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Abstract

In this study we seek to determine the efficacy of using automated mapping methods to reduce the manual mapping
burden of laboratory data to LOINC® on a nationwide electronic health record derived oncology specific dataset. We
developed novel encoding methodologies to vectorize free text lab data, and evaluated logistic regression, random
forest, and knn machine learning classifiers. All machine learning models did significantly better than deterministic
baseline algorithms. The best classifiers were random forest and were able to predict the correct LOINC code 94.5%
of the time. Ensemble classifiers further increased accuracy, with the best ensemble classifier predicting the same code
80.5% of the time with an accuracy of 99%. We conclude that by using an automated laboratory mapping model we
can both reduce manual mapping time, and increase quality of mappings, suggesting automated mapping is a viable
tool in a real-world oncology dataset.

Background and Significance

Health data collected in the course of routine clinical care (real-world data [RWD]) are becoming a valuable part
of the clinical research armamentarium, complementing and/or supplementing traditional prospective studies, and
providing insights on aspects such as patterns of care or treatment effectiveness in populations underrepresented in
clinical trials."? Electronic health records (EHRs) have emerged as a key oncology RWD source, with the potential to
generate highly granular longitudinal data.’> The original purpose of EHRs however, is not research but patient care,
administration, and reimbursement. Therefore, extraction of research-grade information from the EHR may become a
multi-step process that requires optimization and quality controls.*

The utilization of EHR-derived data for research purposes involves extraction of structured and coded data, as well
as unstructured data (narrative free text entered by users at the point of care). One domain in particular that requires
significant pre-processing is that of laboratory (lab) data.>® Laboratory data is crucial in describing the longitudinal
patient journey and thus high quality laboratory data is essential in many areas of oncological research. For example,
laboratory data is necessary to understand the efficacy of a patient’s regimen or the performance of novel treatments.’
However inconsistent use of standards by laboratories and free text documentation leads to highly variable lab results
data.%8 The Logical Observation Identifiers Names and Codes (LOINC®) is a vocabulary standard used to identify
and unify lab data under a common data model, but is often inappropriately or inconsistently used in clinical day-to-
day settings.!®!! Due to this, a manual mapping process where specialists assign laboratory data to LOINC codes is
required before the data can be used in research datasets.'?

This manual mapping process, however has some shortcomings:

1. Ingestion of standardized and non-standardized lab data from multiple vendors, free text data entry at practice
sites, and abbreviations, typos, and practice-specific documentation norms lead to a potentially infinite set of
source terms.®® In our study we have found that it takes an experienced clinical terminologist between 6-8
hours to map 1000 terms manually, meaning harmonizing large amounts of laboratory data to LOINC codes is
an arduous process.

2. As with any manual process, there is inevitable error in the mapping process, in spite of having mapping guide-
lines. As any error affects the accuracy of data that will be used for research and analysis, multiple levels of
mapping review are required, further increasing the manual workload.

3. Any free text terms that come in from source data not previously harmonized are required to be mapped before
they are eligible for entry into research datasets. Depending on volume, harmonization can be a lengthy process,
reducing the data recency of datasets.
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Based on the above considerations, finding an automated approach to lower the burden and increase the accuracy of the
mapping process has direct implications on the quality of real-world research datasets.> 1>'4 As a single mapping can
affect many rows in a database, high accuracy mappings are of top importance when examining automated approaches.

Previous studies have attempted to automate LOINC mapping in a number of different scenarios. One study attempted
to use a local high quality corpus and was able to achieve a best case accuracy of 79%."> A second study that relied
on using lexical methods achieved similar accuracy.!® A more recent study trained a machine learning classifier on
a large national EHR database with noisy LOINC labels, and was able to achieve relatively high accuracy.!” The
best classifiers in this study predicted the correct LOINC code in 85% of the unlabeled data and 96% of the labeled
data by test frequency.!” More recently in a study focused on mapping COVID-19 labs to LOINC codes, a rules
based algorithm was shown to have accuracy of 97.4%, prompting further investigation into deterministic rules based
algorithms.'® Other studies have been successful at higher level grouping of laboratory data into categorical values,
but did not focus on the standardization of individual lab records.'”

To the best of our knowledge, there are no studies that have attempted to use automated LOINC mapping on a real-
world dataset actively being used for clinical research, or on an oncology-specific dataset. These properties lead us
to develop custom encoding methodologies, with the goal of high accuracy and high precision automated LOINC
mappings. We used these novel encoding methodologies to process free text laboratory data for the use in supervised
machine learning classifiers. We evaluated the ability for these classifiers to individually predict LOINC codes, as well
as the ability for groups of classifiers to jointly make predictions through ensemble learning. Any reduction in manual
mapping time or manual quality assessment work that an automated system can provide to clinical terminologists
(without compromising accuracy) is our overall measure of success.

Methods
Index Of Lab Data

This study used the nationwide, longitudinal Flatiron Health electronic health record (EHR)-derived de-identified
database. During the study period, the de-identified data originated from approximately 280 US cancer clinics (~800
sites of care). Flatiron Health creates EHR-derived research datasets comprising de-identified patient-level structured
and unstructured data, curated via technology-enabled abstraction.?>?! Flatiron Health has a harmonization process
whereby research relevant clinical and administrative data are mapped by clinical terminologists to their appropriate
terminology standards. All free text laboratory data undergoes this process, getting assigned LOINC codes. Once data
is harmonized, it is re-used to determine standard codes for any current and future free text data.

Flatiron Health lab data is manually harmonized using term, unit, and panel information, with each distinct combina-
tion corresponding to a different row that each requires harmonization. As all three fields can potentially be free text
fields in EHRs, thousands of new combinations require mapping each month.

The “term” field of the lab data contains the name of the lab result. This can vary from a fully spelled out name to
a local acronym. An example of the term field is “white blood cell count”, which also might appear as “white blood
cell”, “wbc”, “wite bld cell”, or any other abbreviation with or without typos.

The “unit” field aptly contains information about the unit of measurement. Examples of a few possible unit values
can be seen in Table 1. As shown in Table 1, rows that have the same term value but differing unit values can result
in different target LOINC codes. Lab results can also be expressed in equivalent units, for example the units mg/mL,
g/dL and ug/mL, all measure mass/volume, but create separate rows for mapping.

The “panel” field represents a group of lab tests/results that are ordered and reported together. There are several
bases for grouping individual labs together. For example, by the medical condition they are intended to help diagnose
(cardiac risk panel), by the specimen type (complete blood count, CBC), by the tests most frequently requested by
users (comprehensive chemistry profile), by the methodology employed in the test (viral panel by polymerase chain
reaction), or by the types of components included (urine drug screen). Since the specimen for the lab result is not
available as a distinct data point, we use the panel name to determine the system. In the Flatiron Health dataset the
panel field contains the concatenation of all the panels that were ordered, adding variance and further increasing the
amount of data that requires harmonization.
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Source Term Source Unit  Source Panel LOINC Label

wbc 10x3/ul cbe 26464-8
white blood cell 10x3/ul cbe 26464-8
anc 10x3/ul cbe 26499-4
creat mg/dl urine, 24 hour 20624-3
creat g/24 h urine, 24 hour 2162-6
Albumin, URINE mg/dL ALBUMIN URINE 24HR 1754-1
Albumin, Urine ug/mL Microalbumin, Random Urine  1754-1

Table 1: Example Source Term, Unit, and Panel information, and the associated LOINC mapping.

Datasets
There are three catalogs we used in our experiments for automated lab mapping harmonization:

1. A source data catalog
2. A target LOINC data catalog
3. A mapping catalog containing associations between the source and target catalogs

The source data catalog contains all of the unique term, unit, and panel combinations that we have ever seen in our
data, as well as an associated source ID. This table contains no LOINC code information. The “target” LOINC catalog
contains all of the different LOINC codes that we might map the rows in the source data catalog to. Our harmonization
team takes in the source catalog as input and manually determines which target code each row in the source catalog
should map to.

Once a row from the source data catalog has been assigned an appropriate LOINC, it is added to the mapping catalog.
Thus, this catalog contains the source ID and the associated target ID (LOINC) in a unique mapping. Despite the full
LOINC catalog containing approximately 95,000 distinct LOINCs, because the source dataset is oncology specific
we see only a small percentage of all possible LOINCs in our dataset. If the harmonization team determines that the
information in the source row is insufficient to determine an accurate mapping, a label of “EXCLUDED” is attached
and no target code is present. This provides an additional challenge for an automated system, as this label has a wide
range of source data mapped to it, making it challenging to accurately predict.

There are different levels of LOINC interoperability, depending on the differences between two LOINC codes. Previ-
ous work has consolidated LOINC codes using these levels of interoperability!”, but since the Flatiron Health dataset
requires the most granular version of LOINCs, we do not do consolidation. While this makes automated LOINC
prediction more challenging, it is required to keep the dataset as precise as possible.

Deterministic Automated LOINC Prediction

Before using learning-based automated LOINC prediction algorithms, we first set baselines using two computation-
based algorithms. The two algorithms, maximal target string matching and maximal source string matching, are
described below.

Maximal Target String Match

The first baseline algorithm we used compared source rows directly to the target LOINC catalog. We compared
using Levenshtein distance, which is a string metric for measuring the difference between two character sequences.??
Specifically we used the Levenshtein ratio, which is a number between 0 and 1 representing how similar two strings
are, with 0 being completely different and 1 being entirely the same. For each row in the source catalog, we compared
the source term and source unit fields directly to the target LOINC catalog. We then combined the comparisons via a
weighted sum of % term and % unit. This set of weights was evaluated against six other combinations (g term and g
unit, 2 term and £ unit, ..., 2 term and 2 unit) on a random sample of 100,000 rows from the source term catalog and
had the highest performance of the six. Since the panel field contains a combination of all panels that were ordered, it
has no directly comparable value in the LOINC catalog and was therefore excluded. For each row, the LOINC code
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that was most similar via the weighted sum of term and unit Levenshtein ratios was the one assigned.

Maximal Source String Match

The second baseline algorithm attempts to find the source row in the training data that is most similar to the test
row being evaluated. Similar to the Maximal Target String Match algorithm, it uses Levenshtein ratio to measure
similarity. To compare two rows, the Levenshtein ratio of the term, unit, and panel fields are calculated and combined
via a weighted sum of % term, % unit, and % panel. We again tried multiple weighted combinations of fifths, and
this one had the highest performance of the combinations we evaluated. Computing the Levenshtein ratio is a costly
operation, and so comparing each row in the training data to every row in the source data is prohibitively expensive.
Due to this limitation, we instead first pre-compute the five most common source terms for each LOINC, with ties
being broken by random selection. We then compare each row in the test data to all of the pre-chosen source rows,

and choose the LOINC that has a source row with the greatest similarity.

Feature Encodings

As the source data is composed of free text fields, we must first encode the free text to make it possible to pass as an
input to a supervised machine learning model. Since lab data free text fields have an unlimited set of potential values,
and are often short abbreviations, we found that traditional string encoding methods that rely on a finite corpus to
encode such as One-Hot tokenization, TF-IDF, and Word2Vec perform poorly.?>~>> With this in mind, we developed
two new encoding methods specifically for this domain.

Levenshtein Distance Encoding

As mentioned above, Levenshtein distance is a string metric for measuring the difference between two character
sequences.”” To encode each row, we compared the rows source term and source unit to every target description
and target units in the LOINC target catalog, for each distinct LOINC in the training data. The weighted sum of the
Levenshtein ratio for term and unit between the source catalog and each row in the LOINC catalog is captured in a
vector. To determine the optimal set of weights to use, we tried every tenth fold combination (%0 term, % unit,.., 1%
term and % unit) and settled on 1% term and 12—0 unit. The vector of weighted Levenshtein ratios, which has a column
for each LOINC representing how similar the source row is to that target LOINC, is the encoded row. Similar to the
Maximal Target String Match, we exclude using panel as it has no directly comparable value in the LOINC catalog to

compare to with Levenshtein distance.

Frequency Tokenization Encoding

In a similar manner to TF-IDF, we created an approach to encode based on the frequency of distinct tokens in the
source data. For each row in the training data set, we first clean the rows by removing any characters that are not
alpha-numeric and replacing them with whitespace. This process is done for each of the term, unit, and panel fields.
We then split the cleaned row on whitespace, creating a set of tokens for each field. These tokens are then mapped to
the target LOINC, creating a token-LOINC map that details which source data tokens are associated with each LOINC.
If tokens appear multiple times mapping to the same target LOINC, that count will be recorded in the token-LOINC
map. This token-LOINC map can then be used to encode future rows.

To encode the term field, we first create tokens in the same manner as described above. These tokens will be used to
create an encoded vector of length L, where L is the total number of LOINCs in the token-LOINC map. In this vector,
each LOINC has a corresponding index, initialized at zero. For each LOINC that a token maps to, the corresponding
index in the vector will be incremented by the count in the token-LOINC map. See Figure 1 for an example of this
encoding. This process happens for each of the term, unit, and panel fields, resulting in a concatenated encoded vector
of length 3*L.

Supervised Machine Learning Classification Models

For both of the feature encoding methods, we evaluate performance using Logistic Regression (L2 penalized)?®, Ran-
dom Forest?’, and K Nearest Neighbors (KNN)?® classifiers. Model training and analyses were conducted using
scikit-learn in Python 3.7.4.%°
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Token LOINC Count

white 26464-8 1
Source Term Target LOINC
blood 26464-8 1
‘White blood cell, WBC 26464-8
Tokenization | cell 26464-8 1
anc 26499-4
wbc 26464-8 2
whbce 26464-8
anc 26499-4 1
Training Data Catalog
Token-LOINC map
l Apply to
train/test data
Encoded Row Source Term
Encode
[3,0] - White blood cell
[2,1] - Whc, anc
Encoded Data Data to encode

Figure 1: Tokenization Encoding process. Training data gets processed and tokenized, forming the token-LOINC
map. This map is then used to encode both the training and test data, leading to vectorized rows. The encoded row
has an index for each LOINC that exists in the training data catalog (here only 2 LOINCs), and the value at each index
represents how many tokens overlap with training data tokens mapped to that LOINC. The first row gets encoded as
[3, 0] since there are 3 tokens in the source term that match a token for the LOINC 26464-8, and 0 tokens that match
the LOINC 26499-4.

We used GridSearch to optimize key hyperparameters for each model.?’ For logistic regression we focused on the
number of iterations, and the inverse regularization parameter (C), and settled on values of 500 and 5 respectively. For
random forest we focused on the number of estimators, and settled on 500. For KNN we focused on the number of
nearest neighbors, and settled on 5.

Additionally, we evaluated the use of PCA to reduce the size of the input vectors and thereby decrease learning time.
Using PCA with 95% variance we were able to decrease the total learning time by 50%. However, the increased
efficiency came at the cost of a few percentage points of accuracy. As high accuracy is our top priority, the results in
this paper do not use PCA or other compression schemes on the input vectors.

Ensemble Learning

Ensemble learning is the practice of using multiple learning algorithms together and then classifying new points based
on a weighted vote of their individual predictions.*3! We explore the use of ensemble learning to increase accuracy
of predictions in cases where multiple models predict the same LOINC. Our ensemble models are assessed based on
the percent of the test set with prediction overlap, and the accuracy of the predictions on the overlap. The percent
of the test set with overlap is simply the number of rows in the test set where all models make the same prediction,
divided by the size of the test set. The accuracy is then measured in the standard way on the subset: by taking the
predictions that all models made and comparing with the labeled data. A high performing ensemble model will have
both a high percentage of test set overlap, and high accuracy on the overlap.*?
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It is important to note that adding additional models to an ensemble with these assessment criteria will not necessarily
increase the ensemble’s performance. For example, because we define prediction overlap to be only predictions where
all models make the same prediction, adding a poorly performing model may significantly reduce prediction overlap,
decreasing the subset the ensemble is able to make a prediction on. Moreover, a poorly performing model may only
overlap on incorrect predictions, significantly decreasing the ensemble’s accuracy. With this in mind, we evaluate
various ensembles to attempt to find the set of models that most successfully complement each other.

Data Size and Model Performance

Models were trained using a subset of 450,000 randomly sampled and unique rows from the most recent two years of
the labeled data corpus. We decided to use a large sample instead of training on the full dataset to increase investigative
agility while maintaining high usability. Amongst the rows sampled, there are 482 distinct LOINCs that have been
mapped to, including “EXCLUDED”. Models were validated using an 80/20 split for training and testing respectively,
and results are the average of 5 randomly subsampled splits. Models were assessed based on accuracy, F-1 score, and
precision. Since models are multiclass classifiers, F-1 score and precision are measured as weighted averages of the
F-1 score and precision across all classes. While accuracy is of the highest concern for prediction usability, F-1 score
is important to assess whether accuracy is overfitting due to class imbalance and thereby simply predicting the most
frequent LOINCs.

Results

Deterministic Algorithm Performance

To establish a baseline we first built and tested the deterministic prediction algorithms. These algorithms do not take
advantage of larger data sets to learn, so modifying the size of the dataset only affects the variance. With this in mind,
we averaged predictions from 5 trials run using 10,000 randomly sampled rows. The performance of these algorithms
is in Table 2. For Maximal Target String Match, accuracy is low, but still much higher than random chance, implying
that there is some inherent similarity between the source data and the target data. Given the level of abbreviation in
the source data, this result is expected. Comparing to other source data instead of directly to target LOINC data in the
Maximal Source String Match algorithm, performed significantly better. When solely basing future predictions on the
most similar previously seen terms, we saw an accuracy of just below 50%. Incorporating unit and panel information
as well, we saw a small increase, implying that there is value in using more than just the lab name represented in the
term field when making predictions.

Algorithm Name Accuracy (%)
Maximal Target String Match (Term + Unit) 16.0
Maximal Source String Match (Term) 48.4

Maximal Source String Match (Term + Unit + Panel) 52.0

Table 2: Deterministic (non-learning) algorithms performance for predicting LOINC, run on 10,000 LOINCs.

Cross Validated Supervised Model Performance

After determining a baseline, we moved on to assessing the performance of different learning based models using
our two different encoding schemes. The results from the Levenshtein Distance Encoding method are in Table 3.
We can see that we have significantly outperformed the baseline, and that while the random forest classifier had the
highest accuracy, all models have comparable performance at greater than 93% accuracy. KNN has marginally worse
performance using this encoding scheme, but it is worth noting that training time for the KNN classification model
is on average less than 50% that of logistic regression or random forest. We also see that the weighted F1 score and
weighted precision have similar values to that of accuracy, implying that our models are not overfitting due to class
imbalance.

As we are focused on any reduction in manual work, it is also important to see if there exist particular subsets that our

616



FI Score Precision Top 10% LOINC  Bottom 90% LOINC

Accuracy (%) . . Weighted Precision ~ Weighted Precision
(Weighted) (Weighted) n=74866 n=15134
Logistic Regression 93.1 0.929 0.928 0.941 0.874
Random Forest 94.0 0.940 0.938 0.9489 0.899
KNN 93.0 0.931 0.928 0.946 0.854

Table 3: Model performance using Levenshtein Distance Encoding trained using 80/20 split on dataset of size 450,000
(360,000 training, 90,000 testing). Top 10% and bottom 90% are measures of target LOINC frequency in testing
dataset.

models can reproducibly predict with higher success. One such subset we examined is the top 10% of LOINCs by
labeled rows, a subset which on average accounts for over 84% of the test set. Unsurprisingly our models have a higher
weighted precision on LOINCs in the top 10%, as these LOINCs have significantly more training data. However they
still do relatively well on LOINCs that have less training data, once again suggesting that overfitting is not occuring.

Examining the results from the Frequency Tokenization Encoding in Table 4, we see that only the random forest
classifier is able to outperform any model using the Levenshtein distance encoding. We also see that in this encoding
method, random forest outperforms both logistic regression and KNN by a significant margin. Interestingly, when
using the deterministic baseline algorithms, comparison to the LOINC catalog did significantly worse than comparison
to the source data directly. Contrastly, when using supervised learning the Levenshtein encoding which encodes by
comparing directly to the target LOINC catalog on average outperforms token encoding which encodes by comparing
to previously seen source data. We also see slightly more variance between accuracy and weighted F1 Score as well
as between the top 10% and bottom 90% of LOINCs, implying that there might be more class imbalance overfitting
happening.

FI Score Precision Top 10% LOINC  Bottom 90% LOINC

Accuracy (%) . . Weighted Precision ~ Weighted Precision
(Weighted) (Weighted) n=74866 n=15134
Logistic Regression 87.3 0.859 0.864 0.896 0.6854
Random Forest 94.5 0.943 0.943 0.957 0.874
KNN 88.95 0.877 0.878 0911 0.714

Table 4: Model performance using Frequency Tokenization Encoding trained using 80/20 split on dataset of size
450,000 (360,000 training, 90,000 testing). Top 10% and bottom 90% are measures of target LOINC frequency in
testing dataset.

Ensemble Learning Performance

While supervised learning models did significantly better than baseline models, accuracy still has room for improve-
ment. To increase usability, we attempted to use ensemble learning to see if we can achieve a higher accuracy for
a subset of the predicted data. Results for different groupings of trained models are in Table 5. These results are
extremely promising, with the combination of all trained models achieving an extremely high accuracy of 99% on the
80.5% of predictions that all models agreed upon. While using this method doesn’t allow for full automation as it is
only applicable to a subset of predictions, it has the potential to significantly reduce the work of manual harmonization
and quality analysis.

In these experiments we observe that the combination of models across encoding methods generally leads to better
performance when compared to the combination of models within an encoding method. One potential reason for this
is that a feature of the encoding method itself leads different models to make similar predictions. This would also
explain the high prediction overlap of the models trained with the Levenshtein distance encoding. As the different
encoding methods emphasize unique aspects of the source data, the combination of the encoding methods allows the
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Prediction overlap raw  Percentage of Accuracy on
count (out of 90000) Test Set (%)  prediction overlap (%)

LR + KNN (Levi) 86430 96.0 95.2
LR + RF (Levi) 87580 97.3 94.9
KNN + RF (Levi) 87211 96.9 95.1
LR + KNN (Tokens) 78469 87.2 94.7
LR + RF (Tokens) 79174 88.0 97.1
KNN + RF (Tokens) 81643 90.7 96.3
LR Levi + Tokens 80003 88.9 95.9
RF Levi + Tokens 83526 92.8 97.9
KNN Levi + Tokens 79103 87.9 97.0
LR + RF + KNN (Levi) 85774 95.3 95.6
LR + RF + KNN (Tokens) 75423 83.8 97.7
LR + RF + KNN (Levi + Tokens) 72477 80.5 99.0

Table 5: Ensemble learning performance for various combinations of models and encoding methods.
Abbreviations: LR, logistic regression classifier. RF, random forest classifier. KNN, K-nearest neighbors classifier.
Levi, Levenshtein distance encoding. Tokens, Frequency Tokenization Encoding.

models to escape issues inherent to the encoding, generating a more robust prediction. We also observe that within
encoding methods, increasing the number of models causes a drop in the overlap percentage, but results in a higher
accuracy in the overlap.

Discussion

This study has shown that automated machine learning methods can be successful in mapping laboratory data to
LOINC codes in a real-world oncology dataset. Overall our best performing model had an accuracy of 94.5% on
the full hold-out dataset, and our ensemble method had an accuracy of 99.0% on 80.5% of the hold-out dataset.
Additionally we have shown that it’s possible to make predictions to LOINCs with the same level of specificity as
clinical terminologists, including marking rows with insufficient information as EXCLUDED. Success in mapping to
EXCLUDED is of particular value, as having source data without enough information to map accurately is a tenant of
a real world dataset, and provides an additional challenge for machine learning models.

We examined cases where our model’s predictions were incorrect and found that in the majority of cases, the incorrect
prediction was extremely similar to the actual label. For example, in one instance the model predicted LOINC 20570-
8 which has target term “Hematocrit Bld VFr Pt Qn”, and the labeled LOINC was 4544-3 which has target term
”Hematocrit Bld VFr Pt Qn Automated count”. While these are very similar, because we want to maintain the highest
degree of accuracy possible it still counts against the model’s performance. This highlights the importance of having
both correct and consistent mappings in our labeled dataset. While we don’t have a measure of the accuracy of the
manual mappings that we used to create our labels, in future work we plan to use the incorrect model predictions as a
starting point to review the accuracy of existing labeled rows.

Our results are comparable in accuracy to the best reported results from prior studies involving automated laboratory
data mapping.'>~'7 The high accuracy and precision of the ensemble learning allows for supplemental use of automated
mapping methods alongside clinical terminologists in a range of potential applications. Aside from directly predicting
new mappings, this method can also be used as an extra level of quality analysis for maps done manually. Additionally
it can be used to verify existing maps, especially those done many years in the past, to identify potentially incorrect
mappings to be reexamined. In summary this study has shown that using automated mapping methods has potential
to not only reduce manual harmonization time by clinical terminologists, but also to provide an immediate quality
improvement to real-world datasets.

The novelties and areas of strength in this study include (a) assessing the place of automated laboratory mapping
methods in a real-world dataset, (b) demonstrating the efficacy of such methods on an oncology-specific dataset, (c)
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implementation of two novel laboratory free text encoding schemes, and (d) high prediction accuracy using ensemble
learning. In future work, we would like to explore other encoding methods, as well as attempt to use multiple encoding
methods for different fields within the same model. Furthermore, we would like to explore the extensibility of these
techniques to other domains, such as free text medication administration data.

This study has a few notable limitations. Firstly, while the methods in this study are reproducible at no cost, the
labeled dataset of oncology laboratory data to LOINC codes used in this study is not publicly available. However,
there may be opportunity in the future to open source some of these mappings for the larger research community. A
second limitation is that while these encoding and models performed well on oncology data, there may be oncology-
specific aspects about laboratory data that would cause these methods to perform poorly in other medical domains.
A limitation with our encoding methodology is that the encoded vectors created are very wide, which can lead to
long model train times and reduced development speed. Encoding with Levenshtein ratios further increases this issue,
as comparing strings is an expensive operation. Another limitation is that because machine learning classifiers can
only predict LOINCs that they have been trained on, any new additions to the LOINC catalog or changes in mapping
policy would be impossible for the classifier to predict. Whenever this happens all models would need to be retrained
on additional applicable training data. Lastly, our primary focus is reducing the burden of clinical terminologists
and we are therefore satisfied with high accuracy on a subset of data. Other applications however might require full
automation, for which our study has comparably high accuracy, but decreases the applicableness of our ensemble
learning methods.

Conclusion

As the use of real-world data continues to grow, automated methods that allow for accurate aggregation and harmo-
nization of data from EHRs become increasingly important. Mapping free text laboratory data to LOINC is important
before the data can effectively be leveraged for use in research, however the manual mapping process is extremely time
intensive. This study has shown that through the use of automated methods, we can significantly lower this burden.
Free text medical data is challenging to encode for existing NLP methods, and so we developed specific encoding
methodologies to effectively capture and encode the information required to map laboratory data. We demonstrated
that with these encodings and the use of ensemble learning, training an automated laboratory data classifier with high
accuracy is not only possible, but can provide immediate value to the creation of a high-quality real-world oncology
dataset.
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