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Abstract 
 
Advancing diagnostic testing capabilities such as clinical next generation sequencing methods offer the potential to 
diagnose, risk stratify, and guide specialized treatment, but must be balanced against the escalating costs of healthcare 
to identify patient cases most likely to benefit from them. Heme-STAMP (Stanford Actionable Mutation Panel for 
Hematopoietic and Lymphoid Malignancies) is one such next generation sequencing test. Our objective is to assess 
how well Heme-STAMP pathological variants can be predicted given electronic health records data available at the 
time of test ordering. The model demonstrated AUROC 0.74 (95% CI: [0.72, 0.76]) with 99% negative predictive 
value at 6% specificity. A benchmark for comparison is the prevalence of positive results in the dataset at 58.7%. 
Identifying patients with very low or very high predicted probabilities of finding actionable mutations (positive result) 
could guide more precise high-value selection of patient cases to test.  
 
Introduction 
 
Next generation sequencing (NGS) has revolutionized research in the biological sciences and has expanded the type 
of medical care we can provide. NGS based testing has made it possible to detect disorders in their early stages and 
has opened the gateway towards precision medicine1. Ideally, such tests can be used frequently for early detection of 
a disorder and utilized to personalize as much of the disease management process as possible. However, with rising 
healthcare costs and the already overburdened healthcare system, physicians must and are striving to limit ordering to 
only when they are at a decision point and believe the outcome of the test will strongly affect the path they choose to 
go down. However, there is often too little information or too much information to synthesize when the decision has 
to be made. This is only further exacerbated when these tests are utilized for highly specialized clinical scenarios as 
is the case with the Heme-STAMP. Heme-STAMP (Stanford Actionable Mutation Panel for Hematopoietic and 
Lymphoid Malignancies) is a next generation sequencing based test panel. Hematopathologist often utilize Heme-
STAMP for diagnostic purposes when there are hematolymphoid process where clinical, histologic, 
immunophenotypic, and sometimes cytogenic (FISH) information is insufficient to either render a diagnosis of 
malignancy, or to subtype it in a manner that is useful for sufficiently personalized clinical management. It is also 
used to map the progression of such disease states and to evaluate if identified laboratory abnormalities (such as 
cytopenias) are potentially due to hematological malignancies or something else. And is also commonly used to 
monitor the progression of a disease state (Figure 1). Heme-STAMP uses PCR or hybridization-based DNA capture 
methods alongside a “targeted sequencing” approach to detect recurrent gene fusions and to screen somatic mutation 
hotspots of cancer genes2.  
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Given that there are a number of factors considered when determining whether to order a Heme-STAMP test, the 
objective of this study is to assess how well Heme-STAMP pathological variants can be predicted given electronic 
health records data. An accurate prediction could add the same level of informational value to care management 

while saving the cost of running an actual test. Because in 
many cases the value of the Heme-STAMP test lies in 
uncovering pathogenic variants, it is likely that a negative 
prediction will add value to the care management process 
while reducing the need to have the actual test ordered. A 
positive prediction by contrast may support the need to 
order the test in order to identify the specific pathogenic 
variants and their variant allele frequencies. Given that a 
negative prediction could result in not ordering the test, an 
inaccurate prediction might mean that a disease could 
bypass detection and thus progress. Because of the weight 
of this consequence, the negative labels were evaluated 
closely.  
 
 
 

 
Methods 
 
Data. A total of 2,026 Heme-STAMP clinical test results completed between June 2018 and 2020 were used. These 
samples were drawn from 1,743 Stanford Healthcare patients. Of these patients, 192 patients had multiple tests run 
over the roughly two-year period. The maximum number of tests run on a single patient was six, but the majority of 
these multi-test-patients (96%) had four or less tests run. Every sample in the dataset corresponds to a unique specimen. 
Tests for ctDNA and MRD panels were not included. All specimens underwent a routine sample quality assessment 
before reporting. Specimens that failed clinical quality control criteria were not included in the dataset.  
 
These Heme-STAMP clinical test results were retrospectively combined with their respective electronic health record 
data from Stanford Medicine Research Data Repository (STARR)3,4. Patient features included prescribed medications, 
lab values of diagnostic tests, past diagnoses, demographics, and family medical history. Heme-STAMP results were 
overall categorized as “positive” if a pathogenic mutation was found at a variant allele frequency of >= 5% and 
“negative” if no pathogenic mutations were found at that variant allele frequency or if the only mutations found were 
variants of unknown significance (VUS). 
 
The prevalence and rate of negative results of certain diagnoses and sample types were of particular interest. As 
described earlier, when clinicians order the Heme-STAMP test they may have an existing diagnosis that they want to 
further subclassify (or check the progression of) or they may have a suspected diagnosis that the Heme-STAMP would 
be used to verify. Leukemia and Myelodysplastic Syndrome (MDS) are the common hematological malignancies that 
the clinicians are trying to monitor or evaluate as demonstrated in Figure 2. Respectively, we categorized patient 
populations into those with a known diagnosis of leukemia (but not of MDS), diagnosis of MDS (but not of leukemia), 
diagnosis of both MDS and leukemia, or no diagnosis of either 
disease. Patient history of diagnosis of either disease was 
identified from free text diagnosis summaries stored in the 
EHR. Because of the variety of forms and stages of leukemia 
and MDS, we used regular expressions (such as 
“%leukemia%” and “%MDS%” in various abbreviations and 
upper/lower case variations) to parse the diagnosis descriptions 
to best encapsulate patients into their correct disease 
categorizations. To reflect their relevance in different clinical 
workflows, we included specimen sample type as a key 
categorical feature as well.  
 
Predictors. Demographic information, past diagnoses, lab 
orders, prescribed medications, and family histories were 

Figure 1. Breakdown of the most common ways 
Heme-STAMP is used 
 
 

Figure 2. Breakdown of the most common diagnoses 
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selected as indicator features that the model could use to predict positive or negative labels. The specific diagnoses, 
lab orders, prescribed medications, and family histories to use were found by selecting those that were most 
common among the patients in this study. These features were incorporated by indicating the presence or absence of 
the listed diagnoses, medications, and family histories using binary labels and by doing simple calculations to 
include derivatives of lab result values for each selected lab test. These derivatives were found by looking at the 
results of all past incidences of the specific lab test to find the minimum and maximum result values, the oldest and 
most recent result values, the average, the sum, and the slope across all the past lab result values. The feature values 
are summarized in Table 1.   
 

 
 
 
 
Model Development and Specification. The primary model used was an XGBoost (eXtreme Gradient Boosting) 
classifier5, using a gradient boosted decision tree algorithm. This means that the model builds and aggregates the 
results of multiple learned decision trees in an ensemble approach to make final predictions. Instead of allowing 
every tree to see the entire dataset, each tree only sees a subset of the training data so that each captures a different 
signal which can overall be combined to have a more finely tuned model. Additionally, each tree may use a different 
subset of features. The subset used for each decision tree may be chosen through random selection or based on some 
sort of metric such as accuracy, Gini index, entropy, etc. that results as a consequence of using different subsets of 
features. Trees are built sequentially so that each successive tree focuses on properly classifying the observations 
that were misclassified by the previous tree. The model has various hyperparameters that can be adjusted, prompting 
us to evaluate multiple combinations: learning rate (0.01, 0.03, 0.1), n_estimater (100, 300, 600, 1000), max_depth 
(3, 5, 10), and subsample (0.5, 0.75, 0.9). Ultimately the following hyperparameters yielded the best results: 

- N_estimators = 300 (number of decision trees used in the ensemble) 
- Learning_rate = 0.03 (multiplier for the contribution of each successive classifier in the ensemble) 
- Max_depth=5 (maximum depth any decision tree is allowed to have) 
- Subsample = 0.5 (fraction sampled from the total dataset to build each tree)  

 
XGBoost and Random Forest both use a decision tree algorithm but differ in how they ensemble the decision trees 
used. As described earlier in the paper, XGBoost Classifiers build trees sequentially. Random Forest Classifiers on 
the other hand build trees independently and then average the results of all the trees at the end6. To see if the unique 
ensemble approach of XGBoost contributed to model performance, we compared results to that of Random Forest.  
We trained a Scikit-Learn Random Forest classifier with the following hyperparameters7: n_estimators = 300 and 
max_depth = 5.  
 
We trained a simple logistic regression model from the Scikit-Learn library in order to compare performance from 
decision tree-based models to linear models and experimented with sample weights inputted to the XGBoost model. 
As described earlier in the paper, there is a greater interest in model performance on the negative values so XGBoost 
models with modified sample weights were tested. Positive values were kept at a weight of 1 but weights of 1.5 and 

Past Diagnoses - Leukemia, Lymphoma, Other long-term therapy, Thrombocytopenia, Neoplasm, Skin eruption, 
Sezary, Hypertension, Myelofibrosis, Mycosis 
Lab Orders - WBC, Hemoglobin, RDW, MCV, Eosinophil, Monocyte, MCH, LDH, CD34, CD3PanT, CD48, 
CD19, Anion, IgG, Basophils, RBC, Globulin, Lymphocyte, Neutrophil, BUN, eGFR, Albumin, Glucose Serum, 
Calcium, Creatinine, Alkaline Phosphatase 

Prescribed Medications - Dexamethasone, Ondansetron, Lidocaine, Heparin, Sodium Chloride, Alteplase, 
Epinephrine 

Family History - Cancer, CAD, Other 

Demographics – Sex, Age 

Derived Features - For each numerical lab test, found patient’s maximum result values, minimum result values, 
average result values, sum of all result values, most recent lab value, oldest lab value, and slope of all result 
values 

Table 1. Features/predictors used by the model 
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2.5 for the negative values were experimented with. This difference in weighting would translate to greater importance 
placed on negative labels during the model’s training/optimization process.  
 
In some of our initial work, we also explored LASSO (a regularization-based model) and Support Vector Machine (a 
max margin classifier) but found their performance to be lacking so for the rest of the study we moved forward with 
only the decision tree algorithms and logistic regression model described above.   
 
Model Evaluation. The prediction model was designed to output the pre-test probability of a positive Heme-STAMP 
result given all the available feature information. If the pre-test probability was greater than a certain threshold, a 
positive result was predicted, otherwise a negative test was predicted. The accuracy was generated based on a threshold 
of 0.5 but the AUROC was generated by identifying the threshold that yielded the best balance between the false 
positive rate and the true positive rate. The false positive rate (FPR) represents the probability that a truly negative 
result is predicted to be positive and the true positive rate (TPR), also known as recall or sensitivity, presents the 
probability that a truly positive result is predicted to be positive. The negative predictive value (NPV) and true negative 
rate (TNR) of these pre-test probabilities at various thresholds were used to generate the TNR vs. NPV graph. The 
NPV represents the probability that a predicted negative result truly is negative, and the TNR represents the probability 
that a truly negative result is predicted to be negative (i.e., specificity). The TPR and precision of these pre-test 
probabilities at different thresholds were also used to generate the Precision-Recall Curve. Precision represents the 
probability that a predicted positive result is truly positive (i.e., positive predictive value).  
 
We used 10-fold stratified cross validation8 with shuffling to train and evaluate the model. For each of the 10 folds, 
the data was shuffled and then 90% was selected to be part of the training set and 10% to be part of the test set. The 
data was stratified so that each fold contained a class ratio similar to that of the overall dataset. This was to limit to 
the amount of class imbalance in each fold. The training dataset was used by the model to explore and learn to 
differentiate between samples with positive and negative labels, indicating identification or lack thereof of a 
pathogenic variant by Heme-STAMP testing. The test dataset was used to evaluate the performance of the now trained 
model on new data. 
 
Results 
 
The model was tested on 2,026 Heme-STAMP clinical test results using the 10-fold stratified cross validation method 
described above. The top 5 features were age, leukemia diagnosis, myelofibrosis diagnosis, sex, and hypertension 
diagnosis. Table 2 compares the performance of the random baseline and the different models: Logistic Regression, 
Random Forest, XGBoost (weighted), and XGBoost (unweighted). The random baseline makes only positive 
predictions and as expected has an accuracy equivalent to the 59% prevalence of positive test results in the dataset. 
All the models demonstrate accuracy levels greater than the upper limit of the 95% confidence interval for the random 
baseline.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Model Accuracy Accuracy 
95% C.I. 

AUROC AUROC 
95% C.I. 

Random Baseline 59% 48-53%   

Logistic Regression 60% 58-62% 0.66 0.63-0.69 

Random Forest 62% 60-63% 0.72 0.70-0.74 

XGBoost  
(unevenly weighted samples) 

69% 67-71% 0.74 0.73-0.76 

XGBoost 70% 68-71% 0.74 0.72-0.76 

Table 2. Accuracy and AUROC with 95% Confidence Interval (C.I.) for different models and random selection  
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Figures 3 and 4 respectively demonstrate the Receiver Operating Characteristic Curve and Precision-Recall Curve for 
the XGBoost model with no weighting (each class is by default weighted the same and thus effectively has no weights).  
 

 
 
 
 

 
Among the models experimented, the weighted XGBoost had closest performance to the unweighted XGBoost model 
(Table 2). The main intention of the weighted XGBoost model was to see if more heavily weighting negative labels 
would improve the model’s performance on negative samples. So, in Table 3, we compare the NPV/TNR values of 
the weighted and unweighted XGBoost models to see that the values are nearly identical. The uneven weighting seems 
to have had no effect on the model’s performance on the negative test results. Because the NPV/TNR results are so 
similar, only the NPV vs TNR plot for the unweighted XGBoost model is shown in Figure 4.  
 

  
 
 
 
 
 
 
 
 
 

 
 
 
 

 
The prevalence and rate of negative results of diagnosis categories and sample types described in the Data section of 
the paper are shown in Table 3. The unweighted XGBoost model performance on these subgroups is also shown in 
this table. To evaluate performance, the data samples corresponding to each subgroup was identified for each fold. 
The AUROC for each subset was found and then averaged over all ten folds to find the average AUROC and the 95% 
confidence interval.    
 
 
 
 
 
 
 
 

NPV XGBoost TNR XGBoost TNR 
(weighted samples)  

90% 14% 13% 

95% 9% 9% 

99% 6% 6% 

Figure 3. Receiver Operating Characteristic 
(ROC) Curve 

 
 

Figure 4. Precision-Recall (PR) Curve 
 
 

Table 2. NPV/TNR values of XGBoost 
weighted and unweighted models 

 
 

Figure 4. Precision-Recall (PR) Curve 
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Figure 5 plots the top twenty features utilized by the unweighted XGBoost model relative to each other. A built-in 
feature weight function was used to identify the top twenty most important features based on the 300 decision trees 
fitted by the model (recall that the model was parameterized with n_estimator=300). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Discussion 
 
Results and Implications. When a negative or positive result can be predicted with high accuracy, it is worth 
considering replacing the actual test with the predicted result since the outcomes are likely similar. And so in theory, 
the most high-yield diagnostic ordering strategy would be to only order tests where the predicted outcome is not able 
to be predicted with high accuracy. In the case of the Heme-STAMP, where it is not just the positive/negative outcome 
but rather the pathogenic variants detected by the test itself that matters, predicted positives should still be ordered as 
part of high-yield testing even if they’re predicted with high accuracy. This study sought to understand what types of 
features, models, and subgroups would demonstrate highest performance, especially among the negative labels. We 
found that the XGBoost model did best with AUROC 0.74 (95% CI: [0.72, 0.76]). Among the various subgroups, 
model performance was highest on the subgroup with no diagnosis of leukemia or MDS (AUROC 0.74 (95% CI: 
[0.71, 0.77])) and the subgroup whose specimen type was blood sample (AUROC 0.76 (95% CI: [0.73, 0.80])). And 
we were able to obtain 99% negative predictive value at 6% specificity.  
 

DESCRIPTION Prevalence in data % Negative AUROC AUROC 95% C.I. 
        All  100% (n=2,026) 41% 0.74 0.72-0.76 
Diagnosis  
        Has leukemia diagnosis 24.4% (n=494) 35% 0.70 0.67-0.72 
        Has MDS diagnosis 11.7% (n=237) 32% 0.71 0.68-0.74 
        Has leukemia & MDS  5.3% (n=107) 19% 0.63 0.48-0.78 
        Has no diagnosis of 
leukemia or MDS 

58.6% (n=1,188) 48% 0.74 0.71-0.77 

Sample Type  
        Bone marrow sample 47.9% (n=970) 44% 0.73 0.70-0.76 
        Blood sample 42.2% (n=855) 40% 0.76 0.73-0.80 
        Other sample 9.9% (n=201) 35% 0.63 0.57-0.70 

Table 3. Prevalence of each subgroup in the total dataset (n = # samples), percentage of negative labels in 
each subgroup, and the AUROC plus the 95% confidence interval for each subgroup. 

 
 

Figure 5. Top twenty most important features based on trees fitted by the unweighted XGBoost 
Classifier 
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Interpretations. In Table 2 we can see that XGBoost models (weighted and unweighted) boasted marked performance 
over the accuracy demonstrated by the random baseline. This shows that the model is indeed identifying patterns to 
make data-driven predictions. While the XGBoost models had higher accuracy than the Random Forest model, the 
AUROC confidence intervals greatly overlapped. This demonstrates that while XGBoost’s sequential ensemble 
method improved the overall accuracy of the model, this didn’t necessarily correlate to how well the model was able 
to differentiate between the positive and negative cases. Interestingly, while the Random Forest model had similar 
accuracy as the logistic regression model, all three decision-tree-based models (Random Forest, XGBoost weighted, 
XGBoost unweighted) had higher AUROC values than the logistic regression model did. This suggests that the 
ensemble tree approach is better than the linear model approach at distinguishing between classes and potentially that 
it takes an ensemble tree approach particularly with a sequential ensemble method to see accuracy improvement over 
that of a linear model.  
 
Among the models experimented, the weighted XGBoost had closest performance to the unweighted XGBoost model 
(Table 2). The main intention of the weighted XGBoost model was to see if more heavily weighting negative labels 
would improve the model’s performance on negative samples. So, in Table 3, we compare the NPV/TNR values of 
the weighted and unweighted XGBoost models to see that the values are nearly identical. The uneven weighting seems 
to have had no effect on the model’s performance on the negative test results. Because the NPV/TNR results are so 
similar, only the NPV vs TNR plot for the unweighted XGBoost model is shown in Figure 4. Because the XGBoost 
models had the higher performance among the models but there was minimal difference between the weighted and 
unweighted XGBoost models, the unweighted XGBoost model was analyzed for the rest of the study.  
 
Among cases where the physician ordered the Heme-STAMP so they could diagnose, subtype, or monitor a 
malignancy, leukemia and MDS were the most common such malignancies. However, we can see in Table 3 that they 
compose less than 50% of all the Heme-STAMP cases. Furthermore, the average negative rate across all subgroups 
with one or both of the malignancies is about 29% which is lower than the negative rate of the subgroup that has 
neither of those diagnoses. This is equivalent to saying that the average positive rate across all subgroups with one or 
both of the malignancies is much higher than that of the subgroup with neither diagnosis. This observation matches 
the clinical scenario because for patients with one or both of the malignancies, it is either known or highly likely that 
the patient still has the malignancy, and it is often the case that the Heme-STAMP is sought to further characterize the 
variants driving the malignancy. As described earlier in the paper, our model is focused on making accurate negative 
predictions, so it is encouraging to see that the model performance on the subgroup that has neither diagnosis and that 
also has the higher percentage of negative tests is closest to the overall model performance. Model performance on 
the subgroup with both diagnoses and on the “Other sample” subgroup is highly variable likely because of the small 
size of the subgroups.  
 
In Figure 5 where we identify the top 20 features, we can see that aside from demographic information such as age 
and sex, biological markers such as diagnosis of leukemia and myelofibrosis were heavily utilized by the model. Both 
are diagnoses of hematological malignancies. Additionally, diagnoses of hypertension and thrombocytopenia indicate 
abnormalities with your blood circulation and blood work. Other hematological malignancies such as lymphoma and 
other labs related to abnormalities in blood work can be seen among these top 20 features. The model’s incorporation 
of these features that have clinical relevance provides assurance and credibility to the factors that the model is 
considering in its prediction. 
 
Case Reviews. While we were able to reach high negative predictive values on the tests the model predicted to be 
negative, qualitative analysis of some of these patients highlighted some reasons why clinicians may still choose to 
order the test. In one such case, the clinician agreed the patient was very unlikely to have an actionable mutation, but 
the patient was very anxious and had the financial flexibility to take the test even if it was unlikely to be useful. In 
another case, the clinician had realized that the patient had a certain baseline mutation and wanted to use the Heme-
STAMP to see if there were any other mutations that should be identified and used as a baseline to track changes in 
the patient’s condition. While some of these nuances may be grappled out free-text notes in the EHR, the complexity 
required to successfully do so would quickly outweigh the benefits. However, for most cases, a negative prediction 
from the model can actually lead to the same net information gain as an actual negative test without the cost of it. And 
even in nuanced cases, such as those listed above, the predicted result can still provide value to the clinician’s thought 
process and can serve as an additional piece of evidence to support their suggestions as they discuss various potential 
next step options with patients. 
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Earlier we described that predicted positives were of limited value because they only further supported the need to 
have the Heme-STAMP test run since the true value would be in the pathogenic variants the Heme-STAMP test would 
identify. But we found that there was some potential for positive predictions to demonstrate value. In some cases, the 
model predicted the result to be positive while the actual test was negative but curiously, the next Heme-STAMP test 
the patient took resulted in a positive outcome. In other cases, the model predicted the result to be negative while the 
actual test was deemed positive but a clinician looking through the report retrospectively found that the official result 
actually should have been negative. While more cases would have to be examined to truly extrapolate a conclusion 
from this observation, it still demonstrates promising potential for the model and its ability to detect underlying 
patterns.  
 
Limitations. While other medical centers may also utilize next generation sequencing techniques to characterize 
variants, the Heme-STAMP in its exact usage is unique to Stanford’s medical center. Additionally, it hasn’t been long 
since the Heme-STAMP made its debut at Stanford in 2018. These factors limit the size of the sample but also reflect 
the cutting-edge nature of learning how to effectively use these emerging testing modalities. This study demonstrates 
an approach towards effective use of advanced diagnostic testing tools by developing a machine learning based tool 
to guide clinicians in their care management, particularly in specialized fields. In such cases the various pathways 
towards and stemming from a certain diagnostic test are often convoluted but imperative to understand when building 
and interpreting the results of a model that is intended to be implemented and not simply a proof-of-concept.  
 
To mitigate the pitfalls of overfitting, the data was randomly split into a train/test set9 and the maximum depth of the 
trees and subsample ratios were kept low5. Additionally, early stopping rounds were established so that during the 
training process the model needed to demonstrate improvement in its evaluation metric (used log loss) every 20 rounds 
to continue training. This helped to ensure that the model did not continue to fit the model once it had reached a plateau 
in performance. The literature has shown that implementing early stopping rounds helps to keep overfitting at bay10. 
Due to the limitations in sample size, we allowed the model to utilize an ensemble of a high number of estimators. We 
balanced the cost this brought to training time by utilizing XGBoost instead of a different ensemble decision tree 
model because XGBoost has shown to run with better expediency than other, similar such models11.  
 
Although sample quality and tumor content are routinely assessed before sequencing, the results may not always be 
accurately determined so the effect of poor sample quality on the number of negative sequencing results cannot be 
ruled out. However, the fact that the model can predict a subset of negative results with very high accuracy suggests 
that there are clinical factors characteristic to the patient’s health condition that can be learned from the electronic 
health record. If the majority of these negative results were due to poor sample quality, there would be no underlying 
factor that the model could learn from to thus make these predictions with such high accuracy.  
 
Additionally, it is worth noting that algorithmic decision support systems such as the one described here should and 
can only be used to augment but never to replace clinical judgment. Only a well-trained physician can account for 
the complex clinical context for each individual patient. In the long-term, a combination of excellent education and 
data-driven tools will yield the best possible care for the greatest number of patients.  
 

 
Conclusion 
 
The objective of this paper was to see how well Heme-STAMP pathological variants could be predicted given 
electronic health records data. We found that by using electronic health records data readily available by the time of 
testing we could predict test outcome with an AUROC of 0.74 (95% CI: [0.72, 0.76]). Furthermore, we were able to 
identify patients that have very low probabilities of having a positive Heme-STAMP result (i.e., patients with high 
probability of having a negative result) and thus potential candidates for testing exclusion. These patients accounted 
for about 6% of all the negative tests but they could be predicted with 99% accuracy. As the number of Heme-STAMP 
tests ordered continues to increase, the number of patients for which we can prevent a low-yield test with high 
confidence will increase. This work also demonstrates promising potential to build similar prediction models for other 
types of Next Generation Sequencing tests. Additionally, because this predictive algorithm can also be used for 
patients who do not have an established diagnosis, the population it is able to provide value for will continue to grow 
even as we expand the use of NGS testing and reduce its cost. 
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