
Launching into clinical space with medspaCy:
a new clinical text processing toolkit in Python

Hannah Eyre, MS1,2, Alec B Chapman, MS1,2, Kelly S Peterson, MS2,3,
Jianlin Shi, MD, PhD2, Patrick R Alba, MS1,2, Makoto M Jones, MD1,2,
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Abstract Despite impressive success of machine learning algorithms in clinical natural language processing (cNLP),
rule-based approaches still have a prominent role. In this paper, we introduce medspaCy, an extensible, open-source
cNLP library based on spaCy framework that allows flexible integration of rule-based and machine learning-based
algorithms adapted to clinical text. MedspaCy includes a variety of components that meet common cNLP needs such
as context analysis and mapping to standard terminologies. By utilizing spaCy’s clear and easy-to-use conventions,
medspaCy enables development of custom pipelines that integrate easily with other spaCy-based modules. Our toolkit
includes several core components and facilitates rapid development of pipelines for clinical text.

Introduction
Retrospective clinical research often relies on data extracted from electronic medical record (EMR) systems using
natural language processing (NLP) adapted for clinical language. Despite a wide range of existing solutions, code
reuse is challenging because new system development projects face the labor-intensive task of connecting isolated
modules into cohesive cNLP pipelines. Over the years, the need for reuse and reproducibility has been met with a
number of frameworks and toolkits.1 Java-based general architectures, such as UIMA2 and GATE3, have provided
a strong foundation for a number of highly successful cNLP toolkits and general purpose reusable systems such as
cTAKES, CLAMP, Leo, and HITEx4–7. As a platform-independent and straightforward programming language, Java
has been the primary environment for most cNLP applications of the last 20 years even prompting re-implementation
of tools previously written in other programming languages to improve accessibility8, 9.
While Python programming language is celebrating its 30-year anniversary, in the last few years its usage has exploded
as it had become one of the most popular languages of data science.10–14 The wider NLP, machine learning, and data
science community’s shift towards Python is fueled by its capability of interactive environments to explore data and
experiment with approaches while avoiding a common cycle of compiling code and reloading data15. The machine
learning ecosystem in Python is vibrant and growing, including state-of-the-art training methods and deep learning
models.
Until recently Natural Language Toolkit (NLTK) has been the leading platform for general text processing in Python.16

Actively supported by a dedicated team since 2000, NLTK is comprised of a number highly functional NLP libraries
for rule-based and machine learning-based text analysis. While NLTK has enabled hundreds of successful research
and educational projects, its approach to text processing as lists of strings and lack of a unifying architecture have
hindered its ability to scale to large datasets.
In contrast, spaCy* provides a robust architecture for building and sharing custom, high-performance NLP pipelines by
taking an object-oriented view of text. It is non-destructive, supports seamless integration of statistical and machine-
learning methods with rule-based NLP, and allows for the creation of custom components for specialized tasks. Pow-
ered by the strength of Cython, an optimizing static compiler for Python that generates very efficient C or C++ code,
spaCy allows achieving exceptional speed of performance. Similar to UIMA approach in Java, spaCy provides a frame-
work for modular plug-and-play construction of custom NLP pipelines. Since its inception in 2015, spaCy universe
has gained a robust, highly-active, and growing community of contributors of open source modules, state-of-the-art
models, and end-to-end systems developed with or for the framework.
Recognizing the need to adapt processing to different domains, several models and toolkits have been introduced tar-
geting specialized text, among them scispaCy that handles scientific and biomedical sublanguages17. While scispaCy
includes custom tokenization rules, biomedical concept identification, and a variety of pre-trained dependency parsing

*https://spacy.io/
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and named entity recognition (NER) models, the differences between clinical and biomedical language hamper its
ability to achieve optimal performance on clinical narrative. To confront the particular challenges posed by medical
text, a team at Virginia Commonwealth University created MedaCy, a medical text mining framework built over spaCy
to facilitate the engineering, training and application of machine learning models for medical information extraction18.
Neither scispaCy nor MedaCy provide adequate support for rule-based system development beyond the functional-
ity natively provided by spaCy. Despite a wide range of machine learning applications, rule-based algorithms still
comprise a large proportion of successful academic and commercial cNLP projects19, 20.
To bridge the gap between the existing functionality and the needs of the clinical research community for easy-to-use
clinical text processing that combines statistical and symbolic methods, a team of enthusiastic cNLP practitioners
at the Veterans Health Administration and University of Utah developed a spaCy-based library of core components
targeting medical text called medspaCy†.

Methods
Framework Overview
MedspaCy is designed to utilize spaCy’s application programming interface (API) while only minimally expanding
upon it where needed. This minimal expansion of spaCy’s API ensures each component is usable standalone or
as one part of a larger spaCy pipeline that may incorporate components from other sources. Figure 1 illustrates the
interconnection of medspaCy components into an end-to-end system through a common API. Once the toolkit reached
acceptable maturity, we made it available through PyPI with the command pip install medspacy.

Figure 1: Overview of medspaCy architecture.

All information generated by components is directly accessible through the use of spaCy’s attribute extension func-
tionality. For example, a default spaCy attribute of a named entity is accessible using ent.like num attribute, a
medspaCy attribute utilizes the custom extensions such as ent. .is negated. Attribute extensions are registered
at the Doc, Span, or Token levels, depending on the component to create a variety of useful tools for analyzing data
after medspaCy processing is complete.
The components included in medspaCy offer both a default initialization and a large number of optional customization

†https://github.com/medspacy/medspacy
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parameters. This allows components to be quick to set up, learn, and use to develop prototypes while also being fully
customizable for more specific needs. Resources, such as curated rule sets or knowledge bases, may be shared with
the community and utilized across projects. Figure 2 is an illustration of an example pipeline using medspaCy. Since
the spaCy API allows for modular components, there are many possible pipelines where users could insert alternative
components, such as scispaCy AbbreviationDetector or other spaCy-compatible rule-based or machine learning-based
modules.

Figure 2: Example of a text processing pipeline that utilizes medspaCy and other spaCy-based components.

MedspaCy Components
MedspaCy has a growing list of integrated components that allow building end-to-end systems for clinical text pro-
cessing.

Tokenization

The primary advantage of spaCy’s approach to tokenization is that it is non-destructive, which preserves all whitespace
and punctuation information enabling complete reconstruction of the original text. The major drawback of the default
spaCy tokenizer for clinical text processing is that it is not trained on clinical text. Additionally, it has a variety
of rules designed to handle text sourced online, including many rules that mitigate excess tokenization of URLs.
These rules prevent splitting sequences of alphanumeric characters and punctuation into multiple tokens. However,
URLs are relatively uncommon in clinical text but typos and using punctuation to delineate document structures are
common. The tokenizer included in medspaCy implemented custom rules to handle punctuation and inconsistent use
of whitespace that are common in clinical notes.

Sentence Detection

Due to the limited purpose of clinical language to document and succinctly communicate information about a specific
patient, sentences in clinical text are characterized by telegraphic grammar with omitted subjects and the propensity
to use long lists for present or absent conditions and prescribed medications21. Sentence segmentation in clinical
language is hindered by frequent use of templated and tabular text, abundance of concept-value pair statements, and
inconsistent use of punctuation. Since the text is meant to be read within a specific user interface of the EMR, space,
tab, and new line characters are utilized to indicate sentence or section boundaries as well as for visual indication
of grouped text, such as in case of templates and tabular text. Syntactically significant whitespace complicates the
traditional approach to text processing that ignores existence and length of whitespace in text. To correctly identify
the context of target concepts from clinical text, a clinical-domain sentence boundary detector is essential, because
many downstream components work at the sentence level. Commonly used sentence detectors trained on non-clinical
text typically do not perform well on clinical text data.22 To make medspaCy more capable of performing cNLP, we
adopted a high-performance, rule-based sentence detector for clinical text – PyRuSH, which is the Python version of
Rule-based sentence Segmenter using Hashing (RuSH)22. Relying on rules for tokenization allows easy adaptation of
the tokenizer to a new setting without extensive retraining.
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Section Detection

Clinical documentation has a well established data format for different document types. Logical Observation Iden-
tifiers Names and Codes (LOINC) Document Ontology outlines hundreds of document types that vary by subject
domains, role of the author, setting, type of service described, and document kind23. At each intersection of these
axes, a clinical document has a specific structure that is either learned through apprenticeship (medical students learn-
ing from practice) or specifically prescribed by guidelines24, 25. The same statement in different sections of the same
or different documents might have very different meanings. For example, a document type called Progress Note has
Subjective, Objective, Assessment, Plan sections, and Procedure Report has Findings and Impressions sections. De-
pending on which section it is mentioned in, a clinical condition may be experienced by a patient in the past, may be
happening at the time when the note is written, or the patient may be at risk for experiencing it in the future. These
sections may or may not be explicitly labeled with a variety of section headers fully spelled out or abbreviated.
Breaking documents into relevant sections is often a core part of cNLP, especially as documents grow in length and
complexity. medspaCy includes an implementation of clinical section detection based on rule-based matching of the
section titles with default rules adapted from SecTag26 and expanded through practice. The sectionizer contains several
other features beyond simple section title identification. If desired, the sectionizer can interact with the attributes of
entities, such as changing the temporality attribute of all entities in the “Past Medical History” section. The medspaCy
sectionizer is also capable of creating hierarchies of sections and subsections within the document and preserving them
in a traversable tree structure.

Concept Extraction

Clinical concept extraction through concept mention detection and concept encoding is one of the most prominent
tasks of clinical text processing.19 Similar to NER, concept extraction employs either manual rules or trained statis-
tical models to identify specific spans of text from a clinical document and labeling them with pre-defined clinical
concepts. Several utilities are included in medspaCy for targeted concept extraction which extend existing spaCy
rule-based functionality. Rules defining concepts specify the text pattern to be matched, semantic category, and addi-
tional metadata about a concept. In addition to integrating existing pattern-matching functionality provided by spaCy,
medspaCy incorporates additional regular expression features, such as accepting multi-token regular expressions, and
allows directly specifying entity attributes, such as temporality or standard vocabulary codes. Enabling additional reg-
ular expression matching ensures greater compatibility with existing cNLP resources and knowledge bases as regular
expressions are commonly used in other frameworks and languages.

UMLS Mapping

Clinical text processing systems frequently rely on comprehensive indexing of the narrative text to a standard vo-
cabulary. The Unified Medical Language System (UMLS)27 is the most comprehensive standard terminology that is
typically used as the basis for clinical concept extraction. Aiming to enable UMLS concept extraction with minimal
environment configuration, medspaCy adapted QuickUMLS to spaCy framework. The existing system QuickUMLS
was selected as a concept mapping solution due to its speed and matching accuracy that are comparable to other exist-
ing systems28. It allows efficient approximate dictionary matching by leveraging an implementation of the SimString
library.29 Modifications were made to QuickUMLS so that its algorithm could be contained in a spaCy component.
UMLS licensing does not allow redistribution of the databases, therefore, medspaCy is distributed with resources
generated from a publicly available UMLS sample.‡ MedspaCy documentation includes instructions on how to create
QuickUMLS resources after installation. An additional contribution of medspaCy is a better support for QuickUMLS
and its dependencies for Windows operating system. While our implementation of QuickUMLS in Windows requires
Anaconda and some additional installation steps, other operating systems such as Linux and MacOS can perform
extractions with the provided small UMLS sample immediately following installation.

‡https://www.nlm.nih.gov/research/umls/new users/online learning/Meta 006.html
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Contextual Analysis

Extracting contextual properties of clinical concepts is an essential step of typical cNLP systems. Negation, tempo-
rality, certainty, and experiencer are the most useful contextual features for entities extracted from clinical text. The
ConText algorithm30 asserts attributes by linking entities with linguistic modifiers within a contextual window, typi-
cally a sentence. Previously implemented using Python in pyConTextNLP31, the algorithm was adapted to spaCy API
with extended attributes. MedspaCy implements the ConText algorithm with a set of default rules that can be cus-
tomized as needed. ConText rules take advantage of pattern matching and also allow the user to control the behavior
of the modifier by defining properties such as directionality in the text and custom linking logic. Several attributes,
such as negation, are registered by default, but attributes can be customized by users to allow for use case-specific
semantic categories.

Utilities

Assisting with development of complete end-to-end systems, medspaCy provides a variety of utilities to support
deploying pipelines and analyzing output of text processing:

• pre- and post-processing utilities that help developers transform simple methods into components compatible
with spaCy pipelines.

• a component that converts a spaCy Doc to a dictionary-based format that is directly convertible to Pandas, SQL,
CSV, or other tabular format when added to the end of an existing medspaCy pipeline. It supports output for all
attributes and spans for entities, sections, and context.

• a pipeline controller for deploying medspaCy on large quantities of data. It facilitates batching documents on
both input and output and a wrapper that handles standard database operations through pyodbc (Python ODBC
bridge), such as creating tables and write queries given a set of desired columns, which allows medspaCy to
deploy faster.

Visualization

The visualization tools included in spaCy’s have been adapted to display the results of the integrated medspaCy
components. There are two types of visualization included (Figure 3): the first highlights extracted entities, contextual
modifiers, and section titles in the text. The second represents the ConText algorithm by drawing directed arrows
between entities and their linked modifiers. These visualizations can be used to present a model’s final output or
to explain the logic of a model. During development, visualizing intermediate results can assist with debugging.
Updating a model, testing on text, and inspecting the results with the visualizer can be done rapidly when used in an
interactive setting such as Jupyter Notebook.

Figure 3: Example of visualization using highlight and context arrows.

Use Cases
Multiple operational and research oriented projects within the U.S. Department of Veterans Affairs (VA) have utilized
medspaCy. The rapid development supported by medspaCy has been essential to several projects aiding the VA’s
COVID-19 pandemic response.
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Chief Complaint Surveillance
One of the earliest applications utilizing some of these components in a spaCy pipeline is a system which is used
for enhanced syndromic surveillance in VA. This system processes presenting symptoms recorded during emergency
department triage such as "n/v/d" (i.e. “nausea / vomiting / diarrhea”) or "c/o cp+sob" (i.e. “complains of
chest pain and shortness of breath”) to extract UMLS concepts. This pipeline has been running in an operational
capacity for biosurveillance since early 2019. It was leveraged in early 2020 in response to the COVID-19 pandemic
to identify potential patients under investigation before the existence of laboratory testing for SARS-CoV-2 or the term
COVID-19 was adopted. This pipeline performs text pre-processing using a subset of regular expression patterns from
the Emergency Medical Text Preprocessor (EMT-P)32, and maps text spans to standard vocabulary concepts using the
QuickUMLS component.

COVID-19 Surveillance
Another operational project used medspaCy to identify VA patients who have were tested for COVID-19 outside of the
VA network when no structured lab results were available33. This pipeline classifies clinical documents which likely
contain a mention of positive COVID testing so that they can be prioritized for manual chart review. Between January
1 and June 15, 2020 the system had processed documents for over 3 million patients and had resulted in over 36% of
all identified COVID positive patients being identified by this method alone. An evaluation of the system demonstrated
precision and recall of 82.5% and 94.2%, respectively. As terminology related to the virus changed over time, it was
imperative to add to concepts and patterns nearly every day. Iterative development of this system with medspaCy
permitted putting the system into practice by January 21, 2020 and has been continuously operational throughout the
pandemic, having processed over 63 million clinical documents one year after initial deployment. §

VA COVID-19 Screening
As the COVID-19 pandemic spread, VA facilities implemented standardized COVID-19 screenings for all visitors and
employees. All interactions with Veterans are logged using a specific document format that quickly became one of the
most frequent documents entered into the VA EMR in 2020. Veterans in inpatient care or community living centers
often had multiple COVID-19 screenings recorded each day.
A medspaCy pipeline was developed to identify the screening as a standalone document or as a subsection of a larger
document and then to extract up to 17 different possible screening questions and the associated responses including
community- or travel-based exposure to COVID-19, previous COVID-19 tests or diagnoses, or specific COVID-19
symptoms.
This pipeline has processed 6.8 million screening documents for 914,000 Veterans who have received a COVID-19
test. The dataset is available to VA researchers in the VA COVID-19 Shared Data Resource.34

Inpatient Nursing Templated Text Processing
Several national VA standard operating procedures have been put into operation during the COVID-19 pandemic
mandating use of standardized inpatient nursing shift assessments. While the assessments are presented to users as
forms, the data are stored as the raw text conversions of templated questionnaires with their answers, thus, much of the
information is not automatically retrievable. The medspaCy sectionizer is being utilized for the automatic extraction
of information from these semi-structured documents (Figure 4). Given an empty version of each template, a utility
module is used to automatically generate sectionizer rules. The sectionizer applies those rules to identify each question
in the template as section header and extracts of all template answers captured as the section body.

Veteran Suicide Risk and Intervention Analyses
Several capabilities of medspaCy were used to rapidly summarize insights from Veterans, family members and organi-
zations who responded to a request for information on how to improve suicide prevention. This survey was performed
as part of the President’s Roadmap to Empower Veterans and End a National Tragedy of Suicide (PREVENTS) task
force to better understand risk factors and approaches to end Veteran suicide35. A total of 9,040 open ended responses

§https://spacy.io/universe/project/cov-bsv
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Figure 4: Highlighted section headers delineate template questions with the section body as the responses when
processing semi-structured text.

needed to be analyzed and their insights summarized to allow a report of findings to be delivered to the task force
within 3 months. Several capabilities in medspaCy made this project possible within the requested deadline, such as
iterative rule development, exploratory data analysis, and visualization of text extraction. The project was also able
to leverage existing knowledge resources from UMLS, including concepts related to mental health, medication and
treatment. These insights were utilized by the task force as material to inform development of the PREVENTS35.

Homelessness and Housing Stability Identification
Social determinants of health including homelessness are important factors in patient health and are often only docu-
mented in free text36, 37. The VA partners with community organizations through the Supportive Services for Veteran
Families (SSVF) program to provide rapid rehousing and temporary financial support to veterans who are homeless
or at risk of becoming homeless38. A pipeline is being developed using medspaCy which extracts mentions of home-
lessness and housing stability from clinical texts. This information is then aggregated to infer a patient’s housing
stability over a period of time and will be used to evaluate long-term outcomes of SSVF participants and identify
at-risk individuals who could benefit from enrollment in the program.

Education
Besides supporting operational or clinical application, medspaCy’s simple interface and low barrier to entry makes it
useful for education. Local, national, and international workshops and tutorials have utilized medspaCy to illustrate
clinical text processing. A recent multi-day intensive course on clinical data science targeted to medical students used
medspaCy as part of its curriculum¶. This course introduces medspaCy in one of the first sessions so that the remainder
of the workshop can be devoted to experiential learning where students create rules and modify components to develop
systems for processing clinical documentation. A simple installation process and a common programming interface
enables students with little programming experience to quickly apply NLP to clinical data.

Future work
There are many additional components and applications possible in the next steps for medspaCy. One potential area
of development is releasing medspaCy pipelines which include components, resources, and pre-trained models for
specific cNLP tasks. These could also be created from publicly available resources such as MIMIC-III39, shared tasks
such as i2b240, or ontologies constructed during previous research. Released models could include a broad range of
clinical domains, including adverse drug event detection41, 42, infectious disease surveillance, and radiology reporting.
While most of the existing medspaCy components support rule-based systems, future work could include additional
utilities for machine learning. This could include word embeddings loaded as part of a default pipeline or utilities
for feature extraction from text. Such improvements would allow users to more fully leverage both statistical and
rule-based cNLP.

Conclusion
By improving the accessibility to high-performance NLP solutions optimized for clinical language, we aim to improve
the productivity of cNLP development and reduce development burden for projects that require the use of rule-based

¶https://github.com/Melbourne-BMDS/mimic34md2020 materials
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NLP or the integration of rules with other NLP methods. Unlocking new data elements through clinical information
extraction will enable researchers to find answers to questions previously inaccessible for investigation.
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