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Abstract 

Overabundance of information within electronic health records (EHRs) has resulted in a need for automated systems 
to mitigate the cognitive burden on physicians utilizing today’s EHR systems. We present ProSPER, a Problem-
oriented Summary of the Patient Electronic Record that displays a patient summary centered around an auto-
generated problem list and disease-specific views for chronic conditions. ProSPER was developed using 1,500 
longitudinal patient records from two large multi-specialty medical groups in the United States, and leverages 
multiple natural language processing (NLP) components targeting various fundamental (e.g. syntactic analysis), 
clinical (e.g. adverse drug event extraction) and summarizing (e.g. problem list generation) tasks. We report 
evaluation results for each component and discuss how specific components address existing physician challenges in 
reviewing EHR data. This work demonstrates the need to leverage holistic information in EHRs to build a 
comprehensive summarization application, and the potential for NLP-based applications to support physicians and 
improve clinical care. 

Introduction 

Electronic health records (EHRs) are one of the primary sources of clinician burnout1–3. Many studies have analyzed 
physician time spent in EHRs with respect to various interactions such as chart review, documentation, orders, and 
inbox management4,5, with several identifying time spent on reviewing information within the EHR, i.e. chart review, 
as a major component of physician interaction with the EHR. A descriptive study on ambulatory medical subspecialists 
and primary care physicians observed that chart review accounted for the highest proportion of active physician EHR 
time at 33%4. Another study analyzed audit logs to measure time requirements for EHR use by ophthalmologists and 
concluded that most of the time spent in the EHR is on reviewing information5. 

Several factors contribute to the difficulty in reviewing information in EHRs. Traditionally, the patient medical record 
was mainly used to document a patient’s medical history and clinical care process to assist physicians in providing 
informed care. However, the transformation from paper-based to electronic patient records have expanded the scope 
of documentation to also serve a variety of non-clinical purposes, including administrative, legal, research, and 
education6. This transformation has resulted in lengthy and complex documentation dominated by content not directly 
relevant to clinical care, such as text meant for billing purposes, quality improvement measures, avoiding malpractice, 
and documenting compliance7. Further exacerbating this problem are issues of note bloat, where use of structured data 
imports, templates and copy-paste have introduced unnecessary, redundant or erroneous data into clinical notes, 
worsening the problem of information overload and physician stress8–10. A human factors engineering perspective to 
the information chaos in primary care identified five information hazards: information overload, information 
underload, information scatter, information conflict, and erroneous information11. These information hazards result in 
additional workload for physicians, such as expending extra effort to search through charts, asking more questions of 
the patient to clarify conflicting documentation, or re-working a diagnosis to investigate potentially erroneous 
information. Together these factors contribute to excess clinician workload and burnout, with adverse outcomes on 
clinician well-being, patient care, and the health care system12.  

Previous research has explored several automated summarization and enhanced visualization methods to enable 
physicians to efficiently navigate and discern complex data within EHRs13. Summarization efforts include problem 
identification from a given set of clinical notes14–16, extraction of clinical concepts or relations17,18, and various ways 
to display such information along with other information in the EHR15,19,20. Another research direction has focused on 
improved data visualization and interactive displays to facilitate more efficient and accurate information retrieval and 
an overall more user-friendly interaction with the EHR21–24. Evaluation of such systems in real or simulated clinical 
settings have received positive feedback from physicians and resulted in improved physician performance15,19,22,25,26. 
A common theme in many of these systems is the idea of a problem-oriented medical record (POMR)27, and the use 
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of timelines to gain a longitudinal history of the patient. We rely on these principles to build Problem-oriented 
Summary of the Patient Electronic Record (ProSPER), an application which extends the idea of a POMR by enhancing 
it with clinically meaningful insights extracted from unstructured clinical notes, such as adverse drug events (ADEs), 
and displaying them on a timeline with relevant structured elements of the EHR. 

During the past several years, we have developed and validated the usability of several components that contribute to 
the creation of a comprehensive patient record summarization application. The purpose of this paper is to build on our 
previously published work and present ProSPER, an artificial intelligence-based system that extracts, analyzes, and 
summarizes patient clinical information from electronic health records, with the goal of reducing the cognitive burden 
on physicians due to information chaos within the EHR. We present the overall system architecture and pipeline, 
describe the underlying components needed to build such a system, and discuss how these components address 
information chaos within the EHR. ProSPER differs from previously published systems in that it presents (1) an auto-
generated problem list, (2) disease-specific dashboards, (3) a stacked timeline view incorporating both structured data 
and insights extracted from unstructured data to allow reasoning across different data elements, and (4) a textual 
summary of each clinical encounter for a selected disease of interest. 

Materials and Methods 

Combining the well-established idea of a problem-oriented medical record with the different workflows using EHRs 
that rely on electronic dashboard summary screens as well as individual progress notes, we envision a workflow for 
reviewing patient information prior to a clinic visit as follows. 

1. Patient overview: gain an overview of the patient, including the patient’s name, demographics, allergies, and 
a summary of the active problems, current medications, allergies, vital signs, and laboratory results. 

2. Snapshot of a specific problem: focus on a specific disease by surfacing current medications and recent 
laboratory results and procedures relevant to the specified disease. 

3. Longitudinal history of a specific problem: investigate a specific disease through a timeline view of relevant 
medications, laboratory results, procedures, past encounters and clinical events extracted from clinical notes. 

Dataset 

Effective natural language processing (NLP) techniques are essential to development of the proposed system. To 
achieve this, we used a set of 1,500 de-identified longitudinal patient records from two large ambulatory multi-
specialty medical groups in the United States. Subsets of this corpus were manually annotated by medical students 
and practicing physicians to generate ground truth for development of smaller NLP components that are used in 
building the overall system. All annotations were doubly-annotated and adjudicated to ensure the quality and 
consistency of the ground truth. Details of the ground truth generation process for each task are provided below. 

The dataset for problem list generation28 consists of 399 randomly selected patient records annotated by over 17 fourth 
year medical students. Annotators reviewed each patient record, created a problem list for a comprehensive health 
assessment, normalized identified problems to the clinical observations recordings and encoding (CORE) problem list 
subset of Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT)29 in a one-to-many mapping, and 
evaluated how closely the SNOMED CT concept represents the problem. 

The dataset for relation detection30 consists of 24,537 unique problem-medication pairs, 11,318 unique problem-
procedure pairs, and 23,402 unique problem-laboratory test pairs created using structured data from 100 randomly 
selected patient records. Four fourth year medical students reviewed each pair of entities and indicated if a positive 
association was present, defined as medications that treat or prevent the problem or its symptoms, and laboratory tests 
or procedures that can be used to screen, prevent, evaluate, diagnose, or manage the problem. 

The dataset for extractive summarization31 consists of 3,453 clinical notes over 762 patients with recent documentation 
of at least one of five common chronic diseases (hypertension, diabetes mellitus, hyperlipidemia, heart failure, chronic 
obstructive pulmonary disease) and authored by physicians or nurse practitioners. The corpus was annotated by 12 
physicians with emphasis on only annotating the most important insights relevant to physicians’ decision-making. 

The ground truth for medication insights, specifically ADE and medication change events, was annotated at the note-
level. For ADEs, 602 notes were annotated with medications and their associated adverse events. For medication 
change events, 38,895 medication mentions were annotated to indicate (1) the presence of a medication change event 
and (2) the multi-dimensional context (action, temporality, certainty) for identified medication change events. 
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The dataset for evaluation of semantic find32 is derived from 10 randomly selected patient records. For each patient 
record, a physician generated a set of relevant search terms based on the patient’s last progress note and problem list. 
The final dataset consists of 169 search terms, covering a variety of semantic types (e.g. symptoms, drugs), single and 
multi-word concepts, different parts of speech, and commonly-accepted medical abbreviations. 

Pipeline and framework 

ProSPER was built using the open-source Apache Unstructured Information Management Architecture (UIMA)33 
library, a software architecture that provides capabilities to construct pipelines consisting of a sequence of components 
or analysis engines (AE) that inspect the input data, perform analysis, and store resulting annotations. The system 
consists of several such components that work together to process an input EHR. These components write their output 
to a shared data structure called a common analysis structure (CAS). The system achieves high performance by using 
UIMA Asynchronous Scaleout, a set of capabilities supported for achieving scale-out and Distributed UIMA Cluster 
Computing, a cluster management system providing tooling, management, and scheduling facilities to automate the 
scale-out of UIMA applications. Figure 1 shows the high-level flow and underlying NLP components of ProSPER. 
ProSPER’s NLP components, all tailored towards EHR text, can be broadly divided into three levels, described below. 

 
Figure 1. A high-level architecture of ProSPER. 
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Fundamental and clinical NLP components 

Despite the success of current open-domain NLP systems for syntactic and semantic analysis, several studies34,35 have 
shown that substantial effort is needed to adopt existing systems to the clinical domain. Clinical notes are written 
under considerable time pressure, using a combination of ad-hoc formatting and liberal use of parenthetical 
expressions, jargon and acronyms to increase the information density35. For example, sentence ends are frequently 
indicated by layout rather than punctuation, and white space is not always present to indicate token boundaries (eg, 
“50mg”). To handle such issues, two deep parsing components36 were used: a domain-adapted English Slot Grammar 
parser for core linguistic analyses (tokenization, segmentation, morpho-lexical analysis, syntactic analysis), and a 
predicate-argument structure (PAS) builder for simplification and abstraction of the ESG parse. These components 
incorporate domain-specific rules sensitive to low-level features such as punctuation, capitalization, text-wrap 
properties, and indentation of clinical documentation. 

Rule-based, machine learning (ML)-based and lookup-based methods are three major approaches for extracting useful 
information from natural language texts. Many components in ProSPER use a combination of hand-crafted rules and 
ML-based methods for their operation. The rule engine in ProSPER uses a pattern language for describing rules on 
the output of PAS builder. Details about this rule engine are included in Boguraev et al.37. Two ML frameworks, 
feature-based learning and deep learning frameworks, were developed to support concept and sentence classification, 
sequence labeling, sequential sentence labeling, sentence pair scoring, and relation extraction. The feature-based 
learning framework provides implementations of traditional ML algorithms such as Support Vector Machines38, 
Conditional Random Fields (CRF)39, and domain-independent and dependent feature extractors. Similarly, the deep 
learning framework provides implementations of state-of-the-art deep learning architectures, such as Bidirectional 
Long Short-Term Memory – Conditional Random Fields40 and pre-trained transformer-based models41. These 
frameworks were tailored to more effectively process clinical notes. They provide the ability to (1) easily integrate 
feature extractors or architectures, (2) leverage evidence from both structured and unstructured data simultaneously 
to develop consolidated models, and (3) streamline models or feed predictions from one or more auxiliary tasks to 
subsequent tasks. ProSPER uses UIMA’s ConceptMapper42, a tool for lookup-based methods, to link text in input 
documents with entries in a dictionary such as the Unified Medical Language System (UMLS) semantic network43. 

Several NLP components that extract useful information from clinical narratives have been developed using these 
frameworks. Details of these components have been described in our previous studies15,30-32,44–50. These include (1) 
fundamental NLP components such as named entity recognition (NER) and disambiguation (NED)42,48,49, entity 
linking51, relation extraction47,48,52 and abbreviation recognition and disambiguation49, and (2) components specific to 
clinical documentation (i.e. clinical insight extraction components) such as note section segmentation and 
classification53, clinical semantic textual similarity (STS)50, and assertion classification54. 

Clinical insight extraction components can be broadly categorized into (1) concept classification, (2) sentence 
classification, (3) sequential sentence classification, (4) semantic textual similarity, and (5) relation extraction. 
Concept classification components, such as assertion classification and medication change extraction, provide one or 
more categorical labels on a concept based on the surrounding context. Assertion classification uses a deep learning-
based model that assigns each disease mention in a note with one of the following labels: present, absent, possible, 
hypothetical, conditional, associated with someone else; medication change extraction leverages multiple ML models 
that assign each medication mention in a note with labels corresponding to several dimensions: action (start, stop, 
increase, decrease), temporality (past, present, future), and certainty (certain, hypothetical, conditional). Sentence 
classification components assign one or more labels to a sentence in a clinical note; examples include binary 
classification models such as plan55, follow-up, and goal extraction. Sequential sentence labeling components assign 
a label to each sentence in a given sequence, which are useful in capturing the inherent dependencies of sentences 
within a clinical note to assign the correct label for each sentence. For example, the note section classification model 
identifies the layout of a note with respect to its semantics by assigning one of a set of pre-defined section labels to 
each sentence (e.g. Review of Systems, Physical Exam). Clinical STS employs a combination of multi-task learning56 
and fine-tuned pre-trained language models57,58 to compute the semantic equivalence between a pair of text snippets. 
Relation extraction components extracts entities from clinical notes and identifies relations between them. An example 
is ADE extraction which uses a joint deep learning model that extracts medications and related ADEs simultaneously. 

Summarization components 

Summarization components are high-level analytics built on top of the fundamental NLP and clinical insight extraction 
components. These include problem list generation, relation detection, disease-specific extractive summarization, 
consolidated medication timeline, and semantic find. 
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Problem list generation: To extract an open-ended list of the patient’s active problems from the entire patient record, 
problem list generation was framed as a multi-label classification and ranking task. The model was based on an 
alternating decision tree, which used outputs from many upstream analytics (described above) as features, including 
but not limited to UMLS concepts identified by the NER/NED components and mapped to the CORE problem list 
subset of SNOMED CT, their assertions and distribution over the longitudinal record, and the degrees of alignment in 
temporal space between the identified candidate problems and their related medications, laboratory tests, and 
procedures. This method produced a human interpretable model, which is a desirable property in the clinical domain. 
To the best of our knowledge, this was the first successful open-ended problem list generation system15,44,45. 

Relation detection: An ensemble approach with two supervised ML models was used to associate problems with 
related medications, laboratory tests, and procedures30. One method used features extracted from distributional 
semantics and UMLS; the second used features mined from historical, actual patient data. The results of relation 
detection were used both internally as features to support other components, and as a user interface functionality to 
sort structured data tables and highlight relevant data elements for a selected problem in the problem list. 

Disease-specific extractive summary: Extractive summarization was modeled as a sequential sentence labeling 
problem, where each sentence in a given note is classified as being relevant (or not) to the management of the specified 
disease of interest. Outputs from upstream components, such as plan extraction and note section segmentation and 
classification, were leveraged in a linear-chain CRF model to automatically generate disease-specific summaries from 
clinical notes. As a post-processing step, boilerplate statements, which are often either not patient-specific or meant 
for purposes other than clinical care, are downweighted based on frequency analysis on all notes in our corpus. Next, 
deduplication of semantically equivalent sentences enabling the generation of more salient summaries was achieved 
by leveraging clinical STS. Details of the extraction summarization system was published in Liang et al.31. 

Consolidated medication timeline: Data from structured medication orders, medications extracted from clinical notes 
and their related insights were aggregated to build a comprehensive medication timeline. In building this timeline, 
there were two key challenges: (1) some medications are only documented in unstructured data59 and (2) daily dosage, 
although present in many medication visualization designs21,22, is generally not available as a discrete field and 
requires understanding free text medication instructions (i.e. Sig). To address this gap, our system leveraged NER and 
NED components to identify medications and their attributes in clinical notes and Sigs, then normalized these 
attributes to calculate daily dosage60. To further enhance the timeline, outputs from clinical insight components (e.g. 
ADE and medication change extraction) were displayed as popovers on the timeline for the relevant medication. 

Semantic find: Semantic find is an NLP-based search that leverages UMLS and distributional semantics to perform 
different kinds of search, such as conceptual search, which leverages UMLS to match clinically equivalent concepts 
(e.g. lisinopril/Zestril) and ISA relations to match more specific (e.g. cancer/sarcoma) or more general (e.g. gi 
bleed/hemorrhage) variations of the search term, and associative search, which uses Latent Semantic Analysis61 to 
measure the probability of an association between the search term and target term, and returns concepts with a score 
above 0.5 (e.g. asthma/wheezing). Details for semantic find are available in Prager et al.32. 

Evaluation metrics 

Evaluation of NLP components can be classified into intrinsic and extrinsic methods62. Intrinsic methods evaluate the 
functionality of a component against a predetermined gold standard, whereas extrinsic methods focus on the 
component’s contribution to the overall objective of an application and often requires a human-in-the-loop. As 
highlighted in by Pivovarov et al.13, extrinsic evaluation of NLP systems in a clinical setting is a challenging task due 
to reasons including (1) vendor EHR systems often do not support interaction with outside applications, and (2) 
hospitals often request evidence supporting the usefulness of an informatics system before investing resources for 
implementation. As a result of these constraints, here we report an evaluation of our system based on intrinsic methods, 
with an extrinsic evaluation of the overall application planned for the future. 

As is common in information retrieval, recall (R), precision (P), and F1 score was used to evaluate our components. 
Recall, also known as sensitivity, is the number of true positives found given the total number of ground truth 
annotations. Precision, also known as positive predictive value, is the number of true positives given the total number 
of system predictions. F1 score provides a balanced measure of recall and precision. Specificity, also known as true 
negative rate, is not useful for our tasks as the number of true negatives are significantly higher than that of true 
positives, thereby yielding a less meaningful accuracy distinction. 
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Results 

Intrinsic evaluation 

Table 1 presents the precision, recall, and F1 score for the summarization components, namely problem list generation, 
relation detection, disease-specific extractive summarization, consolidated medication timeline (reported separately 
for ADE and medication change extraction), and semantic find. 

Table 1. Precision, recall and F1 score for problem list generation, relation detection, disease-specific extractive 
summarization, adverse drug event extraction, medication change extraction, and semantic find. 

Component Type Precision Recall F1 score 
Problem list generation (all problems) 0.84 0.66 0.74 

Relation detection 
Problem – Medication 0.82 0.75 0.78 
Problem – Procedure 0.76 0.69 0.71 

Problem – Laboratory Test 0.85 0.74 0.79 

Disease-specific extractive 
summarization 

Hypertension 0.74 0.58 0.65 
Diabetes mellitus 0.74 0.62 0.67 
Hyperlipidemia 0.67 0.47 0.55 

Heart failure 0.74 0.50 0.60 
COPD 0.69 0.53 0.60 

Adverse drug event extraction Medication – Adverse Event 0.61 0.56 0.58 

Medication change event 
extraction 

Action 0.81 0.77 0.79 
Temporality 0.79 0.79 0.79 

Certainty 0.78 0.76 0.77 
Semantic find (all search terms) 0.87 0.87 0.87 

ProSPER application 

ProSPER consists of (1) a problem-oriented patient summary centered around an auto-generated problem list, and (2) 
disease-specific views for several chronic conditions. The problem-oriented patient summary allows users to gain a 
quick overview of the patient, while the disease-specific views allow a deeper dive into a specific problem of interest. 

The problem-oriented patient summary presents (1) an auto-generated problem list45, (2) aggregated clinical data by 
type, (3) relations between problems and other data aggregates30 and (4) a semantic search over the entire EHR32. 
Figure 2 shows the user interface which presents several panels, one for each data type. When a problem is selected, 
related medications, laboratory results, and procedures are highlighted and brought to the top for easier review. 

 
Figure 2. Problem-oriented patient summary with diabetes mellitus selected. 
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The disease-specific view allows further investigation of a problem by presenting all information relevant to the 
disease of interest on one screen. In this view, encounters in which the specified disease was discussed are displayed 
on a timeline, and an extractive summary of each of these encounters is produced containing only the most important 
information relevant for managing the specified disease31. Relevant medications, test results and their trends are also 
displayed in timeline form, allowing users to identify potentially informative encounters, and also infer relationships 
between various elements of the patient record (e.g. medication prescribed after an increase in a particular laboratory 
result). Figure 3 shows the disease-specific view for diabetes mellitus in a patient. 

 
Figure 3. Disease-specific view for diabetes mellitus. 

Disease-specific extractive summaries for each encounter are displayed by hovering over icons in the encounter 
timeline, with the summary of the most recent encounter in the right panel for easy viewing. Orange indicators on the 
medication timeline represent medication insights extracted from clinical notes and are displayed as popovers. 
Semantic find can be launched using the search box on the top right if the user needs additional information. 

Discussion 

Challenges in developing an NLP-based application for use in a real-world clinical setting 

There is a significant gap between what low-level NLP components can do as compared to the mental work physicians 
perform during chart review. Previous studies on applying NLP in the clinical domain either focused on advancing 
the state-of-the-art on a single task or using existing NLP toolkits with more emphasis placed on data visualization. 
This paper tries to bridge the gap between what low-level NLP components can provide versus what physicians want, 
by leveraging ML and NLP in all aspects of a chart review scenario. 

Several components within our system have been previously published to advance the state-of-the-art47,48,50 on publicly 
available datasets. However, for many components there are no publicly available datasets, necessitating use of in-
house datasets and ground truth. An additional challenge is the need for both structured and unstructured data in 
creating ground truth for many high-level tasks such as summarization. 

Although NLP applications have reported good accuracy, studies have shown that these applications still have low 
adoption rates in clinical practice63, largely due to uncertainty about minimal performance requirements rather than 
performance-related issues. The interpretation of a specific component’s accuracy in terms of the overall usefulness 
of a system as measured by an extrinsic evaluation still warrants more research attention. 

How does ProSPER address physician challenges in reviewing EHRs? 

To understand how ProSPER can support physicians in their review of EHR data, we discuss how specific components 
within the system address the five information hazards identified by Beasley et al.11: information overload, information 
underload, information scatter, information conflict, and erroneous information. Information overload occurs when 
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there is too much data for the user to review, organize, synthesize, and act on. One way ProSPER mitigates this 
problem is by disease-specific extractive summarization, which leverages components such as note section 
classification and clinical STS to remove uninformative or redundant text24,64, to produce a succinct summary of a 
clinical note. Information underload describes the lack of necessary information, such as missing information due to 
incomplete patient records, or information that is so difficult to find and for all intents and purposes, “missing”. 
ProSPER targets information underload in several ways, including semantic find, which searches the entire EHR based 
on a user-provided query, and ADE extraction, which surfaces rare yet important clinical events that have great impact 
on patient safety. Information scatter describes the problem of having information located in multiple places, thereby 
requiring additional effort to reconcile this information. The idea of a problem list was conceptualized as a way to 
address this issue by capturing all of the patient’s important health problems in one centralized location, but in practice 
it is rarely well-maintained rendering it mostly unusable65. ProSPER supports problem list reconciliation through its 
problem list generation component, which has been validated by physicians in a small pilot study45. The last two 
information hazards, information conflict and erroneous information, can be discussed together as conflicts within 
EHR documentation can be partially attributed to erroneous information. In providing a consolidated medication 
timeline containing information from both structured and unstructured sources, ProSPER allows users to more easily 
identify and resolve discrepancies in medication data between structured and unstructured data. 

Limitations and future work 

We acknowledge several limitations to this work. First, the results presented in this paper are based on an intrinsic 
evaluation of the NLP components using precision, recall, and F1 score to compare against ground truth created by 
physicians or medical students. However, these metrics do not fully capture the nuances of what should or should not 
be included in a problem-oriented patient summary. For instance, a single missed ADE by the system may not have a 
significant impact when measured using the proposed quantitative metrics, but it may be critically important to patient 
management and should never be missed. Second, these results are specific to the datasets, which contain only EHRs 
from two healthcare organizations. Ground truth generation and evaluation on a more diverse dataset is needed to 
better understand the effectiveness of these approaches. Third, while some of the components were previously 
evaluated and published using publicly available datasets, others were developed using proprietary datasets not 
available to the research community. In addition to continuing to adapt and innovate novel methodologies to improve 
individual NLP components, which in-turn can benefit the overall application, we plan to take the following steps to 
address the limitations above: 

1. Use extrinsic measures to capture the usefulness of ProSPER for practicing physicians at the point-of-care. 
2. Create ground truth annotations on publicly available datasets such as MIMIC-III66 and organize challenges 

to invite community-driven efforts. 

Conclusion 

We present ProSPER, a novel problem-oriented summary of the patient record that leverages 3 levels of NLP 
informatics, including performing well-studied fundamental NLP tasks such as NER, extracting clinically meaningful 
events from clinical notes such as ADE, generating an active problem list from the heterogeneous, longitudinal patient 
record, and creating disease-specific extractive summaries from clinical notes. Components underlying ProSPER 
target specific information hazards within the EHR that lead to excess physician workload and mental exhaustion. Our 
work demonstrates the need to leverage holistic information in EHRs to build a comprehensive summarization 
application, and the potential for NLP-based applications to support physician and improve overall clinical care. 
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