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Abstract 

Deep brain stimulation is a complex movement disorder intervention that requires highly invasive brain surgery. 
Clinicians struggle to predict how patients will respond to this treatment. To address this problem, we are working 
toward developing a clinical tool to help neurologists predict deep brain stimulation response. We analyzed a cohort 
of 105 Parkinson’s patients who underwent deep brain stimulation at Vanderbilt University Medical Center. We 
developed binary and multicategory models for predicting likelihood of motor symptom reduction after undergoing 
deep brain stimulation. We compared the performances of our best models to predictions made by neurologist experts 
in movement disorders. The strongest binary classification model achieved a 10-fold cross validation AUC of 0.90, 
outperforming the best neurologist predictions (0.56). These results are promising for future clinical applications, 
though more work is necessary to validate these findings in a larger cohort and taking into consideration broader 
quality of life outcome measures. 

Introduction 

Parkinson’s disease (PD) is a relatively common movement disorder and affects 572 per 100,000 people worldwide.1 
PD symptoms vary by patient and often include tremor, rigidity, stiffness, and trouble walking.2, 3 Deep brain 
stimulation (DBS) is a highly complex surgical intervention for PD and other movement disorders, such as essential 
tremor, and dystonia.2 DBS uses an implanted electric pulse generator to deliver electrical stimulation to specific areas 
in the brain that control movement.2 Successful electrode implantation and programming is highly complex and 
requires collaboration from several neurological and neurosurgical disciplines.4-6 Despite undergoing invasive 
surgery, many DBS patients do not experience an improvement in symptoms4-6 DBS may also worsen symptoms, 
such as those stemming from dementia7, and lead to adverse reactions, of both minor and major significance.8 

Occasionally, additional invasive surgery is required to remove or replant the pulse generator.8  

Researchers have identified many factors which affect PD progression and DBS responsiveness. Active lifestyles, 
caffeine consumption, and moderate alcohol consumption are associated with less severe PD symptoms. 9 Conversely, 
family history, pesticide exposure, rural living, and well water drinking are associated with higher rates of PD onset.10 
Interestingly, patients with left-sided symptoms experience less severe motor symptoms, while patients with right-
sided symptoms experience less severe cognitive symptoms.11-13 Reduced volume of the brain region called the 
putamen is also associated with more severe PD progression.14 Strong DBS responsiveness (defined as reduction of 
symptoms post-DBS) is associated with higher responsiveness to treatment with levodopa, lower baseline tremor 
severity, and lower age.15 These associations are often contradicted and debated between studies,16-18 a fact which 
underscores the need for a better understanding of the factors influencing PD and DBS. These challenges and the risks 
of surgical implantation necessitate a better system for predicting DBS response so that weak responders can be 
screened out prior to surgery.  

Machine learning (ML) is a computational method for identifying patterns in datasets, and has made a large impact in 
clinical settings from clinical decision support to surgical assistance.19 We are interested in applying ML to improve 
candidate evaluation and patient counselling prior to DBS. Habets et al. trained a logistic regression ML model to 
identify strong and weak responders to DBS within a population of 86 PD patients (AUC: 0.79).20 ML has also been 
used to improve DBS pulse generator programming and electrode placement.21, 22 In this study we build on existing 
PD, DBS, and ML research to construct a predictive model which distinguishes strong (likely to improve) and weak 
(unlikely to improve) responders to DBS. We incorporate a wide selection of preoperative variables informed by 
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clinically known and suspected relationships to PD and DBS. Preoperative variables are chosen to maximize the final 
model’s applicability to preoperative patient analysis. Finally, we compare our model to clinical specialists to validate 
its clinical relevance.  

Demographics Medical History Surgery UPDRS III 
Race Comorbidities: cardiac, thyroid, 

pulmonary, cancer, neurological, 
and diabetes 

Electrode placement locations Preop on/off-medication 
Coded Sex Electrode settings Postop on-medication & stim 
Age Surgery complications / details Motor Fluctuations (right upper, 

right lower, left upper, left 
lower, right total, left total, 
lip/jaw) 

Diagnosis Alcohol / Smoking / Drugs Previous surgery details 
Family History Psychiatric History Imaging 
Provider Information Medications Caudate volume (L/R) 
Year and age of symptom onset Dopaminergic Drugs & Dosages Thalamus volume (L/R) RBANS 
Symptom details and history Levodopa Daily Equivalent Pallidum volume (L/R) Word Learning (learning) 
Initial symptom side / location Anti-depressants & Dosages Putamen volume (L/R) Naming 
Current symptom side / location Anxiolytics & Dosages Accumbens volume (L/R) Judgement of Line 

DKEFS Anti-psychotics & Dosages Hippocampus volume (L/R) Figure (copy, recall) 
Fluency Stimulants & Dosages Amygdala volume (L/R) Semantic fluency 
Tower  WTAR Coding 
Color word naming  WTAR total score Story recall 
Table 1: Categorized overview of available data. Cells may represent multiple variable fields in the database. Not every variable shown is 
used in model training. Imaging volumes are reported for left and right areas (L/R). 

Methods 

Overview and Cohort 

We analyzed health records from the Vanderbilt University Medical Center (VUMC) neurocognitive research 
database. We included a cohort of PD patients who underwent DBS at VUMC. We excluded any patients who had 
missing on-medication UPDRS III benchmarks before and after surgery. The final supervised-learning cohort 
contained 105 patients. Patients who did not meet the UPDRS III benchmark requirements for inclusion were reserved 
in a secondary cohort intended for applying semi-supervised learning. We engineered binary and multicategory target 
variables to distinguish strong and weak responders to DBS. Last, we trained binary and multicategory machine 
learning classification models to predict motor improvement. To assess clinical significance, we compared our 
models’ predictions with those of trained neurologists. 

Variables and Data 

Table 1 categorizes and summarizes the data available in the VUMC neurocognitive and movement disorders 
databases. From these databases we extracted preoperative demographic, medical, medication, imaging, and 
neurocognitive variables. Surgical settings were excluded from analysis, since they do not serve an informative role 
in deciding to undergo DBS.  

This study also examines pre-to-post operative changes in neurocognitive function assessments. The neurocognitive 
assessments we analyzed include: the Parkinson’s Disease Questionnaire (PD-Q-39)23, the Unified Parkinson’s 
Disease Rating Scale (UPDRS)24, the Delis-Kaplan Executive Function System (DKEFS)25, the Wechsler Test of 
Adult Reading (WTAR)26, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS)27.  

The PD-Q-39 is a 39-question survey which scores quality of life for PD patients.23 The UPDRS is a four-part test 
which scores non-motor experiences of daily living, motor experiences of daily living, motor examination, and motor 
complications.24 UPDRS section three (UPDRS III) quantifies motor function and is divided into body subregions.24 
UPDRS III also includes body-area subscores, which quantify motor fluctuations in the right upper, right lower, left 
upper, left lower, right, left, and facial extremities. UPDRS III assessment is performed pre- and post-operation, and 
on and off medication. DKEFS is a broad set of tests which assess a variety of executive functioning areas, such as 
verbal fluency. WTAR is a cognitive test for assessing intelligence quotient in traumatic brain injury patients. RBANS 
assesses cognitive decline in several categories, such as naming, word list recall, and semantic fluency.  

Feature Engineering 

We defined the age (in years) of symptom onset to be the difference between date of birth and date of symptom onset, 
which was obtained from the patient during clinical evaluation. We defined pre-operation symptom duration (in years) 
to be the difference between age pre-operation and age of symptom onset. We defined strong DBS response as 
improvement (score decrease) in on-medication UPDRS III preop to postop. Weak DBS response is defined as 
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on-medication UPDRS III worsening (score increase) or staying the same. We did not consider cognitive changes, 
due to lack of benchmarking data. We also defined a multicategory operation success parameter, using three classes: 
UPDRS III worsened greater than 25%, UPDRS III improved greater than 20%, and UPDRS III change between 25% 
worse and 20% better. These class boundaries were chosen to divide the cohort into three evenly sized groups, and to 
differentiate between high and low magnitude of response with as few classes as possible.  

Data Preprocessing and Feature Analysis 

We preprocessed our data by imputing missing numeric variables (henceforth features) with each feature’s mean 
value. Missing boolean and categorical features were labeled with missing-indicators. Categorical features were one-
hot encoded into boolean representations of each categorical option. Variance filtering28 was performed by robust-
scaling the feature set and filtering out any features with variance below 0.03. We chose the robust-scaling method, 
which removes the median and scales to the interquartile range, because it produces boolean and numeric variances 
on a similar scale for even comparison. Select-K-Best filtering29 was performed by scaling the feature set to zero mean 
and unit variance (standard scaling) and choosing the features with the highest DBS-improvement correlation by 
Pearson’s Chi-squared test30 (figure 1). The number of features chosen was tuned for performance, and a value of 30 
was determined to be optimal. Standard scaling was chosen because chi-squared scores are scaled relative to each 
feature and we wanted an even weighting of boolean and numeric features in the correlation analysis.  

After variance and correlation filtering, we tuned the preprocessing pipeline alongside each predictive model through 
grid search parameters. The features selected above were fed into the preprocessing pipeline without scaling, so that 
the pre-classifier scaling method could be tuned as a hyperparameter. We considered standard scaling31, minimum-
maximum scaling32, robust scaling33, and no-scaling as preprocessing options. Next, we applied the Synthetic Minority 
Oversampling Technique34 to generate 21 synthetic observations of the minority class (weak DBS-response) for an 
even class balance (63 in each class). The oversampling step’s k-neighbors parameter was tuned within the model grid 
search. Due to low data quantity (n=105), conjugate undersampling of the majority class was not applied in this study. 
Last, we considered dimensionality reduction via linear and kernel principal component analysis.35, 36 The reduction 
method and size were also tuned in the final model grid search.  

Binary Classification 

We trained and compared several supervised and semi-supervised binary classifiers. We trained four model types well 
studied in the clinical domain, including support vector, logistic regression, k-neighbors, and random forest 
classifiers.37-41 We also trained conjugate semi-supervised classifiers via pseudo-labeling on the reserved semi-
supervised cohort. Pseudo-labeling is a technique which uses a trained supervised classifier to predict targets on 
unlabeled data, so that the newly labeled data can be used to retrain a more generalizable model.42 The proportion of 
labelled to pseudo-labeled data used was 10:1; thus 11 additional patients were sampled from the semi-supervised 
cohort for pseudo-labeling.  

Models and preprocessing pipelines were analyzed via grid search with cross validation test scores averaged across 
10 stratified hold-out testing folds.43 Standard deviation across the testing folds was also collected for each metric. 
Binary metrics included the receiver operating characteristic area under the curve (AUC)44, accuracy, precision, and 
recall. The best model was selected to maximize mean cross-validation test AUC. 

Multicategory Classification 

We trained the same supervised and semi-supervised models as before, but as multiclass predictors. Models were 
analyzed with cross validation test scores averaged across 10 stratified testing folds. Standard deviation across the 
testing folds was also collected for each metric. AUC is poorly defined in multiclass problems, so we instead relied 
primarily on f1-score and mean-squared-error to evaluate the multiclass models. We also evaluated precision and 
recall scores. F1, precision, and recall scores were macro-averaged across the three classes.45 The best model was 
selected to maximize mean f1-macro. 

Clinical Performance Comparison 

With the goal of deploying a clinical model to reduce the risk of poor outcomes in DBS candidates, we compared the 
performances of our best models with trained movement disorder experts. Two board certified neurologists reviewed 
the patients and training features analyzed in this study to predict whether each patient’s motor function would improve 
after DBS. The neurologists made both a binary (will they improve: yes/no) and multicategory (in which range will 
they improve) prediction for each patient. The most accurate predictions from both neurologists were combined to 
form a neurologist-best-case prediction set.  
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We compared binary AUC, accuracy, recall, precision, and kappa scores, along with multiclass f1, mean squared error, 
precision, and recall scores. Metrics were averaged across 10 stratified held-out cross validation test sets. Multiclass 
metrics were macro-averaged between classes.  

Additional Statistical Analyses 

Two board-certified neurologists reviewed 
the results of our analyses to identify 
features of interest for further study. 
Features of interest were explored with 
two-sample independent t-tests, allowing 
unequal variances to make as few 
assumptions about the data as possible. 
From these t-tests we obtained 95% 
confidence intervals for the true 
differences in mean measures between 
groups, as well as p-value estimates of 
statistical significance. 

Results 

Summary Statistics 

1,893 (64.5%) of 2,935 total patient 
records in our database were diagnosed 
with PD.  Of those with PD, 105 (3.58%) 
patients had records of both pre- and post- 
operative UPDRS III scores. Table 2 
summarizes demographic data of our final 
cohort. Most study participants were male 
(69.5%) and white (91.4%). Black, 
Hispanic, and Asian participants made up 
4.8% of study participants. 27.6% of the 
cohort were prescribed anxiolytics, and 
38.1% of the cohort were prescribed anti-
depressants.  

Feature Analysis 

Figure 1 depicts the top-30 features by 
Person’s chi-squared correlation with 
motor improvement. Preop total and 
extremity tremor scores were highly 
correlated with DBS response. Also highly 
correlated were left putamen volume, 
symptom side, race, and histories of 
cardiac, psychiatric, and diabetic 
complications (figure 1). 

Table 3 describes the differences in 
variable ranges between the weak and 
strong response groups. Strong DBS 
responders were lower in median levodopa 
equivalent prescription range, but were 
higher in median left putamen volume, 
UPDRS III (on and off) scores, and WTAR 
scores (table 3, figure 2).  

Category Count (%) Category Count (%) 

Anti-depressants 30 (38.1%) Anxiolytics 29 (27.6%) 

Citalopram (Celexa) 12 (11.4%) Clonazepam (Clonopin) 21 (20.0%) 

Sertraline (Zoloft) 7 (6.7%) Alprazolam (Xanax) 4 (3.8%) 

Duloxetine (Cymbalta) 5 (4.8%) Lorazepam (Ativan) 3 (2.9%) 

Bupropion (Wellbutrin) 4 (3.8%) Diazepam (Valium) 1 (< 1%) 

Paroxetine (Paxil) 4 (3.8%) Race Count (%) 

Venlafaxine (Effexor) 3 (2.9%) White 96 (91.4%) 

Sex Count (%) Black 3 (2.9%) 

Male 73 (69.5%) Hispanic 1 (< 1%) 

Female 32 (30.5%) Asian 1 (< 1%) 

Table 2: Select summary statistics of count and percent of final cohort. 

 

 
Figure 1: Bar graph representing the top-30 features, ranked by chi-squared correlation 
with improved UPDRS III score.  The column variance is listed above each column. 
Features with zero variance are ignored. The white column text shows the calculated p 
value for the feature. 
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Independent two-sample t-tests allowing unequal variances found statistically significant differences in mean left 
putamen volume, UPDRS III off-medication score, UPDRS III on-medication score, and WTAR score between weak 
and strong DBS responders (p<0.01, 0.05, 0.01, 0.01, respectively). From these tests we are 95% confident that the 
true difference in feature means lay between 244 and 926 mm3, 0.4 and 8.4, 3.8 and 11.0, and 0.0 and 12.4, 
respectively, between response groups. Figure 2 shows a boxplot comparing left putamen volume between DBS 
response groups. 

Figure 3 shows boxplot comparisons of 
UPDRS III change post-DBS vs race, 
symptom side, and psychiatric status. All 
three African American patients showed 
weak responses to DBS. A two-sample t-test 
allowing unequal variances found a 
statistically significant difference in mean 
UPDRS III improvement for white and 
black patients (p<0.01). From this test we 
are 95% confidence that the true difference 
in mean UPDRS III improvement between 
these groups lays between 3.9 and 9.9 
(white group with greater improvement).  

Patients with left-sided symptoms averaged 
higher score improvements than those with 
right sided symptoms. A two-sample t-test 
allowing unequal variances found a 
statistically significant difference in mean 
UPDRS III improvement for these groups 
(p<0.02). From this test we are 95% 
confidence that the true difference in mean 
UPDRS III improvement between these 
groups lays between 2.9 and 20.0 (left-
sided group with greater improvement).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature 

Weak Responder 

Median (IQR) 

N = 42 

Strong Responder 

Median (IQR) 

N = 63 

 

 

P Val 

Levodopa Total (mg) 1328 (954–1752) 1250 (831–1439) < 0.3 

CT Derived Brain Region Volumes (mm3) 

Left Putamen 5042 (4547–5634) 5581 (5383–5975) < 0.01 

Right Putamen 4984 (4520–5788) 5354 (5032–5740) < 0.3 

Left Accumbens 582 (527–690) 588 (533–694) < 0.9 

Right Accumbens 572 (498–647) 609 (524–678) < 0.2 

Left Amygdala 1356 (1185–1542) 1422 (1261–1700) < 0.2 

Right Amygdala 1613 (1412–1716) 1663 (1434–1869) < 0.5 

Neurocognitive Assessment Scores (score units) 

UPDRS III off-meds 37 (32–44) 42 (36–52) < 0.05 

UPDRS III on-meds 16 (11–22) 23 (18–28) < 0.01 

WTAR 32 (21–36) 37 (28–46) < 0.01 

RBANS WL Recog. 19 (18–20) 19 (18–20) < 0.15  

DKEFS SvSF -1 (-4–2) 0 (-2–3) < 0.15 

Table 3: Comparison of medians and interquartile ranges (IQR) of select features 
relative to strong and weak response groups. P values were obtained from two-
sample t tests allowing unequal variances. Strong response is defined as a negative 
change (improvement) in UPDRS III score post-DBS. Weak response is defined as a 
positive or no change (worsening) in UPDRS III score post-DBS.  

 
 
 

Figure 3: Comparison of UPDRS III score improvement after DBS, grouped by race, 
symptom side, and psychiatric status. Positive improvements indicate strong DBS 
response. Negative improvements indicate weak DBS response. 

Left Putamen Volume vs. 
DBS Response 
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Figure 2: Boxplot of DBS outcome vs 
size of left putamen area in brain. 
Strong response is UPDRS III 
improvement (score decrease). Weak 
response is UPDRS III worsening 
(score increase). 
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Patients with untreated psychiatric conditions averaged lower improvements in UPDRS III score than those with 
treated psychiatric conditions. From our two-sample t-test we are 95% confident that the true difference in mean 
UPDRS III improvement between these groups lays between 1.1 and 10.6. However, we did not find sufficient 
evidence that there is a difference between these groups (p<0.2).  

Classification Results 

Table 4 shows the cross-validated performance metrics for our best optimized binary and multicategory models. The 
highest AUC binary model was a supervised support vector classifier (AUC 0.90). The multicategory model with the 
highest performance was a logistic regression with pseudo-labeling (f1-macro: 50.9, MSE: 0.68). Table 4 also 
compares our best performing models against the performance of the neurologists. The binary and multicategory 
models both outperformed the neurologists and neurologists-best-case (best-neurologist AUC: 0.560, best-neurologist 
f1-macro: 0.264). Table 5 compares the Cohen kappa agreement scores between the best binary model, neurologist A, 
neurologist B, and neurologist-best-case. 

Discussion 

In this study, we built, optimized, and analyzed eight machine learning models. Logistic regression and support vector 
classifiers seemed to produce the best fits to our data. Our models outperformed the clinical experts in a variety of 
performance metrics, suggesting that there may be a viable future for this type of tool in the clinic. The addition of 
imaging features in our analysis may have produced a significant performance improvement over similar studies which 
did not include them. In addition, we found several interesting outcome-correlations, including race, symptom-
sidedness, psychiatric status, and putamen volume. 

Model and Neurologist Predictive Performance 

 

ML Model Predictions 

Binary Predictions Multiclass Predictions 

AUC 
(σ) 

Accuracy 
(σ) 

Precision 
(σ) 

Recall 
(σ) 

F1      
(σ) 

MSE 
(σ) 

Precision 
(σ) 

Recall 
(σ) 

Support Vector 
  0.90* 
(0.10) 

80.7 
(11.4) 

72.9 
(12.7) 

86.0 
(18.4) 

50.7 
(13.9) 

  0.63* 
(0.23) 

  56.9* 
(17.8) 

  55.6* 
(13.0) 

Support Vector + Pseudo-labeling 
0.89 

(0.11) 
  81.7* 
(10.9) 

  73.5* 
(12.1) 

88.0 
(16.5) 

45.7 
(17.3) 

0.68 
(0.22) 

50.7 
(24.1) 

50.3 
(15.2) 

Logistic Regression 
0.87 

(0.10) 
72.5 

(12.1) 
65.3 

(14.7) 
76.5 

(14.5) 
50.1 

(13.8) 
0.65 

(0.22) 
53.2 

(19.0) 
52.5 

(13.9) 

Logistic Regression + Pseudo-
labeling 

0.85 
(0.11) 

74.4   
(6.9) 

66.9   
(9.0) 

78.5 
(7.4) 

  50.9* 
(12.5) 

0.68 
(0.24) 

54.7 
(16.6) 

52.8 
(13.4) 

Random Forest 
0.83 

(0.10) 
71.2 

(13.2) 
63.3 

(27.7) 
61.5 

(30.7) 
50.0 

(16.4) 
0.70 

(0.38) 
54.8 

(19.1) 
53.6 

(15.4) 

Random Forest + Pseudo-labeling 
0.76 

(0.11) 
73.0 

(10.2) 
70.0 

(18.0) 
60.5 

(23.3) 
39.4 

(15.6) 
0.94 

(0.41) 
40.6 

(18.6) 
43.9 

(14.9) 

K Neighbors 
0.83 

(0.07) 
71.5   
(9.0) 

60.2 
(12.6) 

75.5 
(27.4) 

43.7 
(20.1) 

0.86 
(0.33) 

45.7 
(25.2) 

49.7 
(17.0) 

K Neighbors + Pseudo-labeling 
0.77 

(0.12) 
69.5 

(13.5) 
58.7 

(15.7) 
72.5 

(28.4) 
37.4 

(17.4) 
0.93 

(0.40) 
42.1 

(23.0) 
42.5 

(14.2) 

Neurologist Predictions         

Neurologist A 
0.51 

(0.08) 
59.3   
(8.4) 

60.5   
(5.3) 

92.1 
(10.9) 

19.7 
(8.0) 

1.48 
(0.30) 

26.7 
(14.2) 

17.7 
(6.3) 

Neurologist B 
0.44 

(0.09) 
50.4   
(9.8) 

56.0   
(6.2) 

77.6 
(13.3) 

23.0 
(10.0) 

1.40 
(0.42) 

31.9 
(14.6) 

19.7 
(9.4) 

Neurologist Best Case 
0.56 

(0.09) 
64.0   
(7.3) 

63.6   
(5.3) 

95.5* 
(6.9) 

26.6 
(12.2) 

1.24 
(0.41) 

34.5 
(18.0) 

23.9 
(10.4) 

Table 4: Comparison of tuned classifiers’ and neurologists’ cross-validated performance metrics. Metrics are averaged across 10 hold-
out stratified testing folds. Standard deviation (σ) across these folds is shown in parentheses. AUC is reported on a 0 to 1 scale (higher 
is better). Accuracy, precision, recall and f1 are reported as percentages (higher is better). Multicategory precision and recall scores are 
macro-averaged across classes. MSE (mean-squared-error) is unbounded (lower is better).  

*The best scores and models are marked with single asterisks. 
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Our strongest binary classification model outperformed the trained neurologists. The strongest multicategory 
classification model achieved lower performance, yet still outperformed the neurologists. In both cases, the 
neurologists achieved high recall scores, but low AUC and f1 scores, suggesting a tendency to overpredict strong DBS 
response (predicting ‘strong response’ for every patient in the binary case yields 100% recall). The low kappa interrater 
agreement scores between neurologists underscore the clinical difficulty in predicting DBS response. One possible 
explanation for the discrepancies between the neurologists is that they would not typically make predictions based on 
a binary indication of change in UPDRS III. Rather, neurologists consider a host of factors around motor fluctuations, 
medication responsiveness, and quality of life. Our study used a best-case agreement scheme to generate a set of the 
strongest predictions from our two board-certified neurologist-reviewers. Future analyses may benefit from an 
additional expert reviewer, as an odd number of reviewers would permit a majority-voting scheme to generate the 
best-case predictions.  

Our best-fit binary model’s results rival those of previous 
ML studies in this arena.20 One major difference in our 
approach is the inclusion of imaging data into our predictor. 
Despite the performance improvement, imaging features are 
more difficult to obtain, and future end-users may prefer a 
tool which does not require them. These findings highlight 
the challenge of balancing performance with user-
friendliness. 

This study found a significant positive correlation between 
larger left putamen volumes and positive DBS response. 
Interestingly, other studies have noted decreased size and 
grey matter volume of the putamen in Parkinson’s and other 
neurodegenerative disorders.14, 46 Further, research has 
shown that targeting the putamen with DBS improves motor 
fluctuations.47 It is possible that a larger putamen is easier to 
target with DBS, or that patients with larger putamen 
regions have less severe symptoms. The exact link is between DBS, tremor, and the putamen, is unknown but the 
limited research available suggests that a connection is probable. The differences observed in left and right putamen 
size significances may be due to differences in symptom-sidedness and/or surgical implant sidedness.  

There was a strong correlation between race and DBS response. All three African American patients in this study 
experienced worsened motor symptoms. Additionally, one out of one Asian participant experienced worsened tremors. 
The small number of nonwhites in the study (5) makes it challenging to accurately analyze the impact of race on DBS 
response. Other research has indicated a lower prevalence of PD in African-Americans and Latinos, as compared with 
whites.48 These differences are believed not to be related to age, sex, income, insurance, or healthcare utilization, but 
rather biological or other differences.48 More longitudinal data are needed to thoroughly explore the interesting 
relationships between race and DBS response. 

The difference in symptom sidedness and outcome may be related to differences observed in PD progression between 
symptom sidedness groups. Many studies have noted less severe cognitive symptoms in patients with right-sided 
symptoms and less severe motor symptoms in patients with left-sided symptoms.11-13 Our study noted motor outcome 
favorability for left-sided patients, which is consistent with the general observation of less severe motor outcomes in 
left-sided PD patients. 

One limitation of our study is that we only included motor symptom scores (UPDRS III) as success benchmarks, while 
other studies have included broader features related to quality of life. For example, Habets et al. defined strong 
response relative to changes in UPDRS II, III, and IV.20 UPDRS II measures PD difficulties in daily life and UPDRS 
IV measures complications of therapy, while UPDRS III only measures motor fluctuation severity.24 Management of 
motor fluctuations is a major motivating factor in choosing to undergo DBS, so changes in their severity are a 
reasonable benchmark for DBS response. Further, we were able to gather a larger training cohort by only requiring 
UPDRS III measurements, which are more regularly recorded in our database. If we had access to more data, we 
would have liked to have included benchmarks from the PD-Q-39, UPDRS II, or UPDRS IV, which measure factors 
beyond motor symptoms in PD patients.23 

Prediction Agreement Scores 

       Comparison Pair Kappa Score 
Model Neurologist A < 0.1 

Model Neurologist B < 0.1 

Model Neurologist Best Case < 0.1 

Model Correct Labels   0.6 

Neurologist A Neurologist B   0.2 

Neurologist A Neurologist Best Case   0.7 

Neurologist A Correct Labels < 0.1 

Neurologist B Neurologist Best Case    0.4 

Neurologist B Correct Labels < 0.1 

Correct Labels Neurologist Base Case < 0.1 

Table 5: Cohen Kappa agreement scores for each pair of binary 
predictions and true labels. Higher scores indicate higher levels of 
agreement. 
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Another limitation of this study is the lack of an external validation test set. We chose not to withhold a final test set 
due to the small size of our dataset (N=105) which could easily become overfit if the sample size were further reduced. 
We validated our results with 10-fold stratified cross validation, providing an optimistic estimate of our model’s fit.  

Conclusion 

Our predictive model produced a clinically significant performance improvement. These results are very promising 
for the future of DBS candidate evaluation, counselling, and expectation-setting. More work is necessary to validate 
these findings in a larger cohort and taking into consideration broader quality of life outcome measures. However, if 
these models can be further refined and validated in larger cohorts, it may be possible to deploy such a tool in the 
clinical setting to better support DBS candidate counselling, evaluation, and expectation setting.  
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