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Abstract

Clinical notes are an efficient way to record patient information but are notoriously hard to decipher for non-experts.
Automatically simplifying medical text can empower patients with valuable information about their health, while sav-
ing clinicians time. We present a novel approach to automated simplification of medical text based on word frequencies
and language modelling, grounded on medical ontologies enriched with layman terms. We release a new dataset of
pairs of publicly available medical sentences and a version of them simplified by clinicians. Also, we define a novel
text simplification metric and evaluation framework, which we use to conduct a large-scale human evaluation of our
method against the state of the art. Our method based on a language model trained on medical forum data generates
simpler sentences while preserving both grammar and the original meaning, surpassing the current state of the art.

Introduction

Making medical information available for patients is becoming an important aspect of modern healthcare, but the
frequent use of medical terminology makes it less accessible for patients/consumers. There is a trade-off between
promoting more “patient-friendly” medical notes1 and the efficiency of clinicians who often prefer writing in short-
hand. This is an opportunity for automation, as Natural Language Processing (NLP) and Natural Language Generation
(NLG) techniques have the potential to simplify medical text and thereby increase the accessibility to patients while
maintaining efficiency.

Text simplification in the general domain has improved greatly with the introduction of new deep-learning methods
borrowed from the field of Machine Translation2. However, the challenges in medical text simplification are partic-
ularly focused around explaining the abundant terminology, much of which is in Greek or Latin3. This is why most
efforts in the field are concentrated around the use of a mapping table from complex to simple terms4, 5. While the
task of language simplification is not new, there are very few datasets specifically built for it6. In the case of medical
text simplification, the community has not yet been able to use a common benchmark due to data access constraints5.
Perhaps, the only resource that comes close is a medically themed subset of Simple Wikipedia4, 7. In the context
of clinical notes, medical accuracy and safety are of utmost importance, which makes consistent evaluation a strong
requirement for sustainable improvements in the field.

We present a medical text simplification benchmark dataset of 1 250 parallel complex-simple sentence pairs based
on publicly available medical sample reports. Furthermore, we propose a novel approach to lexical simplification
for the medical domain, which uses a comprehensive ontology of medical terms and their alternatives, and a novel
scoring function that combines language model (LM) probabilities and word frequencies into one unified measure.
We conduct a human evaluation to validate our method and find that unbounded, left-to-right LMs trained on medical
forum data achieve the best results on our benchmark dataset. Finally, we make the source code for our method, and all
materials necessary to repeat the human evaluation, available on GitHub1. While evaluated in the medical domain, this
approach can be abstracted into other domains by utilising an appropriate alternative ontology and suitable language
model training data.

Our contributions are the following: a dataset of simplified medical sentences, a new approach for text simplification,
an evaluation framework for text simplification, and a model that generates simpler, grammatically correct sentences
with their original meaning preserved.

1https://github.com/babylonhealth/laymaker
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Related work

General text simplification. Initial efforts on automatic text simplification use Phrase-based Machine Translation
(PB-MT) methods8 driven by the availability of two resources: the open-source framework Moses9 and the Simple
English Wikipedia dataset10. These early PB-MT systems perform well, but remain too careful in suggesting simpli-
fications. Later work provides extensions that address some of these issues — deletion11 and Levenshtein distance
based ranking12. Stajner et al. (2015)13 provide an insight into how much of an effect the size and the quality of the
training data has on the performance of the MT systems.

Machine translation algorithms trained on parallel monolingual corpora, such as the Newsella2 parallel corpus, have
shown great promise in recent years14, combining, ideally, lexical and syntactic simplification. Nisioi et al. (2017)15

use the OpenNMT package16 to simultaneously perform lexical simplification and content reduction. Sulem et al.
(2018b)17 show that performing sentence splitting based on automatic semantic parsing in conjunction with neural
text simplification (NTS) improves both lexical and structural simplification.

Medical text simplification. A complex vocabulary is typically the main hindrance to understanding medical text,
and is therefore the main target for simplification18. Fortunately, there are numerous medical ontologies containing
multiple ways of expressing the same medical term, often including an informal, layman alternative19, 20. Using these
ontologies to replace complicated words with more common ones is a recurring theme in medical text simplifica-
tion4, 5, 21. Abrahamsson et al. (2014)21 show a preliminary study on a method that replaces specialised words derived
from Latin and Greek with compounds from every-day Swedish words, and achieve encouraging results on readability.
Shardlow et al. (2019)5 use existing neural text simplification software augmented with a mapping between complex
medical terminology and simpler vocabulary taken from the alternative text labels of SNOMED-CT. Their simplifica-
tion method has an increased understanding among human evaluators based on a crowd-sourced evaluation process.
Van den Bercken et al. (2019)4 use a neural machine translation approach that is aided by a terminology–mapping
table that decreases the medical vocabulary in the (complex) source text.

Despite these efforts, the field still lacks a benchmark dataset based on real medical data as well as accessible open
source medical baselines; the exception being the small, medically themed subset of Simple Wikipedia provided by
Van den Bercken et al. (2019)4. The main drawback of this corpus is that it tends to simplify sentences by omitting
some of the information, which is not a viable method in the context of clinical notes. Medical data is highly sensitive
and even its use for research purposes is strictly regulated and often difficult. Therefore a new medical data resource
is bound to have a great impact and move the field forward, as it has happened in the past22, 23.

Dataset

The MTSamples dataset comprises around 5 000 sample medical transcription reports from a wide variety of speciali-
ties uploaded to a community platform website3. However, publicly available annotations are limited to only include
high-level metadata, e.g. the medical speciality of a report.

We create a parallel corpus of clinician-simplified medical sentences on the basis of the raw MTSamples dataset. We
pre-process the entire original dataset by tokenising all sentences and expanding abbreviations based on a custom list
of common medical ontologies compiled by clinicians. We then review and exclude sentences that have too little
context (i.e. are confusing or ambiguous to a clinician) or grammatically incorrect. Finally, three clinicians (native
British English speakers) create a new version of each sentence using layman terms, ensuring consistency of both
structure and medical context and accuracy. Only one simple sentence is generated for each original sentence for
which simplification is possible. The resulting dataset contains 1 250 sentence pairs, of which 597 (47.76%) have
been simplified. The remainder have been left unchanged because they could not be further simplified. The average
number of tokens in the original sentences is 66.96, and in the simplified sentences 68.60.

We divide the data into a 250 sentence development set and a 1 000 sentence test set.

2https://newsela.com/data
3https://mtsamples.com
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Figure 1: A flow diagram of the simplification algorithm.

Medical ontologies

Recognising concepts and subsequently linking with a medical ontology are common medical NLP tasks necessary for
higher level analysis of medical data24. Many semantic tagging systems use the labels (text representations) defined as
part of the ontologies to recognise possible instances of the entities in the text. Typically, every concept has a primary
official label as well as at least a few alternative labels. Ideally these labels should be interchangeable; thus, they can
be used to replace more complicated labels with layman alternatives.

In order to maintain good coverage of both medical terms and layman terminology, we select three state-of-the-art
medical ontologies for creation of our phrase table. SNOMED-CT is one of the most comprehensive medical termi-
nologies in the world, and is also available in different languages. As of the January 2019 release, it comprises 349 548
medical concepts, covering virtually all medical terminology used by clinicians. We also include the Consumer Health
Vocabulary (CHV), the purpose of which is lexical simplification25, and the Human Phenotype Ontology (HPO), which
is a standardized vocabulary of phenotypic abnormalities encountered in human disease, and also contains a layer of
plain language synonyms26.

We create a vocabulary of medical terms (named entities) based on the labels of concepts from these ontologies —
approximately 460 000 labels from 160 000 concepts. For example, the concept label “Otalgia” has alternative labels
“Pain in ear” (Snomed), “Earache” (CHV), and “Ear pain” (HPO). To produce it, we align the ontologies using the
union-find algorithm27 and discard duplicate labels, as well as those without alternatives, as they cannot contribute to
the simplification process.

Lexical simplification

Lexical text simplification looks to identify difficult words and phrases and replace them with alternatives based on
some measure of simplicity. Word frequency over a large amount of text is often chosen as this measure and has been
used to both identify and replace candidates4. The probability score of a sentence based on some language model has
also been used to rank candidates28. Additionally, in the medical domain, terminology words are often assumed to be
the main target of lexical simplification4, 5. We propose a new approach to medical lexical text simplification, which
uses a vocabulary based on a medical ontology (see Section ) to identify candidates. It then ranks each alternative
using a linear combination of word frequency and the sentence score produced by a language model. After completing
the replacement and ranking steps for each medical term (of one or more words) in an input sentence, the process is
repeated until no further changes are suggested. Figure 1 shows a high-level view of the algorithm.

Candidate ranking

The main task of lexical text simplification is to make the overall sentence simpler, so a ranking function should
aim to provide the simplest replacement for each entity. However, this introduces a second challenge – maintaining
correct grammar after the replacement. A good ranking function should therefore optimise for both the simplicity and
grammaticality of the result.

Word frequency is a strong indicator for simplicity29 as it directly measures how common a given word is. However,
there are different approaches to how it is utilised for multi-word expressions. Common approaches include taking the
average5, the median, or the minimum word frequency. We choose the minimum, under the assumption that the least
frequent word in the sequence drives the overall understanding of the sequence. For example, consider the candidates
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otalgia of ear, and earache. An average or median frequency would score option 1 as simpler because of the very
common word of, whereas the minimum word frequency would score option 2 as more frequent. To calculate the
word frequencies (WF ) for a given set of candidate labels, we use the wordfreq python package4 which provides word
frequency distributions calculated over a large general purpose corpus.

P (w) =
C(w)

|W |

where C(w) is the number of times the word occurs in the corpus and |W | is the number of words in the corpus. Given
a sequence, such as heart attack, composed of words w1. . .wk we calculate its word frequency score, WF , as

WF (w1. . .wk) = minki=1 ln (P (wi) + ε)

As we seek to combine this probability with language model scores, it makes sense to convert it to a logarithmic scale
to avoid computational underflow. For the same reason, we introduce Laplace smoothing30 through the addition of the
constant ε (10−10).

Language models have made impressive strides in recent years, showing that they are capable of generating complex
syntactic constructions while maintaining good grammar and coreference31, 32. We argue that the latter quality makes
them a good predictor of grammatical correctness. Given that lexical simplification relies on the replacement of a
recognised span from the sentence with a simpler one from a vocabulary, language models can be used to determine a
score for how well a new term conforms to the grammar of the sentence.

To calculate this score we train a language model on a dataset of 160 000 original, top-level posts (1.8M sentences),
scraped from the Reddit’s AskDocs5 forum. This dataset contains sentences which are largely medical and therefore
will have the necessary vocabulary, while its language style is predominantly layman since the top post in a thread is
usually written by a non-expert looking for medically-related information.

Given a sequence of words w1. . .wn and a language model, we can estimate the likelihood of the sequence as the
log-probability of each word occurring given all preceding words in the sentence:

ln P̂ (w1. . .wn) =
1

n

n∑
i=1

lnP (wi|wi−1, . . ., w1, 〈s〉)

where 〈s〉 is the start symbol and n the number of tokens in the sequence. We normalise by the number of tokens n to
account for replacement terms of different length, e.g. dyspnoea and shortness of breath. The language model gives
a signal for how appropriate and grammatically correct the replacement term in the given sentence is. Table 1 shows
both the language model LM and frequency WF scores for the term replacements of myocardial infarctions. In our
example, the LM scores heart attacks (notice the plural) above heart attack given the context Patient had multiple.
Given the frequency score (WF ) of a replacement term (Ti) and the language model score (LM ) for its corresponding
replacement sentence (S′i), we define the final score as a linear combination of the two:

Score(Ti) = αLM (S′i) + (1− α)WF (Ti) (1)

We then select the term with the highest score. The parameter α ∈ [0, 1] acts as a regulariser and can be fine-tuned on
a separate dataset. When α = 0, the score is entirely driven by WF . When α = 1, the score is entirely driven by LM .
We select suitable α values on the development set.

Simplification algorithm

A comprehensive vocabulary often results in overlapping candidate spans. For example, in the sentence Patient has
lower abdominal pain, the following 5 spans match an entity: lower, abdominal pain, abdominal, pain, and lower

4http://pypi.org/project/wordfreq/2.2.1
5https://www.reddit.com/r/AskDocs/
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Table 1: LM and Frequency scores for alternative labels
of myocardial infarctions.

Candidate LM Freq.
Patient had multiple... Score Score
myocardial infarctions -5.45 -14.32
heart attack -4.38 -9.05
heart attacks -3.91 -9.05
mies -6.09 -14.34
myocardial necrosis -6.13 -14.23

Table 2: An example of the language model (LM) conver-
gence.

Iteration Sentence
Original hyperlipidemia with elevated triglycerides .
Iteration 1 elevated lipids in blood in addition to high

triglycerides .
Iteration 2 excessive fat in the blood with high triglyc-

erides .

abdominal pain. In the case where two or more spans overlap or one is subsumed by the other, the algorithm takes
a greedy left-to-right processing approach. It ranks the spans in order from left to right, prioritising longer spans and
ignoring all spans that have any overlap with an already processed span. Additionally, it is fairly common for a sentence
to contain more than one non-overlapping medical terms. For example, consider the artificial sentence: Patient has
a history of myocardial infarction, tinnitus, otalgia, dyspnoea and respiratory tract infection., which has multiple,
non-overlapping spans suitable for replacement. When constructing candidate sentences to score, replacing only one
complex term while leaving the rest of the sentence unchanged yields a sub-optimal score. The optimal approach
would be to perform an exhaustive search of all possible combinations within the sentence. Given n terms, and r
replacements per term on average, exhaustive search would require rn combinations, i.e. exponential in the number
of terms in the sentence. Rather than introduce this computational cost, we instead consider each term independently
of the others. After simplifying all of them, we repeat the extract-and-replace process (see Figure 1) until no further
change occurs, i.e. until convergence (see Table 2). This reduces the time complexity to n · t, where t is the number of
iterations to reach convergence. We cap the number of iterations t at 5, as our experiments show only 1 out of 1 000
sentences to ever reach this many iterations. In practice, we find that most sentences converge after one iteration, with
a median of 1 iterations and an average of 1.19.

Experimental setup

As described in Section , our method requires a language model to score alternative terms. To assess the best model for
this purpose we train three different language models. Next, we fine-tune α for each of them and proceed to measure
their respective success against the human-generated reference. The language models we select are:

• ngram — a trigram language model built with KenLM6 and trained on Reddit AskDocs;

• GPT-1 — a neural language model33 trained on Reddit AskDocs;

• GPT-2 — a neural language model32 pretrained only on generic English text. We don’t fine-tune this model to
evaluate whether general-purpose language models are better at choosing layman alternatives.

In order to evaluate our approach, we compare it against three methods from the literature:

• NTS — Nisioi et al. (2017)15 train an encoder-decoder on Simple Wikipedia, which contains a proportion of
medical sentences;

• ClinicalNTS — Shardlow et al. (2019)5 augment the system by Nisioi et al. (2017)15 with a medical phrase
table, which is the current state of the art for clinical text simplification;

• PhraseTable — a simple term replacement system based on the phrase table from Shardlow et al. (2019)5,
which we consider our baseline.

The α parameter introduced in Equation 1 regulates the ratio of the language model and the word frequency score used
for scoring a replacement term. A held-out development set of 250 sentences is used for tuning the α parameter for
each of our models. For this purpose we use the automatic metric SARI28, as it intrinsically measures simplicity by
comparing the model output against both the human reference and the input sentence. We perform grid search on the
α space (0 to 1) for each model (see Figure 2) and select the top α to be used in the final evaluation.

6https://github.com/kpu/kenlm
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Figure 2: Grid search results for α values between 0 and 1 with a step of 0.05. Additional tests with step 0.01 were
conducted for values between 0.90 and 1. The best performing α values for each model are 0.70 for the ngram, 0.90
for GPT-1, and 0.60 for GPT-2.

Traditional evaluation metrics

There are three general evaluation approaches for simplification that have been tried in the past:

• BLEU score34 is one of the standard metrics of success in machine translation and has been used in some cases
for simplification35 as it correlates with human judgements of meaning preservation.

• SARI is a lexical simplicity metric that measures the appropriateness of words that are added, deleted, and kept
by a simplification model4, 15.

• Human evaluation, either through dedicated annotators or crowd-sourcing, indicating whether the generated
sentences are considered simpler by the end users.

Both SARI and BLEU are intended to have multiple references for each sentence to account for syntactic differences
in the simplified text. As we only have one simplified reference for each original sentence, these metrics are likely to
be somewhat biased to a particular way of expression. Therefore, conducting a human annotation process can bring
additional reassurance to the evaluation process.

Human annotation

We design a human evaluation process in the form of a crowd-sourced annotation task on Amazon Mechanical Turk
(MTurk)36. The goal of the task is to determine whether a simplified sentence is better than the original. Celikyilmaz et
al. (2020)37 identify the two most common ways to conduct human evaluation on generated text: (i) ask the annotators
to score each simplified sentence independently with a Likert scale, (ii) ask the annotators to compare sentences
simplified by different models. We experiment with both methods and decide to opt for the latter, which produces
more consistent results, as also shown by Amidei et al. (2019)38. For this purpose, we create sentence pairs from each
original sentence (marked as A) and either a sentence simplified by the model or the gold simplification provided in
the dataset (marked as B). We use the following four categories:

1. Sentence A is easier to understand. 2. Sentence B is easier to understand.
3. I understand them both the same amount. 4. I do not understand either of these sentences.

Often, the simplified sentence generated by the models is identical to the original sentence. To save annotation re-
sources we annotate such pairs only once and extrapolate the annotation to all models. MTurk provides little control
over the reading age and language capabilities of the annotators, so we have to account for some variability in the
annotation. Therefore, all sentence pairs are annotated 7 times by different annotators. In total, the annotations com-
prise 20 965 sentence pairs derived from 2 995 unique ones. Finally, we use the option of selecting only “master”
annotators7 for the task, as it is difficult to judge the quality of the work of particular annotators. We choose turkers

7Master annotators are annotators whose work has not been rejected by task requesters for some period of time.
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Table 3: Human judgement counts for sentence pairs from the test set for all models and the reference human sen-
tences. S: the generated was simpler; F: the original was simpler; E: both of equal complexity; N: cannot understand
either; U: was not changed by the model/human reference; SG simplification gain as defined in Equation 2. Bold
indicates best model. Scores in SG are significant (p < 0.05)

S F E N U SG
Human 1 730 273 904 40 4 053 0.21
n-gram 1 452 1 004 1 732 110 2 702 0.06
GPT-1 1 404 747 1 736 117 2 996 0.09
GPT-2 1 372 1 077 1 661 118 2 772 0.04
NTS 587 855 1 022 98 4 438 -0.04

ClinicalNTS 1 483 1 597 404 93 3 423 -0.02
PhraseTable 2425 2 759 269 98 1 449 -0.05

without medical experience, as opposed to medical professionals, because they are a good representation of the end
users of such system. We assume that the human reference should both succeed more often and fail less often than any
of the models. We measure the quality of the models with a Simplification Gain SG that we define as the difference
between successes S (option 2.) and the failures F (option 1.), normalised by the total number of pairs, T :

SG =
S − F
T

(2)

Results

We count all judgements of the same category for each model and the human reference, and present the results in
Table 3. Additionally, based on these counts we calculate the simplification gain SG as described in Equation 2. We
can make the following conclusions based on this data:

• the human reference is very rarely more complex than the original, which makes a considerable difference in
its Simplification Gain, as opposed to most of the models, which seem to be prone to this kind of error (see
columns F and SG);

• based on the Simplification Gain in SG, the GPT-1 model yields the best performance. We believe this is due
to: (i) having access to the entire context (as opposed to n-gram), which makes it cautious about simplification,
and (ii) being more focused on medical terminology due to its training set (as opposed to GPT-2);

• the methods we compare against have a negative Simplification Gain, meaning the number of failures exceeds
the number of successes. General-purpose NTS is less eager in its simplification (column U in Table 3), which
could be explained by the divergence between its training set (Simple Wikipedia) and our test set (Clinical
Notes). Both ClinicalNTS and PhraseTable overcome this by applying a medical phrase table (see Section 6 for
more details), which triggers more medical replacements. ClinicalNTS has higher Simplification Gain overall
compared to general purpose NTS, which is to be expected, but still fails more often than succeed;

• A possible explanation for the high number of successes of NTS and ClinicalNTS lies in their aggressive removal
of phrases, which makes them easier to understand, but at a considerable loss of information. Both systems use
a model trained on Simple Wikipedia, which very often simplifies sentences by removing words or phrases. For
example, the original sentence: “It has normal uric acid, sedimentation rate of 2, rheumatoid factor of 6, and
negative antinuclear antibody and C-reactive protein that is 7.” is simplified into “It has normal uric acid.”

We also report the scores for the most commonly used automatic metrics in the field, BLEU and SARI, though we
stress that these scores are unreliable due to (i) their limitations as shown by Sulem et al. (2018)39 — they only use
surface level syntactic features, and (ii) they perform better with multiple references and we only have one. The NTS
baseline is still performing poorly in most metrics except for BLEU, which is likely due to its conservative approach
resulting in a large number of unchanged sentences that likely overlap with the reference sentences.
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Table 4: Reference-based metrics. BLEU and SARI
calculated using the human-generated reference
sentences.

BLEU SARI
n-gram 66.31 33.40
GPT-1 68.19 33.57
GPT-2 66.45 33.40
NTS 70.17 27.67

ClinicalNTS 68.22 30.14
PhraseTable 53.37 27.70

Table 5: Grammaticality and meaning preservation scores
over a sample of 1250 generated sentences. G1: no errors;
G2: minor errors; G3: major errors; M: the meaning is
preserved. Bold implies best result.

G1 G2 G3 M
n-gram 65.2% 25.6% 9.2% 93.3%
GPT-1 75.4% 17.8% 6.8% 93.4%
GPT2 69.3% 21.6% 9.1% 89.6%
NTS 75.4% 9.6% 15% 63.1%

ClinicalNTS 43.4% 42% 14.4% 60.4%
PhraseTable 31.6% 34.8% 33.6% 60.8%

To test the impact of convergence, we perform an ablation study on all our models. We take all the sentences
that require more than one iteration to converge (around 10% of the dataset) and perform the same human annotation
described in Section . Our results show that convergence improves SG for all models except GPT-2 by reducing the
number of miss-simplified sentences. Empirically we find that the GPT-2 tends to increase the length of the sentence
at each iteration, falling into a loop typical for language models.

Grammaticality and meaning preservation

Asking end users to rank two sentences in order of simplicity is not enough to judge whether a generative model is
performing well. A model should be penalised if the simplified sentence is grammatically incorrect or if it has altered
the meaning of the original sentence. To test these two criteria, we take a random sample of 1250 simplified sentences
from all models from the test set. We ask a linguist to assign one of three grammaticality categories: no errors (G1),
minor errors (G2), and major errors (G3). We then ask a clinician to mark sentences from the same sample where the
meaning has changed in any way.

Table 5 summarises our findings. It clearly shows the contributions of a good language model in both preserving
grammar and meaning. Our method, which is informed by language models, scores highest in both criteria. NTS,
which uses a language model decoder, is quite successful in preserving grammar but less successful in preserving
meaning. This is likely due to its training set, which encourages the model to remove complex phrases to simplify a
sentence. ClinicalNTS and PhraseTable, which rely on a hard-coded phrase table of medical substitutions, score lower
both in grammaticality and meaning preservation.

Conclusion

In this paper, we present a novel approach to medical text simplification in a effort to empower patients with valuable
information about their own health.

First, we address the lack of high quality, medically accurate, and publicly available datasets for evaluating medical
text simplification by creating such a dataset with the help of medical professionals. Second, we propose an evaluation
framework for assessing the quality of simplification algorithms in the medical domain, including an experimental
setup for crowd-sourced human evaluation and a metric, which we call Simplification Gain, to compare the outcomes.
Third, we use the knowledge stored in state-of-the-art medical ontologies to construct a comprehensive ontology of
alternative medical terms, and we develop a method for simplifying medical text by extracting and replacing medical
terms with layman alternatives. To rank the alternatives, we define a scoring function that takes into account both the
frequency of the replacement term and how well it fits into the sentence. Our experiments, using crowd-sourcing, show
that our method is capable of simplifying complex medical text while retaining both its grammatically and meaning.

We show that our method surpasses the state-of-the-art systems in medical text simplification, improving on grammat-
icality and meaning preservation of the simplified sentences. These aspects are particularly important in the context of
medical text simplification, where factual correctness is paramount.
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20. Sebastian Köhler, Leigh Carmody, Nicole Vasilevsky, Julius O B Jacobsen, Danis, et al. Expansion of the human
phenotype ontology (hpo) knowledge base and resources. Nucleic acids research, 47(D1), 2018.

21. Emil Abrahamsson, Timothy Forni, Maria Skeppstedt, and Maria Kvist. Medical text simplification using syn-
onym replacement: Adapting assessment of word difficulty to a compounding language. In Workshop on Predict-
ing and Improving Text Readability for Target Reader Populations, 2014.

22. Ozlem Uzuner, Brett South, Shuying Shen, and Scott DuVall. 2010 i2b2/va challenge on concepts, assertions, and
relations in clinical text. Journal of the American Medical Informatics Association : JAMIA, 18:552–6, 06 2011.

23. Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng, and et al. Ghassemi. MIMIC-
III, a freely accessible critical care database. Scientific Data, 3(1):160035, 2016.

24. Jin G Zheng, Daniel Howsmon, Boliang Zhang, Juergen Hahn, Deborah McGuinness, James Hendler, and Heng
Ji. Entity linking for biomedical literature. BMC medical informatics and decision making, 15(1):S4, 2015.

25. Qing T Zeng and Tony Tse. Exploring and developing consumer health vocabularies. Journal of the American
Medical Informatics Association, 13(1):24–29, 2006.

26. Nicole A Vasilevsky, Erin D Foster, and et all. Engelstad. Plain-language medical vocabulary for precision diag-
nosis. Nature genetics, 50(4):474—476, April 2018.

27. Md Mostofa Ali Patwary, Jean Blair, and Fredrik Manne. Experiments on union-find algorithms for the disjoint-set
data structure. In International Symposium on Experimental Algorithms, pages 411–423. Springer, 2010.

28. Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical machine
translation for text simplification. Transactions of the ACL, 4:401–415, 2016.

29. Gustavo Paetzold and Lucia Specia. SemEval 2016 task 11: Complex word identification. In Proceedings of the
10th International Workshop on Semantic Evaluation, pages 560–569, San Diego, California, June 2016. ACL.

30. Stanley F Chen and Joshua Goodman. An empirical study of smoothing techniques for language modeling.
Computer Speech & Language, 13(4):359–394, 1999.

31. Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen, and Marco Baroni. Colorless green recurrent
networks dream hierarchically. ACL, 2018.

32. Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 1(8), 2019.

33. Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

34. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic evaluation of
machine translation. In Proceedings of the 40th Annual Meeting on ACL, ACL ’02, pages 311–318, 2002.

35. Zhemin Zhu, Delphine Bernhard, and Iryna Gurevych. A monolingual tree-based translation model for sentence
simplification. ACL, 2010.

36. Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. Amazon’s mechanical turk: A new source of inex-
pensive, yet high-quality, data? Perspectives on Psychological Science, 6(1):3–5, 2011. PMID: 26162106.

37. Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao. Evaluation of text generation: A survey. 2020.

38. Jacopo Amidei, Paul Piwek, and Alistair Willis. The use of rating and likert scales in natural language generation
human evaluation tasks: A review and some recommendations. 2019.

39. Elior Sulem, Omri Abend, and Ari Rappoport. BLEU is not suitable for the evaluation of text simplification. In
Proceedings of the 2018 Conference on EMNLP, pages 738–744, Brussels, Belgium, October-November 2018.

890


