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Abstract

Uncovering and fixing errors in biomedical terminologies is essential so that they provide accurate knowledge to
downstream applications that rely on them. Non-lattice-based methods have been applied to identify various kinds
of inconsistencies in different biomedical terminologies. In previous work, we have introduced two inference-based
approaches that were applied in an exhaustive manner to audit hierarchical relations in the Gene Ontology: (1)
Lexical-based inference framework, and (2) Subsumption-based sub-term inference framework. However, it is unclear
how effective these exhaustive approaches perform compared with their corresponding non-lattice-based approaches.
Therefore, in this paper, we implement the non-lattice versions of these two exhaustive approaches, and perform a
comprehensive comparison between non-lattice-based and exhaustive approaches to audit the Gene Ontology. The
domain expert evaluations performed for the two exhaustive approaches are leveraged to evaluate the non-lattice
versions. The results indicate that the non-lattice versions have increased precision than their exhaustive counterparts
even though they do not capture some of the potential inconsistencies that the exhaustive approaches identify.

1 Introduction

Biomedical terminologies like Gene Ontology, SNOMED CT and NCI thesaurus have received an increase use in
terms of knowledge management; data integration, exchange and semantic interoperability; and decision support and
reasoning in biomedicine 1–4. Biomedical terminologies are constantly curated to reflect the state-of-the-art knowl-
edge of the particular domain that they represent. Though great care is taken to make sure the terminologies reflect
the biomedical knowledge accurately, it is inevitable that errors will be introduced due to the manual effort involved
in maintaining them combined with how complex terminologies have become over time. It can be laborious to man-
ually audit a modern biomedical terminology due to their size and complexity and hence, automated approaches are
preferred.

Non-lattice-based auditing methods have been effectively employed for quality assurance purposes on various biomed-
ical terminologies5–11. These methods focus on subgraph fragments in terminologies that are error prone. In contrast,
exhaustive methods focus on the entire terminology without restricting to such subgraphs. Leveraging the lexical
features of concepts in non-lattice-subgraphs, various inconsistencies have been uncovered. The advantage of non-
lattice-based methods over most other terminology auditing methods is that they are capable of not only identifying
errors, but also suggesting remediation measures. Therefore, they require much less manual review effort from domain
experts. According to the results of non-lattice-based methods, it is unquestionable that they are effective in uncover-
ing errors in biomedical terminologies. However, a comprehensive comparison of non-lattice-based methods against
exhaustive methods has not yet been performed to prove their effectiveness in uncovering inconsistencies.

In previous work, we have developed two exhaustive approaches to audit the hierarchical is-a relations in Gene On-
tology (GO): one is a lexical-based inference approach12, 13, and the other is a subsumption-based sub-term inference
framework14. In this paper, we implement these two approaches on non-lattice subgraphs to detect potential incon-
sistencies in GO. Leveraging the previous evaluations performed by domain experts, we perform a comparison of the
effectiveness of the exhaustive version and non-lattice version for both approaches.
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2 Background
2.1 Methods to audit biomedical terminologies

Many approaches have been proposed to audit biomedical terminologies15. Abstraction networks which are summary
graphs of terminologies have been extensively explored to perform quality assurance16–18. Zhe et al. have worked on
identifying trapezoid structures in the hierarchies of a pair of terminologies to identify missing concepts19 . Boden-
reider has introduced a method to uncover missing is-a relations through inference of logical definitions constructed
using lexical features of concept names20 . Zheng et al. have introduced a transformation-based method that leverages
Unified Medical Language System (UMLS) knowledge to identify missing hierarchical relations in terminologies in
the UMLS21. Peng et al. have proposed a new algorithm to predict new GO terms and connect them to existing GO22.
Mougin et al. have reasoned over relationships to identify redundant relations in GO and detected missing relations
by using compositional structure of the concept names23. Xing et al.’s work combined dynamic programming with
topological sort to detect redundant relation in biomedical terminologies including GO24. More recently, deep learning
has been explored to audit biomedical terminologies. Zheng et al. have proposed a method that leverage deep learning
to predict the concept names of new concepts that comply with the naming convention of the terminology25. Liu et
al. have introduced a deep learning approach that can predict the placement of a new concept in the hierarchy of
SNOMED CT26.

2.2 Non-lattice subgraphs

Being a lattice is considered a desirable property for a well-formed terminology5, 27, 28. A terminology forms a lattice
if any pair of concepts have a unique maximal shared descendant and a unique minimal shared ancestor. A pair of
concepts is known as a non-lattice pair, if the they have more than one maximal shared descendant or minimal shared
ancestor. For example, in Figure 1, concepts A and B form a non-lattice pair since they share two maximal common
ancestors E and F .

The non-lattice pair (A,B) defines a non-lattice subgraph as follows. First, the maximal common descendants (mcd)
of the non-lattice pair is obtained. For the non-lattice pair (A,B), the maximal common descendants mcd(A,B) =
{E,F}. Then we reversely compute the minimal common ancestors (mca) of concepts E and F . This yields us
mca(mcd(A,B)) = {A,B,C}. Then all the concepts and relations between mcd(A,B) and mca(mcd(A,B)) is
aggregated to form the non-lattice subgraph. This yields a non-lattice subgraph with six concepts {A,B,C,D,E, F}.

Figure 1: An example non-lattice subgraph.

2.3 Non-lattice-based auditing methods

Previously, we have investigated a number of non-lattice-based methods to audit biomedical terminologies. Four
lexical patterns in non-lattice subgraphs were investigated to uncover missing is-a relations and missing concepts in
SNOMED CT5. The same approach was applied to NCI thesaurus introducing two more lexical patterns6. We also
introduced a method that leverages enriched lexical attributes of concepts in non-lattice subgraphs in SNOMED CT to
uncover is-a relation inconsistencies7. We applied similar approaches on the NCI thesaurus while also investigating
the inheritance of lexical attributes from all ancestors and leveraging role definitions of concepts.

Next we discuss the two exhaustive methods from previous work that we will compare later with their non-lattice-based
counterparts.
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2.4 Lexical-based inference framework

To audit is-a relations in GO, we introduced a lexical-based inference framework12, 13. In this approach, we rep-
resented the name of each concept using two models: set-of-words and sequence-of-words. For each model, we
generated hierarchically-linked and -unlinked Partial Matching Concept-Pairs (PMCPs), (A,B), such that both A and
B have the same number of words, and contain at least one word in common and a fixed number of different words
(n = 1, 2, 3, 4, 5). The linked and unlinked concept-pairs further infer corresponding linked and unlinked term-pairs
(ITPs) respectively. If the same ITP is inferred by a linked and unlinked PMCP, this is considered as an inconsistency.
Applying this approach to the March 28, 2017 release of GO, a total of 5,359 potential inconsistencies were found by
the set-of-words model and 4,959 were found by the sequence-of-words model. A random sample of 250 potential in-
consistencies identified through this method was evaluated by domain experts to validate their correctness. The results
showed that the set-of-words model achieved a precision of 53.78% while the sequence-of-words model achieved a
precision of 57.55%.

2.5 Subsumption-based sub-term inference framework

In previous work14, we developed a subsumption-based sub-term inference framework (SSIF) to audit GO. In SSIF,
we represented each concept A with a sequence-based representation E(A) = [e1, e2, e3, ..., en], where each element
is either a word or a sub-concept. We leveraged part-of-speech tagging, sub-concept matching and antonym tagging
to construct the sequence-based representation for each concept. Then, we introduced three conditional rules: Mono-
tonicity, Intersection, and Sub-concept that utilized the sequence-based representation to uncover problematic is-a
relations. Here, we briefly discuss the three rules.

Monotonicity rule suggests A is-a B if both A and B have the same number of elements in their sequence-based
representations E(A) and E(B) respectively, their corresponding elements Ai and Bi are either equal or if they are
sub-concepts (discussed below) Ai is-a Bi, and E(A) does not contain an element which is an antonym of any element
of E(B).

Intersection rule suggests a missing is-a relation between a concept A and an intersecting concept X as follows.
Suppose that A has a pair of ancestors B and C. The intersecting concept X of B and C is defined as another concept
that contains the lexical properties of both B and C and is lexically the most general concept that is a descendant of
both B and C. Therefore, since A is also a descendant of both B and C, this rule suggests that A is-a X . Note that A
should not have an element which is an antonym of an element of X .

Sub-concept rule suggests a missing is-a relation among a concept and its sub-concept. We say that a concept B is a
sub-concept of a concept A if B is a proper substring of A. Suppose that if the sub-concept B is the last element of A,
all other elements of A are either sub-concepts or belong to parts-of-speech noun or adjective, and A does not have an
element which is an antonym of any element of B, then the Sub-concept rule suggests A is-a B.

Applying SSIF to the October 3, 2018 release of GO, 819; 691; and 669 potential inconsistencies were uncovered for
Monotonicity, Intersection, and Sub-concept rules respectively. Domain experts evaluated a random sample of 210
potential inconsistencies uncovered by SSIF and the results showed that SSIF achieved a precision of 60.61%, 60.49%,
and 46.03% for Monotonicity, Intersection, and Sub-concept rules respectively.

3 Methods

We first extract all the non-lattice subgraphs from both the March 28, 2017 and October 3, 2018 releases of Gene
Ontology (the same versions used in the exhaustive approaches) leveraging an efficient large-scale non-lattice detection
algorithm28. Then we develop the non-lattice version of the two approaches as follows.

3.1 Non-lattice lexical-based inference framework

For both set-of-words model and sequence-of-words model, the non-lattice version of the lexical-based inference
framework is as follows. A pair of hierarchically-linked or -unlinked concepts (A,B) form a non-lattice PMCP if
both A and B have the same number of words, contain at least one word in common and a fixed number of different
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words (n = 1, 2, 3, 4, 5), and are in the same non-lattice subgraph. From a non-lattice PMCP, a non-lattice ITP is
derived by removing the common words across the two PMCPs. We say that an inconsistency exists in a non-lattice
subgraph if it contains a linked non-lattice PMCP and an unlinked non-lattice PMCP, which infers the same non-lattice
ITP. Figure 2 shows an example non-lattice subgraph that exhibits this scenario. Note that the concepts of linked PMCP
are in green and the concepts of the unlinked PMCP are in red. This can be obtained by both the set-of-words and
sequence-of-words models.

Figure 2: A missing is-a relation (dashed link in red) identified by the non-lattice lexical-based inference framework.
Concept pair of linked PMCP is in green and concept pair of unlinked PMCP is in red. The suggestion here is that
peptidyl-threonine trans-autophosphorylation is-a peptidyl-threonine autophosphorylation.

3.2 Non-lattice subsumption-based sub-term framework

Exhaustive SSIF proposed three conditional rules: Monotonicity, Intersection, and Sub-concept to uncover potential
is-a inconsistencies. Here, we define their non-lattice-based counterparts as follows.

Non-lattice-based Monotonicity rule suggests A is-a B if concept A and concept B satisfy the following conditions:

• they are in the same non-lattice subgraph;
• they have the same number of elements in their sequence-based representations E(A) and E(B) respectively;
• their corresponding elements Ai and Bi are either equal or if they are sub-concepts, both of them are in the

above-mentioned non-lattice subgraph where Ai is-a Bi; and
• E(A) does not contain an element which is an antonym of any element of E(B).

Figure 3: A missing is-a relation (dashed link in red) identified by the Monotonicity rule of the non-lattice SSIF.
Concepts in green exists as sub-concepts of concepts in red. The suggestion here is positive regulation of secondary
heart field cardioblast proliferation is-a positive regulation of cardioblast proliferation.
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Figure 3 shows a non-lattice subgraph exhibiting Monotonicity rule. This example shows a suggested missing is-
a relation between concepts A = positive regulation of secondary heart field cardioblast proliferation and B =
positive regulation of cardioblast proliferation. Note that with the sequence-based representation, concept A here is
represented as E(A) = [positive, (regulation of secondary heart field cardioblast proliferation)], i.e., the first element
is positive and the second element is regulation of secondary heart field cardioblast proliferation which is a sub-
concept. Similarly, concept B is represented as E(A) = [positive, (regulation of cardioblast proliferation)]. Since A
and B are both in the same non-lattice subgraph, have two elements each, their first elements are equal and the second
elements are sub-concepts having an is-a relation which also exists in the same non-lattice subgraph (denoted by green
circles), we suggest a missing is-a relation among these two concepts (denoted by red dashed line).

Non-lattice-based Intersection rule suggests a missing is-a relation as follows. Suppose that A has a pair of ancestors
B and C whose intersecting concept is X . If all A,B,C, and X are in the same non-lattice subgraph, this rule suggests
a missing relation A is-a X if A does not have an element that is an antonym of an element of X . Figure 4 shows
a non-lattice subgraph exhibiting Intersection rule. For instance, concepts B = regulation of establishment of cell
polarity and C = regulation of establishment or maintenance of cell polarity regulating cell shape (denoted by green
circles) which are in the same non-lattice subgraph has an intersecting concept X = regulation of establishment of cell
polarity regulating cell shape which is also in the same non-lattice subgraph. Concept A = regulation of establishment
of bipolar cell polarity regulating cell shape which also exists in the same non-lattice subgraph is a descendant of both
B and C. Therefore, we suggest a missing is-a relation between the concepts X and A (denoted by the red dashed
link).

Figure 4: A missing is-a relation (dashed link in red) identified by the Intersection rule of the non-lattice SSIF.
Concepts in green are the ancestor concepts. The suggestion here is regulation of establishment of bipolar cell polarity
regulating cell shape is-a regulation of establishment of cell polarity regulating cell shape.

Non-lattice-based Sub-concept rule suggests a missing is-a relation between a concept A and its sub-concept B if

• both of A and B are in the same non-lattice subgraph;
• the sub-concept B is the last element of A, and all other elements of A are either a sub-concept or noun or

adjective; and
• A does not have an element which is an antonym of any element of B.

For instance, Figure 5 contains a non-lattice subgraph exhibiting Sub-concept rule. Here, concept A = positive regu-
lation of phenotypic switching by regulation of transcription from RNA polymerase II promoter is represented by the
sequence-based representation as E(A) = positive, (regulation of phenotypic switching by regulation of transcription
from RNA polymerase II promoter). i.e. the last element of A is a subconcept B = regulation of phenotypic switching
by regulation of transcription from RNA polymerase II promoter which also exists in the same non-lattice subgraph.
The remaining element positive is an adjective. Therefore, based on the non-lattice Sub-concept rule, we suggest there
exists a missing is-a relation between A and B (denoted by the dashed red line).
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Figure 5: A missing is-a relation (dashed link in red) identified by the Sub-concept rule of the Non-lattice SSIF. The
suggestion here is positive regulation of phenotypic switching by regulation of transcription from RNA polymerase II
promoter is-a regulation of phenotypic switching by regulation of transcription from RNA polymerase II promoter.

3.3 Evaluating non-lattice-based methods

To evaluate the performance of the non-lattice versions of lexical-based inference framework and SSIF, we leverage
the evaluations performed on their exhaustive counterparts. If a potential inconsistency identified through the non-
lattice approach exists in the evaluation sample of the exhaustive approach, then, that particular sample is considered
for evaluating the non-lattice approach. So, we simply take the intersection between the non-lattice results with the
exhaustive evaluation set to identify the evaluation samples obtainable by the non-lattice approach. Then, based on the
number of valid inconsistencies and false positives, we compute the precision.

4 Results

In this section, we compare the potential inconsistencies uncovered by the exhaustive and non-lattice versions of the
lexical-based inference framework and SSIF.

Table 1 shows potential inconsistencies identified by exhaustive and non-lattice lexical-based inference frameworks.
For example, the exhaustive approach has identified 5,359 potential inconsistencies with the set-of-words model while
the non-lattice-based approach has identified 1,875 potential inconsistencies with the same model.

Table 1: A comparison of all potential inconsistencies uncovered by exhaustive and non-lattice lexical-based inference
frameworks.

Set-of-words Sequence-of-words
Exhaustive 5,359 4,959
Non-lattice 1,875 1,691

Table 2 displays potential inconsistencies uncovered by the three rules of exhaustive and non-lattice versions of SSIF.
For instance, the exhaustive version of Monotonicity rule identified 819 potential inconsistencies while the non-lattice
version of the Monotonicity rule uncovered 354 potential inconsistencies.

Table 2: A comparison of all potential inconsistencies uncovered by exhaustive and non-lattice SSIF.

Monotonicity Intersection Sub-concept
Exhaustive 819 691 669
Non-lattice 354 679 75

Table 3 shows a comparison of performance between the exhaustive and non-lattice versions of lexical-based inference

182



framework. For example, the exhaustive version achieved a precision of 53.78% when the set-of-words model was
used. The non-lattice-based approach achieved a precision of 58.97% for the set-of-words model.

Table 3: A comparison of the performance of exhaustive and non-lattice lexical-based inference framework.

No. of potential inconsistencies No. of valid inconsistencies Precision
Exhaustive Non-lattice Exhaustive Non-lattice Exhaustive Non-lattice

Set-of-words 238 39 128 23 53.78% 58.97%
Sequence-of-words 212 28 122 20 57.55% 71.43%

Table 4 shows a performance comparison of the exhaustive and non-lattice versions of SSIF. For instance, the ex-
haustive approach achieved a precision of 60.61% with the Monotonicity rule while the non-lattice-based approach
achieved 61.54%.

Table 4: A comparison of the performance of exhaustive and non-lattice SSIF.

No. of potential inconsistencies No. of valid inconsistencies Precision
Exhaustive Non-lattice Exhaustive Non-lattice Exhaustive Non-lattice

Monotonicity 99 39 60 24 60.61% 61.54%
Intersection 81 79 49 49 60.49% 62.03%
Sub-concept 63 8 29 5 46.03% 62.50%

5 Discussion

In this paper, we implemented the non-lattice versions of our previous exhaustive lexical-based inference framework
and subsumption-based sub-term inference framework for auditing is-a relations in GO, and performed a comparison
between exhaustive and non-lattice-based approaches.

5.1 Performance comparison

From the performance comparison in Table 3 for the lexical-based inference approach, it can be seen that the non-lattice
approach has outperformed the exhaustive approach considerably. The precision of the non-lattice-based approach is
better by 5.19% for set-of-words model and 13.88% for the sequence-of-words model. However, the non-lattice-based
approach only uncovers 35% and 34% of the potential inconsistencies that the set-of-words and sequence-of-words of
the exhaustive approach identifies respectively. For instance, by both the set-of-words and sequence-of-words models,
the exhaustive version identifies the missing is-a relation diadenosine polyphosphate catabolic process is-a small
molecule catabolic process which the non-lattice-based approach does not.

From Table 4, it can be seen that the non-lattice-based approach exceeds the precisions by 0.93% for Monotonicity,
1.54% for Intersection and 16.47% for Sub-concept rules. However, it can also be seen that the non-lattice-based
approach identifies 42%, 96%, and 11% of the potential inconsistencies that Monotonicity, Intersection, Sub-concept
rules of the exhaustive approach finds respectively. For example, with the Sub-concept rule, the exhaustive version
identifies the missing is-a relation skeletal muscle cell differentiation is-a muscle cell differentiation that the non-lattice
version does not.

Therefore, from the results it is clear that the two non-lattice-based approaches perform better than their exhaustive
counterparts in terms of precision. It seems that this performance increase also depends on the method itself since
some methods (e.g. Sub-concept rule of SSIF) has gained more than the others.

It can be also seen that non-lattice-based approaches miss some of the potential inconsistencies that exhaustive ap-
proaches are able to uncover. We did not expect non-lattice subgraphs would capture all kinds of inconsistencies that
exists in biomedical terminologies. However, we expected that the concentration of errors in non-lattice subgraphs
would be higher than that in the general terminology and therefore, if the same method is applied exhaustively and
inside non-lattice subgraphs, the non-lattice version would achieve a better precision.
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It is easier to analyze a non-lattice subgraph than analyzing the entire terminology. If non-lattice subgraphs have a
higher concentration of errors, such analysis may lead to the identification of new types of inconsistencies. Strategies
to uncover and fix inconsistency types identified by analyzing non-lattice subgraphs may be applied exhaustively to
identify more inconsistencies that non-lattice subgraphs itself do not capture. Therefore, non-lattice-based approaches
may influence future exhaustive approaches in turn uncovering much more inconsistencies than NLS approaches alone
can uncover.

5.2 Level differences of concepts and their superconcepts in the potential missing is-a identified

Since the non-lattice-based methods focus on substructures of a terminology and exhaustive methods works on the
entire terminology, we also performed a level-based analysis of the potential missing is-a relations identified by ex-
haustive and non-lattice-based methods. For a descendant and an ancestor of a potential missing is-a relation, we first
computed the level in the hierarchy for the descendant and the ancestor. The level of a particular concept is the number
of concepts in the longest path from root to the particular concept. For a particular potential missing is-a relation, we
subtract the level of the ancestor from the descendant to get the level difference.

Figure 6 shows a plot of the level differences and the number of is-a relations for the lexical-based inference approach.
It can be seen that the lexical-based inference approach favors low level differences for both exhaustive and non-
lattice-based methods. This means that the concepts in the potential missing is-a relations tend to be closer to each
other in the hierarchy of the ontology. Other than the set-of-words model in the non-lattice-based approach, all other
models have most number of potential missing is-a relations with a level difference of 0.

Figure 6: Distribution of level differences of descendant and ancestor in potential inconsistencies uncovered through
exhaustive and non-lattice version of lexical-based inference framework.
Figure 7 displays the plot for level differences and the number of is-a relations for SSIF. It seems SSIF also tends to
suggest hierarchically closer concepts as potentially missing is-a. Other than the Sub-concept rule in the exhaustive
approach, all others have most number of potentially missing is-a with a level difference of 1.

5.3 Future work

In this work, we leveraged two previous exhaustive methods to compare non-lattice-based and exhaustive methods.
We leveraged evaluations from the exhaustive methods to evaluate the non-lattice-based methods. Because of this, the
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Figure 7: Distribution of level differences of descendant and ancestor in potential inconsistencies uncovered through
exhaustive and non-lattice versions of SSIF.

number of evaluation samples for the non-lattice-based methods were on the smaller size. In the future we would like
to perform a thorough domain expert evaluation exclusively for both the methods.

In this work, we also focused on one terminology: Gene Ontology. In the future we expect to see whether these results
are terminology specific by performing a similar comparison on other major biomedical terminologies like SNOMED
CT and NCI thesaurus.

6 Conclusion

In this paper, we performed a comparison of exhaustive methods vs non-lattice-based methods for auditing biomed-
ical terminologies. We implemented non-lattice versions of two of our previous exhaustive works in auditing the
Gene Ontology: (1) lexical-based inference framework and (2) subsumption-based sub-term inference framework. We
leveraged the domain expert evaluations performed for the exhaustive methods to evaluate the non-lattice-based meth-
ods. The results indicate that non-lattice-based methods achieved better precisions than their exhaustive counterparts
though, they do not capture some of the potential inconsistencies identified by exhaustive approaches.
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