analysis of the H3K27me3 profiles revealed that PRC2 may
be acting directly on a subset of marked proliferation genes,
and likely indirectly, via e.g. the Sox1/2/3 and E2f1/2/3
TFs, on unmarked proliferation genes.

The tendency for PRC2 to directly regulate anti-
proliferative genes and indirectly regulate pro-proliferative
genes, points to an uneven involvement of the epigenetic
machinery in cell cycle regulation. This finding is not sur-
prising given the different evolutionary origin of the cell cy-
cle genes and the gradual emergence of the epigenetic ma-
chinery. Specifically, while the basic core cassette of Cyclins
and Cdks is ancient in eukaryotes (71) the Kip/Cip family
evolved later, and INK4 even more recently (the INK4 fam-
ily is not present in Drosophila). The Kip/Cip and INK4
families likely evolved to provide the increasingly refined
control of proliferation necessary in larger metazoans. In-
deed, evolution of the cell cycle machinery has gone hand
in hand with, and one may argue been facilitated by, an
increasingly elaborate epigenetic machinery. Against this
backdrop, it is logical that PRC2 is heavily engaged in di-
rectly regulating the Cip/Kip and INK4 families, but indi-
rectly regulating the more ancient cell cycle genes.

PRC2 gates an ancient CNS stemness gradient

One of the key features of the developing CNS A-P axis
is a stemness gradient, which drives CNS anterior expan-
sion. PRC2 plays five key roles herein: (i) promoting brain-
specific TF expression, (ii) repressing anterior Hox gene ex-
pression, (iii) promoting a gradient of neural stemness TF
expression, (iv) repressing anterior anti-proliferative gene
expression and (v) promoting anterior pro-proliferative
genes (1). Our findings herein suggest that (i) PRC2 reg-
ulates the first four categories directly by application of
H3K27me3 and (ii) PRC2 regulates pro-proliferative genes
by also relying on proxy TFs.

Our spatio-temporal transcriptomic and epigenomic
analysis provides an in-depth view into the strikingly dif-
ferent regulatory landscape present in the anterior versus
posterior regions of the CNS, and the profound importance
of PRC2 in establishing and driving these differences. Previ-
ous studies show that the role of PRC2 in gating A–P gene
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expression is integral for mouse, fly, and zebrafish develop-
ment (8,72–73). Our work extends upon this, revealing that
the FB genes dysregulated in the developing mouse PRC2
mutant CNS are also selectively expressed during human
embryonic brain development, underscoring the evolution-
ary conservation of brain development across bilateria.

A number of observations in different species, based on
gene expression analyses with anatomical and phylogenetic
considerations, have led to the proposal that the anterior
and posterior CNS may have originated from different parts
of the nervous system present in the bilaterian ancestor,
the apical and basal nervous systems (65,74–76). If true,
this brain-nerve cord ‘fusion’ concept may help explain the
strikingly different gene expression and neurogenesis prop-
erties of the brain, when compared to the nerve cord, as well
as the apparent ‘brain-preoccupation’ of the PRC2 com-
plex.

DATA AVAILABILITY

Raw RNA-seq files are available at the NCBI/Gene Ex-
pression Omnibus under the accession GSE123331. Pro-
cessed data and code including Jupyter Notebooks (both as
HTML and ipynb) used to generate all results are available
at: https://arianemora.github.io/mouseCNS vae/.

We developed an interactive web site to inspect latent
representations of genes: http://bioinf.scmb.uq.edu.au:81/
cnsvae/static/.

Our analysis workflow has been packaged and docu-
mented to be widely applicable. In particular, the workflow
is amenable to any biological system where a gene ‘profile’ is
indicative of function and mode of regulation. We provide
example code to use VAEs in R and Python.
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Supplementary Data are available at NAR Online.
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