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SUMMARY
Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and
extrinsic microenvironmental influences change during treatment. To support the development of methods
for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial
(OMS) atlas generated from four serial biopsies of an individual withmetastatic breast cancer during 3.5 years
of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and
doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses,
which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining;
and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and
evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and
organization, and ultrastructure. We present illustrative examples of how integrative analyses of these
data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.
INTRODUCTION

Precision medicine has led to substantial improvements in clin-

ical outcomes for some individuals with cancer, increasingly

through use of analytical procedures that identify people with

molecular characteristics associated with an increased likeli-

hood of response.1,2 Unfortunately, treatments deployed ac-

cording to precisionmedicine principles do not always elicit pos-
Cell Rep
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itive responses, and durable control is achieved for only a subset

of individuals with metastatic cancer.3 We posit that the failure to

control individual cancers using biomarker-guided treatments

stems in large part from our imperfect understanding of the

multitude of resistance mechanisms that drive an individual tu-

mor’s adaptive ability to survive as they evolve under therapy.

These mechanisms may involve regulatory networks intrinsic to

tumor cells, chemical and mechanical influences from proximal
orts Medicine 3, 100525, February 15, 2022 ª 2022 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Workflows and analytical platforms used to generate the OMS atlas
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or distal microenvironments, and/or aspects of the immune sys-

tem. They may vary between individuals with similar biomarkers,

across metastases within a person, or among cell subpopula-

tions within a single lesion and may change during treatment.

To stimulate and support community-wide investigations of

cancer resistance, response, and evolutionary mechanisms in

individuals, we present a comprehensive omic and multidimen-

sional spatial (OMS) atlas composed of clinical and research

data, response correlates from an affected individuals, and illus-

trative analytical workflows from a single person with metastatic

breast cancer during 3.5 years of treatment. We also illustrate

how the atlas can be used to explore spatial and temporal het-

erogeneity, study tumor evolution, and identify candidate resis-

tancemechanisms and therapeutic vulnerabilities. These studies

were carried out in the Serial Measurements of Molecular and

Architectural Responses to Therapy (SMMART) program with

support from the Human Tumor Atlas Network (HTAN),4,5

through which all data are available in standardized formats.

RESULTS

Longitudinal data generation from a single individual
The focus of this OMS atlas is a female individual diagnosed with

hormone receptor-positive, HER2-normal, high-OncotypeDx

recurrence score,6 0.6-cm right breast ductal carcinoma at the

age of 64. She underwent a lumpectomy with intra-operative ra-

diation therapy, followed by treatment with four cycles of adju-

vant docetaxel and cyclophosphamide, 2 years of anastrozole,

and 5 years of exemestane. Subsequent computed tomography

(CT) and fluorodeoxyglucose-positron emission tomography

(FDG-PET) scans revealed widespread metastatic disease.

The individual was then enrolled in the SMMART program

(Figure 1). Management decisions were made by the treating
2 Cell Reports Medicine 3, 100525, February 15, 2022
physician based on all clinical information plus input from a

multidisciplinary tumor board (STAR Methods). This led to

four treatment phases over a 3.5-year period (Figure 2A).

Temporary tumor control was achieved in the first three

phases, with a new phase of therapy beginning at signs of

progression. Toxicity of the combination therapies was effec-

tively managed through supportive medication and dose

reduction (Figure S2A). Standard toxicity-related blood chem-

istries were monitored, including absolute neutrophil and

platelet counts and liver function tests (Figures S2B–S2D; Ta-

ble S1).

The clinical metadata in Table S1 link detailed treatment doses

and timelines (Figure 2A) to tumor response metrics. Serum

levels of the tumor protein biomarkers carcinoembryonic antigen

(CEA), cancer antigen 15-3 (CA 15-3), and cancer antigen 27-29

(CA 27-29) were routinely measured to monitor treatment

response (Figure 2B; Table S1). Increasing biomarker levels are

concerning for underlying progression, but National Compre-

hensive Cancer Network (NCCN) guidelines do not recommend

changing therapies solely based on blood biomarkers.7

Biomarker measurements were thus complemented by periodic

CT and FDG-PET imaging, with response evaluated using

response evaluation criteria in solid tumors (RECIST) 1.1 criteria8

(Figure 2C; Table S1). Representative computed tomography

(CT), fluorodeoxyglucose-positron emission tomography (FDG-

PET), and ultrasound images highlight disease burden at key

time points (Figure S1).

Biospecimens collected for analysis include serial blood sam-

ples, a primary breast tumor (PT), a liver biopsy taken immedi-

ately prior to phase 1 (Bx1), a biopsy of a different liver lesion

taken at the end of phase 1 (Bx2), a bone lesion biopsy taken

at the end of phase 3 (Bx3), and a biopsy of a third liver lesion

taken at the end of phase 4 (Bx4; Figure 2A). Importantly, Bx2–



Figure 2. Timeline of clinical treatment and

response metrics

(A) Treatment schedule and biopsy timing (red

stars) over four phases of treatment (green, or-

ange, blue, and pink areas). The timeline is

sectioned into 28-day months. The duration and

relative dose for each drug is indicated by the

extent and width of a horizontal bar. Drug contin-

uation after the end of phase 4 is indicated by a

right arrow.

(B) Clinically reported serum levels of tumor protein

biomarkers. CEA values were multiplied by 5 to

ease visualization.

(C) RECIST 1.1 assessment of tumor response

(orange stars) indicating partial response (PR),

progressive disease (PD), or stable disease (SD).

Shown are longitudinal tracking and variation in the

longest-axis size of 16 representative metastatic

lesions measured from serial CT images. Targets

of metastatic biopsies are bolded and marked with

stars. Circles represent FDG-PET imaging results,

colored and centered on the lines of their corre-

sponding lesion at interpolated lesion sizes. The

diameter of each circle is proportional to the

background-normalized maximum standardized

uptake value (SUVmax).
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Bx4 were acquired from metastatic lesions explicitly identified

on serial CT and/or FDG-PET imaging as progressing near the

end of each respective treatment phase (Figures 2A and S1A–

S1I). These biospecimens were analyzed using 11 distinct

omic and multiscale spatial imaging workflows to generate this

OMS atlas (Figure 1).

Genomic differences between metastases were
substantial
Targeted DNA sequencing (GeneTrails solid tumor panel, all bi-

opsies), whole-exome sequencing (WES; primary tumor and

Bx1–Bx4), and low-pass whole genome sequencing (LP-

WGS; Bx3 and Bx4) were used to identify somatic genomic al-

terations, including single-nucleotide variants (SNVs), insertions

or deletions (indels), and copy number changes (Figures 3A and

S3A). Ubiquitous alterations included amplification of the

CDK4/6 regulatory partner cyclin D1 (CCND1; Figure S3B).

Other biologically and clinically relevant alterations were private

to a single biopsy. For example, Bx2 contained a hotspot

PIK3CA mutation (p.E542K; GenBank:

NM_006218:c.1624G>A)9,10 that was absent from other sam-

ples and was taken from a liver lesion that increased in size

during treatment with drugs that target aspects of phosphatidy-

linositol 3-kinase (PI3K) signaling (Figures 2A and 2C). Bx3 and

Bx4 both harbored similar amplified regions on chromosome
Cell Report
18 that were not detected in prior bi-

opsies or the primary tumor; Bx3 had 8

copies of a 2.3-Mb region, and Bx4 had

14 copies of a 0.7-Mb region (Figures

3B and S3B). These amplicons con-

tained the genes for thymidylate synthe-

tase (TYMS) and the SRC family tyrosine
kinase YES1 and were accompanied by increased TYMS and

YES1 RNA relative to Bx2 (TYMS: B33 = 6.83, B34 = 7.23;

YES1: B33 = 2.03, B34 = 4.03). Importantly, both biopsies

were acquired after treatment with the TYMS inhibitor capecita-

bine (Figures 2A, 2C, and S1G).

A phylogenetic analysis revealed that Bx3 diverged from the

primary tumor at an earlier evolutionary stage than Bx1, Bx2,

or Bx4 (Figure 3B) but was only detected on FDG-PET imaging

1 month before the biopsy occurred (Figures S1A, S1F, and

S1G).

WES of circulating tumor DNA (ctDNA) from blood collected

immediately prior to Bx1 (ctDNA1) and 23 days after Bx2

(ctDNA2) showed that ctDNA1 carriedmutations identified previ-

ously as private to Bx2, Bx3, or Bx4, whereas ctDNA2 had mu-

tations that were private to each of the four biopsies (Figure S3A).

Thus, at least some of the genomic features detected in later bi-

opsies were present before initiation of treatment.

Tumor mutational burden (TMB) was assessed for the primary

tumor and Bx1–Bx4 because a TMB of 10 or more mutations per

megabase (mut/Mb) has been associated with a positive

response to immune checkpoint blockade.11 The TMB was low

overall (1.2–5.2 mut/Mb), but we identified 1,271 unique neoepi-

topes (158–687 neoepitopes per biopsy) predicted to bind to at

least one major histocompatibility complex (MHC) allele with

an affinity of less than 500 nM (Table S2). Human leukocyte
s Medicine 3, 100525, February 15, 2022 3



Figure 3. Genomic, transcriptomic, and pro-

teomic profiles reveal spatiotemporal het-

erogeneity and evolution

(A) Comparison of somatic mutations. Columns

represent individual, non-silent SNVs or indels

identified from WES in at least one tissue sample

and classified as ubiquitous (present in all sam-

ples, blue), shared (present in at least two samples,

green), or private (present in only a single sample,

red). Mutational status in each sample is indicated

as independently called (colored), detected in at

least 2 sequencing reads but not independently

called (reduced opacity), or absent (white).

(B) Phylogenetic tree showing the evolutionary

relationship between the PT and four metastases.

(C) Transcriptomic gene set variation analysis

(GSVA) of cancer hallmark pathways. The boxplot

represents the distribution (upper and lower quar-

tiles and median) of GSVA scores for the TCGA

luminal breast cancer cohort. Enrichment scores

are shown for each of the biopsy samples: Bx1

(green), Bx2 (orange), Bx3 (blue), and Bx4 (pink).

(D) RPPA protein pathway activity assessment

using pathway scores. The boxplots represent the

distribution of the pathway activity of the TCGA

breast cancer cohort. The pathway activities of

three biopsy samples are marked as in (D).

(E) Total and phosphoprotein levels from RPPA

normalized within the TCGA breast cancer cohort.

The heatmap shows relative protein levels for three

biopsies and the fold change between sample

pairs. Proteins are ordered based on the fold

change difference between Bx2 relative to Bx1.

Selected proteins are highlighted.

(F) ISPP measurements of total and phosphopro-

tein levels. The boxplots represent the distribution

of protein levels of 57 metastatic breast cancers.

The protein levels of three biopsy samples are

marked as in (D).

See also Figure S3 and Table S2.
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antigen (HLA) subtypes were stable across all biopsies, and no

loss of heterozygosity was observed. Notably, 68 neoepitopes

that might serve as targets for a personalized cancer vaccine

were present in the primary tumor and all four biopsies

(Figure S4A).12,13

ctDNA increased during progression and radiotherapy
Dual index degenerate adaptor sequencing (DIDA-seq)14 was

performed, using a panel of 53 SNVs present in the individual’s

primary tumor, Bx1, and/or Bx2 to assess ctDNA levels from

serial plasma samples collected over the first 32 months of

treatment (Table S2). The average variant allele frequency

(VAF) of the SNV panel remained below 0.3% of total cell free

DNA during this period, with the exception of two transient in-

creases (Figure S2E). The first occurred immediately prior to

Bx2 (Figure S2E), coincident with rising CA 15-3 and CA 27-

29 levels (Figure 2B), followed by progressive disease (PD; Fig-
4 Cell Reports Medicine 3, 100525, February 15, 2022
ure 2C). The increase in ctDNA VAF was greatest for mutations

shared by the primary tumor, Bx1, and Bx2 (30% VAF)

compared with those private to the metastases (Bx1 and

Bx2, 3.1%; Bx1, 0.05%; Bx2, 1.3%). A second ctDNA increase

occurred after palliative radiation therapy to spinal lesions at

C2–C5. Interestingly, the VAFs of all SNV groups in the panel

increased at this time, including those private to Bx1 and Bx2

liver lesions.

Signaling and pathway activities evolved during therapy
Signaling and pathway activities were calculated from whole-

transcriptome sequencing (RNA sequencing [RNA-seq]). Classi-

fication using the PAM50 subtype gene signature15 showed liver

biopsies Bx1, Bx2, and Bx4 to be luminal A, whereas the bone

biopsy Bx3 was luminal B (Figure S3C). Table S2 summarizes

RNA transcript levels and pathway activity estimates for Bx1–

Bx4 relative to breast cancers in The Cancer Genome Atlas
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(TCGA-BRCA)16 and gene set variation analysis (GSVA) of en-

riched Molecular Signatures Database (MSigDB) cancer hall-

marks relative to TCGA-BRCA luminal samples.17,18 Prolifera-

tion, Immune, and Signaling were the most variable (MSigDB)

Hallmark Process categories across the biopsies (Figure 3C).

Notably, Bx2 harboring the PIK3CA p.E542K mutation had

reduced ‘‘PI3K/AKT/mTOR’’ compared with Bx1, although that

gene set was still increased relative to TCGA-BRCA samples.

Protein and phosphoprotein abundances were measured in

Bx1, Bx2, and Bx4 using reverse-phase protein arrays (RPPAs),

and proteomic pathway signatures were compared with TCGA-

BRCA (Figures 3D and 3E).19–22 Aspects of hormone signaling

varied across biopsies. Estrogen receptor (ER) protein levels

from RPPA and clinical immunohistochemistry (IHC) were high

in all three biopsies (Table S1). The protein pathways ‘‘hormone

signaling’’ and ‘‘hormone receptor’’ were higher in Bx2 (Fig-

ure 3D), whereas the GSVA RNA hallmarks ‘‘estrogen early’’

and ‘‘estrogen late’’ (Figure 3C) showed little change, an

intriguing finding because protein levels of the hormone-regu-

lated transcription factors ER, GATA3, and adrenergic receptor

(AR) were increased in Bx2 relative to Bx1 after phase 1 treat-

ments (Figure 3E). Bx4, taken after phase 4 treatment without

hormone suppression, showed continued elevation of the ‘‘hor-

mone receptor’’ pathway and ER and AR protein levels relative to

Bx1. However, GATA3 protein levels, the ‘‘hormone signaling’’

protein pathway, and the ‘‘estrogen early’’ and ‘‘estrogen late’’

GSVA hallmarks were downregulated.

PI3K/AKT/mTOR pathway signaling from RPPA was generally

similar across all biopsies, even though Bx2 was collected after

treatment with the mTORC1 inhibitor everolimus and contained

the hotspot mutation PIK3CA p.E542K (Figure 3D). Individual

protein levels within these pathways varied but did not result in

changes in overall signaling. For example, Bx2 showed

decreased mTORC1 complex activity based on decreased S6

phosphorylation at S235/236 and S240/244 (0.73 and 0.13

versus Bx1) but increased activity downstream of mTORC2,

including increased phosphorylation of AKT (S473: 2.73 versus

Bx1) and its substrates GSK3A/B (S21/S9: 1.73 versus Bx1),

TSC2 (T1462: 1.43 versus Bx1), and MDM2 (S166: 1.83 versus

Bx1; Figure 3E). Likewise, Bx4 showed increased phosphoryla-

tion of AKT at S473 (2.73 versus Bx1, 1.03 versus Bx2) and

NDRG1 (T346: 1.83 versus Bx1, 1.63 versus Bx2) but without

an accompanying increase in AKT or mTORC1 substrate phos-

phorylation. We also used the clinical Intracellular Signaling Pro-

tein Panel (ISPP) to quantitate phosphoproteins and total pro-

teins in Bx2–Bx4 (Figure 3F; Table S2).23 ISPP showed that

Bx2 had the highest AKT phosphorylation and lowest S6 phos-

phorylation relative to the other biopsies, consistent with RPPA

results, whereas p-ERK, p-cRAF, and p-MEK were elevated in

Bx3 and increased relative to other biopsies.

A transcriptional regulator analysis using a molecular interac-

tions network derived from Pathway Commons24 was used to

infer regulator protein activity from the gene expression data.

Integrative analysis of the longitudinal changes in proteomics,

gene expression, and transcriptional regulator scores between

Bx1 and Bx2 was also performed using CausalPath (Fig-

ure S3D).25 These analyses showed strong inhibition of mTOR

regulator activity (Bx2 5.13 > Bx1). Activities of multiple JAK-
STAT family proteins were increased, including JAK2 (Bx2

1.83 > Bx1), phospho-STAT3 (Y705: Bx2 1.63 > Bx1), and

STAT5 (Bx2 3.23 > Bx1), which, together with the oncoprotein

mucin 1 (MUC1; protein Bx2 27.13 > Bx1; regulator Bx2 +3.15

versus Bx1) constitute a known feedforward loop whereby

MUC1 binds STAT3 to facilitate its phosphorylation by JAK1.26

These observations are reinforced by elevation in ‘‘IL6/JAK/

STAT3’’ and ‘‘IL2/STAT5’’ signaling from GSVA (Figure 3C).

This analysis also highlighted decreases in MYC and E2F regu-

lator activity and E2F1 total protein, consistent with decreased

enrichment of ‘‘MYC targets’’ and ‘‘E2F1 targets’’ in GSVA.

These analyses provide a view of the interaction dynamics of

cell cycle control networks, with decreases in the expression

of cell cycle progression genes (CCNB1, CDK4, CDK1,

CCNE2, CCND3, and PLK1) balanced by a sharp decrease in

cell cycle inhibitor genes (CDKN1A, CDKN1B, and CDKN2A),

leaving RB1 phosphorylation unchanged in Bx2.

Tumor immune microenvironment evolution and
barriers to T cell activation
Changes in composition and functionality of lymphoid and

myeloid lineage immune cells were assessed in the primary tu-

mor and Bx1–Bx4 using multiplex IHC (mIHC),27–29 noting

possible discordance in Bx3 because of its bone origin (Figures

4 and S4B–S4E; Table S2). Total immune cell infiltration, as indi-

cated by the percentage of CD45+ cells, was lowest in Bx2

(2.1%) but comparable between the PT (7.2%), Bx1 (9.3%),

and Bx4 (10.0%; Figures 4A and 4B). Myelomonocytic cells

(macrophages and monocytes) comprised the dominant

CD45+ leukocyte lineage subgroup in the PT (65.8%; Figure 4C,

green and brown), Bx1 (48.3%), and Bx2 (82.4%) and were

reduced in Bx4 (6.1%). Analysis of the myeloid lineage revealed

that the fraction of immature dendritic cells was higher in Bx1

(0.2%; Figure 4D) than in Bx2 (0.05%), whereas the proportions

of CD163+ and CD163� macrophages and monocytes were

higher in Bx2 (51.2%) than in Bx1 (18.9%), with the largest in-

crease in CD163+ macrophages (Figure 4D). CD163 positivity

is associated with differentiation of myelomonocytic cells toward

an alternatively activated or ‘‘M2’’-type state, which is consid-

ered to be pro-tumorigenic within solid tumors.30,31 CD163

expression on monocytes and macrophages is induced by inter-

leukin-10 (IL-10) and glucocorticoids and repressed by lipopoly-

saccharides, tumor necrosis factor alpha (TNF-a), and interferon

g (IFNg) and is concordant with upregulation of IL-containing

GSVA gene sets in Bx2 (Figure 3C; Table S2).32 The dominance

of macrophages andmonocytes and relative lack of T cells in the

PT, Bx1, and Bx2 was in stark contrast to Bx4, which had many

more T cells than macrophages and monocytes (PT: 65.8%

macrophages/monocytes, 10.9% T cells; Bx1: 48.3%, 20.6%;

Bx2: 82.4%, 5.3%; Bx4: 6.1%, 33.1%; Figures 4C and 4E,

orange).

Analyses of T cell subsets and functionality showed that only a

small fraction of CD3+CD4+ and CD3+CD8+ T cells in the PT,

Bx1, or Bx4 expressed the programmed cell death-1 (PD-1) pro-

tein, which is typically expressed on activated T cells following

T cell priming or persistent antigen exposure (PT: 1.5% CD4+

T cells, 4.1% CD8+ T cells; Bx1: 1.3%, 1.6%; Bx4: 0%, 0.7%;

compared with Bx2: 10.1%, 30.5%; Bx3: 11.3%, 6.3%;
Cell Reports Medicine 3, 100525, February 15, 2022 5



Figure 4. Monitoring response to therapy with deep in situ immune phenotyping by mIHC

(A) Primary tumor (PT) andBx1–Bx4were subjected tomultiplex immunohistochemistry (mIHC) analysesmeasuring immune (CD45+) and epithelial (PanCK+) cells

in tumor compartments as a percentage of total nucleated cells.

(B) Representation of tissue composition, showing density (number of cells per squaremillimeter of tissue analyzed) of PanCK+ (cytokeratin), CD45+, and PanCK�

CD45� (other) nucleated cells.

(C) Immune composition of seven major leukocyte lineages, as a percentage of total CD45+ cells.

(D) Deeper auditing of leukocyte lineages in Bx1 and Bx2, measuring 12 immune cell populations and functional states.

(E) CD3+ T cell proportions of total CD45+ cell populations (orange, left), and CD4+ (blue) and CD8+ T cells (periwinkle) proportions within CD45+CD3+ T cells

(right).

(F) PD-1+ cells as a percentage of total CD3+T cells in the CD3+CD4+ (top) and CD3+CD8+ (bottom) T cell populations.

(G) Differentiation state of CD3+CD4+ T cells, reflected by regulatory T (Treg), Th1, and Th2, Th17, and Th0/gd subsets (left) and CD3+CD8+ T cells, as reflected by

expression of PD-1 and EOMES.

(H) Differentiation state of CD3+CD4+ T cells reflected by Treg, Th17, Th1, Th2, and Th0/gd subsets in Bx1 and Bx2.

See also Figure S4 and Table S2.
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Figure 4F).33 However, T cell status was markedly altered in Bx2

(Figure 4C; Table S2). Notably, although T cells were least abun-

dant in Bx2 compared with Bx1 and Bx4, the largest fraction of

CD3+CD4+ and CD3+CD8+ T cells expressing PD-1 was

observed in Bx2 (Bx2: 10.1% CD4+ T cells, 30.5% CD8+

T cells; compared with Bx1: 1.3%, 1.6%; Bx3: 11.3%, 6.3%;

Bx4: 0%, 0.7%; Figure 4F), coincident with relatively reduced

FoxP3+CD4+ regulatory T (Treg) cells (Bx1: 4.0%, Bx2: 1.1%,

Bx3: 9.3%, Bx4: 0.5%) and expanded Th17 CD4+ T cells (Bx1:

2.5%, Bx2: 26.1%, Bx3: 0%, Bx4: 0%; Figures 4G and 4H).
6 Cell Reports Medicine 3, 100525, February 15, 2022
Analyses of PD-1 and eomesodermin (EOMES) expression

showed that the PT contained predominately PD-1�EOMES�

(71.5%) and PD-1+EOMES� CD8+ T cells (27.2%; Figure 4G),

likely reflecting naive and early effector subsets, respectively.

Evolution of CD8+ T cells in Bx1, Bx2, and Bx4 indicated pro-

gressive loss of late effector PD-1�EOMES+ (61.5%, 19.0%,

and 11.0%) and exhausted PD-1+EOMES+ subsets (20.3%,

23.8%, and 1.7%), with replacement by likely naive PD-

1�EOMES� CD8+ T cells in Bx1 and Bx2 (16.8%, 47.6%;

Figure 4G).
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The Bx3 bonemetastasis differed from the PT and liver metas-

tases and had the highest percentage of CD45+ leukocytes

(18.0%; Figures 4A and 4B) with comparatively high percentages

of granulocytes (16.7%; Figure 4C), dendritic cells (22.6%), and

CD20+ B cells (6.0%). However, like Bx4, Bx3 contained a prom-

inent granulocyte infiltrate that most likely was predominantly

neutrophils (Bx4: 2.0%, Bx3: 16.7%, compare with Bx1: 0.2%,

Bx2: 0.1%). Neutrophils can exert significant pro-metastatic ac-

tivities, including suppressive effects on T cells, and are associ-

ated with poor prognosis in many solid tumors, including breast

cancer.34–38

Tumor and stromal interactions defined using cyclic
immunofluorescence (CycIF) and focused ion-beam-
scanning electron microscopy (FIB-SEM)
Tumor and stromal compositions and organizations of Bx1–Bx4

plus control biospecimens were assessed using CycIF (Fig-

ure 5A).39,40 This joint analysis revealed 17 tumor and stromal

clusters (Figures 5B and S5A–S5E). Three of the stromal clusters

(11, 13, and 14) and five of the tumor clusters (0, 1, 5, 7, and 9)

comprised major subpopulations in Bx2–Bx4. The three stromal

clusters were identified as fibroblast-like cells that differed in

levels of vimentin (VIM; cluster 11: 3.23 other clustered means,

13: 2.63, 14: 4.93). Endothelial cells (CD31) and macrophages

(CD68) were excluded from cluster analysis because of loss of

the normal breast and tonsil tissues needed for normalization

during staining; their presence was confirmed using manual

gating (Figure S5F). All tumor clusters expressed CK7/CK19

but different levels of ER, EGFR, and CK8 (Figure 5B). An addi-

tional proliferative cluster, cluster 16, appeared in Bx3 and

Bx4, comprised of tumor and stromal cells expressing high

levels of Ki67 (31.33) and/or PCNA (2.43).

Spatial analyses indicated that tumor cells formed nests sur-

rounded by immune, fibroblast, and endothelial cells as well as

collagen I and collagen IV deposits. This was observed in all bi-

opsies but was pronounced in Bx3. Quantitative analyses of nu-

clear ER and PCNA expression in Bx2–Bx4 as a function of dis-

tance to collagen I-rich tumor nest boundaries showed that cells

expressing higher levels of ER and PCNA were closest to these

boundaries and other stromal compositions (Bx2: mean ER in-

tensity at 0–25 mm from collagen I = 780, 50–75 mm = 463, p <

0.001; Bx3: 0–25 mm = 1,058, 50–75 mm = 600, p < 0.001; Bx4:

0–25 mm = 1687, 50–75 mm = 1,105, p < 0.001. Bx2: mean

PCNA intensity at 0–25 mm = 745, 50–75 mm = 218, p = 0.17;

Bx3: 0–25 mm = 948, 50–75 mm = 567, p < 0.001; Bx4: 0–

25 mm = 713, 50–75 mm = 406, p < 0.001; Figures 5C and

S5G); p values describe differences in mean intensities between

distances (ANOVA).

Tumor-tumor and tumor-stromal interactions in Bx1, Bx2, and

Bx4 were explored at �4-nm resolution using FIB-SEM.41

Computational renderings of 3D images of Bx1 (Videos S1 and

S2) and Bx2 (Video S3) revealed a previously unappreciated lat-

tice-like structure for fibroblast-like cells surrounding tumor cell

clusters and an intricate interaction pattern between these cells,

collagen bundles, and tumor cells on the nest boundaries (Fig-

ure 5D). The production of collagen by tumor-associated fibro-

blast-like cells is particularly apparent in the 2D SEM image of

Bx4 (Figure 6A).
Intracellular nanobiology defined by FIB-SEM
3D FIB-SEM images of cancer cells in Videos S1, S2, and S3 pro-

vide important details about intracellular structures and interac-

tions that may influence cell function and therapeutic response.

These include the following. (1) Numerous �100-nm-diameter,

micrometers-long, filopodium-like protrusions (FLPs) and lamel-

lipodia that project from tumor cells into the stromal environment

(Figures 6B–6D; Video S3). Published work and our studies in

model systems show that these protrusions have actin-rich

cores and are decorated with receptor tyrosine kinases that

are transported along FLPs by the actin-motor protein Myosin-

X.42 Cultured SKBR3 breast cancer cells exhibit similar FLPs,

and dynamic in vitro images acquired using stochastic optical

reconstruction microscopy (STORM)43 reveal that the FLPs

respond to epidermal growth factor by rapidly decreasing in

length, causing cell movement toward the anchored ends of

the FLPs (Figure S6B; Video S4). (2) Alignment of mitochondria

along the length of an elongated cell and insinuation into nuclear

folds (Video S3; Figures 6B and 6E). (3) A high abundance of la-

mellipodia and macropinosomes, implicating nutrient scav-

enging via macropinocytosis as a possible tumor survival mech-

anism (Videos S1 and S3; Figures 6C, 6F, and 6G).44,45 (4) A high

prevalence of densely stained vesicles that appear to be lyso-

somes (Videos S1 and S3; Figures 6A and 6G).

Figure 6H presents a qualitative summary of the nanoscale

features described in Bx1 and Bx2, made by visual analysis of

large-format 2D SEM images (Figure S6A) and informed by 3D

FIB-SEM images of selected features.

DISCUSSION

This OMS atlas is a compendium of cellular, molecular, and

organizational features of four biopsies along with detailed clin-

ical response data collected over a 3.5-year period from a single

individual with metastatic breast cancer. It is intended to illus-

trate the feasibility of generating longitudinal multiplatform ana-

lyses in the clinical setting to support investigations of mecha-

nisms of response and resistance beyond those that are

apparent from routine omics analyses. Its features include

DNA, RNA, and protein19–21,23 profiles and spatially defined an-

alyses, including mIHC,27–29 CycIF,39,40 and 2D and 3D electron

microscopy.41 Other key components are (1) preservation of

samples starting within 2 min of biopsy to conserve labile molec-

ular and architectural features, (2) precise temporal linking of

clinical and molecular responses with drug treatments and

doses, (3) quantitative assessment of individual lesion changes

by CT imaging to measure response heterogeneity, (4) work-

flows that enable multiplatform measurements using material

from a single biopsy, and (5) well-curated data and data stan-

dards developed by the HTAN program to facilitate community

analyses and integration with other datasets.

Selected analyses encompassingmultiple OMSatlas datasets

illustrate approaches to uncovering mechanisms of drug resis-

tance and response that arise over the course of treatment and

that could be missed by limiting analyses to one or a few analyt-

ical platforms (Figure 7; Table S3; discussed below). It is impor-

tant to note that the post hoc analyses described here were not

used to guide treatment. They are not meant to definitively
Cell Reports Medicine 3, 100525, February 15, 2022 7



Figure 5. Monitoring tumor and stromal responses to therapy using CycIF and FIB-SEM

(A) Example images of antibody staining overlaid with segmentation borders, colored by cell type. Scale bar, 50 mm.

(B) Heatmap of mean Z-scored intensity of unsupervised Leiden clustering (resolution, 0.45) on single-cell mean intensity of biopsies and control tissues and cell

lines, with annotations on the right. Lum, luminal; Mes, mesenchymal; Fibro, fibroblast. Colored row labels indicate which biopsy was most dominant for each

cluster: Bx2 (orange), Bx3 (blue), or Bx4 (pink). Cluster 16 is evenly split between Bx3 and Bx4.

(C) Single-cell mean intensity distributions of ER and PCNA staining of cells 0–25, 25–50, and 50–75 mm from positive collagen staining. Asterisks indicate

significant (p < 0.001) differences in mean intensity between distances (ANOVA).

(D) Two views of reconstructed 3D FIB-SEM data from Bx1 showing the relationship between cancer cells (red and pink), stromal cells (blue and turquoise), and

collagen (green). A full-volume view (left) shows nanoscale cell-cell interactions of stromal cells surrounding a tumor nest (collagen is not rendered in this image),

whereas the close-up view (right) shows a fibroblast-like cell interposed between the tumor and collagen. Scale bars, 5 mm.

See also Figure S5 and Table S5.
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explain why the individual progressed on any given therapy but

are intended to stimulate validation in follow-up studies.

Phase 1 treatment consisted of a combination of fulvestrant,

palbociclib, and everolimus, supported by findings in Bx1 of

high ER protein expression, wild-type ESR1, and two intact

copies of wild-type RB1. Bx2 was taken when the tumor began

to progress on this treatment (Figure 2). Interestingly, none of the

four biopsies analyzed from this individual had mutations in

ESR1 or loss of expression of ER protein (Figure 3E; Table S1)

even though ESR1mutations are frequently observed in individ-

uals progressing on endocrine therapies.46Mutations inPIK3CA,
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ERBB2, andNF1 also are observed in individuals progressing on

endocrine therapies, and RB1 is frequently lost after treatment

with CDK4/6 inhibitors,47,48 but only a PIK3CA mutation and im-

mune-related pathway activation was seen in Bx2 (Figure 3; Ta-

ble S3). Thus, we interrogated Bx2 data to identify additional

bypass mechanisms. One known mechanism by which cells

become resistant to everolimus and other mTORC1 inhibitors

is through activation of mTORC2.49,50 Consistent with this,

phosphoprotein analyses of Bx2 revealed decreased S6 phos-

phorylation, which supports continued inhibition of mTORC1

by everolimus (Figure 3E). Concurrently, Bx2 had increased



Figure 6. Inter- and intracellular composi-

tions and interactions revealed using FIB-

SEM

(A) 2D SEM image from Bx4 showing the relation-

ship between tumor cell nests and stromal

collagen, along with a high density of extracted

lysosomes. Scale bar, 10 mm. The selected insets

show these features at high magnification. Scale

bars, 3 mm.

(B) A side view of an elongated tumor cell from 3D

FIB-SEM of Bx2 showing FLPs (red) and alignment

of the internal mitochondria (fuchsia). Scale bar,

1 mm.

(C) Additional cells from Bx2 (the same red cell as

in B) showing paddle-shaped lamellipodia (green

cell) and long FLPs (red and blue cells) extending

into the stroma and interacting with neighboring

cells. Scale bar, 500 nm.

(D) Reconstructed 3D FIB-SEM data from Bx1

showing FLPs selectively extending toward

neighboring cells and extracellular debris. Scale

bar, 1 mm.

(E and F) Additional detail from Bx2 (E) and Bx1 (F)

of the nuclear invaginations (blue), showing the

organization of mitochondria (fuchsia) and mac-

ropinosomes (yellow) with respect to nuclear folds.

Scale bars, 1 mm.

(G) 3D FIB-SEM volume of Bx2 showing large

electron-dense lysosomal granules (green)

dispersed between macropinosomes (red). Scale

bar, 900 nm.

(H) Qualitative summary of ultrastructural feature

prevalence within each biopsy. Bx4 scoring of la-

mellipodia is not available.

See also Figure S6 and Videos S1, S2, S3, and S4.
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phosphorylation at an mTORC2 site on AKT (S473) and of multi-

ple AKT substrates that together are predicted to maintain onco-

genic PI3K/mTOR signaling in the presence of everolimus (Fig-

ures 3E and 7A). Everolimus efficacy might also have been

reduced by the PIK3CA p.E542K activating mutation unique to

Bx2, which is known to activate the PI3K/AKT/mTOR pathway.51

Indeed, this variant was among the SNVs monitored in serial

blood samples by DIDA-seq (Figure S2E) and was only detected

in ctDNA significantly above background after 7 months on

phase 1 therapy (0.06% VAF, p = 0.0071, Weitzman overlapping

coefficient), indicating that this mutation may have emerged

because of selective pressure from one or more phase 1 drugs.

Several analyses inform on mechanisms of resistance to the

CDK4/6 inhibitor palbociclib in Bx2. Loss of RB1 has been

shown to drive resistance in multiple clinical trials,48 but this

gene was not mutated or deleted in Bx2. It is noteworthy that

RB1 phosphorylation was at pre-treatment levels in this biopsy

(P-S807/S811: 1.03 versus Bx1) because this modification pro-
Cell Report
motes cell cycle progression and should

have been decreased by palbociclib.52

Evidence from protein profiling of key

cell cycle regulators revealed that RB1

might have been phosphorylated by

CDK2, which also inhibits RB1 but is not

a target of palbociclib (Figure 7B).53–55
First, protein levels of the CDK2 inhibitor p21 were decreased

23 from Bx1 to Bx2 (Figure 3E), possibly because of activated

PI3K/AKT signaling, which maintains low p21 levels in CDK4/6

inhibitor-resistant cells.55 Second, tumor cells with high

CCND1 and activated PI3K can adapt to palbociclib via non-ca-

nonical binding of CDK2 to CCND1,53 and Bx2 had higher

CCND1 protein levels (1.73 versus Bx1) and PI3K/AKT signaling

than Bx1. The CDK4/6 inhibitor abemaciclib has a broader spec-

trum of activity that includes CDK256 and might be expected to

be effective in cases where palbociclib escape occurs via

CDK2 activation. Indeed, abemaciclib administered subsequent

to the period covered by this study showed efficacy (data not

shown).

Capecitabine administered in phase 3 along with pembrolizu-

mab, enzalutamide, and fulvestrant initially resulted in a partial

response (PR), followed by PD (Figure 2B) at the time of Bx3.

Analysis of Bx3 revealed a focal amplification of TYMS and

YES1. TYMS is inhibited by capecitabine, and its overexpression
s Medicine 3, 100525, February 15, 2022 9



Figure 7. Mechanisms of therapeutic resistance and response suggested by RPPA

(A) Phosphorylation and inferred activation of the PI3K/AKT/mTOR pathway affected by everolimus in Bx2. Decreased phosphorylation of S6 downstream of

mTORC1 likely resulted from everolimus inhibition, but increased phosphorylation of proteins downstream of PI3K and AKT, possibly throughmutant PI3K E542K

activity and/or feedback signaling to mTORC2, may have provided continued oncogenic signaling in the presence of this drug. Proteins are noted as increased

activating phosphorylation (>1.43, red), increased inhibitory phosphorylation (>1.43, pink), decreased activating phosphorylation (<0.73, green), or unchanged/

unknown phosphorylation (yellow). Changes in phosphorylation in Bx2 versus Bx1: PDK1 = 1.453, AKT T308 = 1.203, AKT S473 = 2.693, TSC2 = 1.433, GSK3A/

B = 1.713, MDM2 = 1.753, p70S6K1 = 0.923, 4EBP1 = 1.373, S6 S235/236 = 0.693, S240/244 = 0.143.

(B) Activation status for cell cycle regulatory pathways affected by palbociclib in Bx2, as inferred from total and phosphoprotein levels. Palbociclib blocks cell

division in responsive cells by inhibiting CDK4/6 phosphorylation of RB1, but Bx2 had continued high levels of phospho-RB1 and cell proliferation under treatment

with this drug (RB1 P-S807/811 = 0.983 versus pre-treatment Bx1). This is possibly due to degradation of the CDK2 inhibitor p21 (0.503 versus Bx1) by activated

PI3K/AKT signaling (see A), which would activate canonical cyclin E/CDK2 complexes to drive cells through G1-S. Alternatively, cell division might be proceeding

through the formation of non-canonical cyclin D1/CDK2 complexes because of amplifiedCCND1 (Figure S3B), high levels of cyclin D1 protein (1.673 versus Bx1),

and low p21. CDK2 activation can be countered with the broad-spectrum CDK inhibitor abemaciclib. Inferred activation status is based on total protein levels or

phosphorylation and is designated as relative increases (red), decreases (green), or unchanged/unknown (yellow).

See also Figure 3E and Table S2.
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confers resistance to capecitabine.57 Consequently, TYMS

amplification may have provided a relative fitness advantage

during capecitabine treatment and might explain the temporally

late emergence of a clone that branched off early in the evolu-

tionary process (Figure 3B). The TYMS/YES1 amplicon arose

independently in Bx4, presumably because of the earlier capeci-

tabine exposure. But although only TYMS was overexpressed in

Bx3, both genes were increased in Bx4, indicating that YES1

may have provided a growth advantage to later lesions after

cessation of capecitabine (Figure 2A). YES1 is an SRC family

tyrosine kinase and a target of the broad-spectrum kinase inhib-

itor dasatinib, so inhibition of YES1 might be considered as a

possible orthogonal therapeutic strategy for individuals who

become resistant to capecitabine via amplification of TYMS/

YES1. However, dasatinib was administered subsequent to the

period covered by this study and did not show efficacy (data

not shown), arguing against this strategy.

Comparative analyses of the PT and serial biopsies suggested

several mechanisms shaping immune contexture. The most sig-

nificant was associated with palbociclib treatment at the time of

Bx2. mIHC analyses showed increased macrophages/mono-

cytes and T cells and decreased Tregs in Bx2 compared with

Bx1 and Bx4 (Figure 4). Th17 cells and Treg cells arise from a

common precursor but have opposing functionality upon termi-

nal differentiation, with anti-tumor immunity promoted by Th17

cells and dampened by Treg cells.58 This suggests that the rela-

tively high frequency of Treg cells in the PT and Bx1 may have

contributed to reduced T cell activation, as detected by a lack
10 Cell Reports Medicine 3, 100525, February 15, 2022
of PD-1 expression (Figure 4G). Conversely, the Th17 domi-

nance over Treg cells in Bx2 may have supported T cell activa-

tion, as evidenced by increased PD-1 expression. These

changes were coincident with increases in signaling by IFNg,

ILs, and STATs, as revealed by gene and protein expression pro-

files (Figure 3C; Table S2), and are consistent with studies in

mammary tumor models showing that CDK4/6 inhibitors pro-

mote T cell-mediated tumor cell clearance by stimulating type

III interferons and suppressing Treg cell proliferation.59 The utility

of an immune checkpoint inhibitor was supported by our obser-

vations relating to Bx2 and increased PD-1 expression in T cells.

Phase 2 and 3 pembrolizumab treatments were associated with

a decrease in the Bx1 and Bx2 lesions (Figure 2C), but the role

of pembrolizumab in the decrease in lesion size is unknown as

it was given with other drugs. Indeed, a challenge in this and

other studies is in deconvoluting effects of individual agents

when given in combination. Pembrolizumab and other phase 3

drugs were discontinued upon PD, whereupon the immune

contexture changed again, with Bx4 showing more T cells but

fewer macrophages/monocytes and Th17 T cells. Although

Bx4 also contained fewer Treg cells (similar to Bx2) and the

highest proportions of Th1 differentiation (Figure 4G), there

was low PD-1 expression on T cells (Figure 4F). So, although

the PT, Bx1, and Bx4 showed minimal T cell responses, this

may have been due to low neoantigens and antigen presentation

as likely barriers to functional anti-tumor immunity in Bx4,

whereas T cell-mediated suppression was predominant in the

PT and Bx1.
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CycIF and FIB-SEM analyses showed tumor cells organized

into nests surrounded by stromal cells and substantial collagen

I deposits (Figures 5 and 6), suggesting that the lack of neoan-

tigens and/or antigen presentation inferred from immune

profiling may be caused, at least in part, by biophysical barriers

that diminish tumor-immune cell interactions. Interestingly, the

3D images suggest that fibroblast-like cells are interposed be-

tween tumor cells and collagen bundles in most cases, raising

the issue of how collagen stiffening leads to more aggressive tu-

mor behavior60 and how stromal barriers stimulate increased

expression of ER and PCNA in closely proximal tumor cells (Fig-

ure 5D). From a technical perspective, the complex cellular in-

teractions revealed by FIB-SEM illustrate the difficulties of prop-

erly segmenting individual cells during multiplex imaging of 2D

sections using mIHC or CycIF (Figure S6C) and of dissociating

tightly interacting and potentially fragile cells for single-cell

analyses.

The FIB-SEM analyses reveal several ultrastructural features

that may influence tumor behavior and/or therapeutic vulnera-

bility. These include the following. (1) FLPs that project from tu-

mor cells into the stromal microenvironment. The receptor-

dense, dynamic nature of FLPs may mediate proximal and distal

interactions with elements of the microenvironment and enable

directed movement therein. This might provide the force

needed to produce the elongated tumor cell shown in Figure 6B,

with mitochondria aligned along its long axis and inserted into

nuclear folds (Figure 6E). FLPs have also been implicated in pro-

tein transport between cells.61 These functions suggest the

possible utility of FLP inhibitors. (2) Insinuation of mitochondria

into nuclear folds (Video S3; Figures 6B and 6E). These appar-

ently forced interactions may increase the potential for nu-

cleus-mitochondrion signaling that would alter DNA damage

repair and/or reactive oxygen species (ROS) signaling.62,63

This might be countered therapeutically by attacking ROS or

by inhibiting FLP function. (3) High abundance of lamellipodia

and macropinosomes (Videos S1 and S3; Figures 6C, 6F, and

6G). Nutrient scavenging from the intercellular space and

nearby dying cells is a known tumor survival mechanism.44,45,64

Protein-conjugated drugs might convert this survival mecha-

nism into a therapeutic vulnerability. We speculate that this

mechanism may have been partly responsible for the control

achieved by treatment with liposomal doxorubicin during phase

3. Macropinocytosis may also diminish communication of neo-

antigens to immune cells by competing with dendritic cells for

exogenous antigens released from dying tumor cells.65 (4)

High-density, densely stained vesicles that appear to be lyso-

somes (Videos S1 and S3; Figures 6A and 6G). Lysosomes

can sequester cancer drugs via a process called lysosomotrop-

ism, in which weakly basic drugs become protonated and trap-

ped within the acidic interior of lysosomes.66 Lysosomotropic

sequestration has been implicated as a mechanism of resis-

tance to CDK4/6 inhibitors67,68 and is suggested in this individ-

ual by the increase in lysosomes from Bx1 to Bx2, as seen by

FIB-SEM (Figures 6G, 6H, and S6A; Videos S1 and S3). Interest-

ingly, hydroxychloroquine, sometimes used to counter treat-

ment-induced rashes, has been reported to be lysosomotropic

and thus might reduce treatment efficacy when co-adminis-

tered with any basic drug, including CDK4/6 inhibitors.69 Recent
studies suggest that lysosomotropism-mediated doxorubicin

resistance can be countered by the b-AR antagonist proprano-

lol, which acts through a b-AR-independent mechanism to in-

crease cytoplasmic doxorubicin concentrations and decrease

lysosomal accumulation.70

Overall, this OMS atlas shows the promises and challenges

of elucidating evolving resistance mechanisms and new thera-

peutic vulnerabilities in individuals. The study shows that multi-

analyte workflows can be executed routinely and safely. Ana-

lyses of the data provide insights into mechanisms of tumor

response and resistance that can be explored in subsequent

studies. The ready availability of the data and protocols in stan-

dardized form will encourage further analyses and method

development.

Limitations of the study
The overall goal of this study is to elucidate the mechanisms of

resistance and therapeutic vulnerability experienced by an indi-

vidual during extended treatment ofmetastatic disease, using in-

formation from multiple analytical workflows. We acknowledge

the difficulty of assigning specific response and resistance

mechanisms to individual drugs within a multi-drug treatment

regimen, especially for drug combinations targeting overlapping

biological pathways, and we note the danger of ‘‘cherry picking’’

mechanisms from the vast published literature. Moreover, work-

ing with a single human subject precludes implementation of hy-

pothesis testing, which is de rigueur in experimental cell lines,

animal models, and clinical studies that would more definitively

support our proposed mechanisms. These factors demonstrate

the challenges of implementing this type of program and

analyzing N-of-1 data in a real-world clinical setting. However,

our studies do suggest mechanisms and interpretational pro-

cesses that can be tested in larger studies.

Several of our methods are too complex to be widely applied

as currently implemented. However, when the utility of each

assay platform is established, workflows can be simplified and

streamlined. Our work shows that further development of analyt-

ical methods to integrate and interpret multi-platform omics and

imaging datasets is clearly needed for the clinical and research

communities. The OMS atlas can serve as a resource in that

effort.

Finally, we are aware that we are inferring mechanisms from

single biopsies of a metastatic disease that displays remarkable

intra- and intermetastatic lesion heterogeneity.71 A biopsy of a

single metastatic lesion at any single time point is unlikely to pro-

vide a comprehensive picture of the entire heterogeneous dis-

ease within an individuals or even within the biopsied lesion.

This is a fundamental limitation of any biopsy-based analytical

strategy. Continued advancement of assays that report on over-

all tumor composition acrossmultiple lesions, such as peripheral

blood assays, is one potential avenue toward understanding het-

erogeneous disease burden. Indeed, our observation that radia-

tion induced a transient increase in ctDNA in peripheral blood

suggests that individuals undergoing radiotherapy might have

circulating tumor nucleic acids and proteins in sufficient quanti-

ties for practical diagnostic measurement and for revealing

latent, low-level molecular changes in unbiopsied lesions in

almost real time.
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Antibodies

Mouse monoclonal anti-PD-1 Abcam Cat# ab52587; RRID: AB_881954

Rabbit monoclonal anti-CD3 Thermo Fisher Scientific Cat# MA1-90582; RRID: AB_1956722

Mouse monoclonal anti-RORgT EMD Millipore Sigma Cat# MABF81; RRID: AB_11205416

Mouse monoclonal anti-NKp46 R&D Systems Cat# MAB1850; RRID: AB_2149153

Mouse monoclonal anti-CD8a Thermo Fisher Scientific Cat# MA5-13473; RRID: AB_11000353

Rabbit monoclonal anti-T-bet Cell Signaling Technology Cat# 13232; RRID: AB_2616022

Mouse monoclonal anti-GATA-3 BioCare Medical Cat# CM 405 A; RRID: AB_10895444

Mouse monoclonal anti-FoxP3 Thermo Fisher Scientific Cat# 14-4777-82; RRID: AB_467556

Rabbit monoclonal anti-PD-L1 Cell Signaling Technology Cat# 13684; RRID: AB_2687655

Mouse monoclonal anti-CD20 Abcam Cat# ab9475; RRID: AB_307267

Mouse monoclonal anti-CD20 Santa Cruz Biotechnology Cat# sc-70582; RRID: AB_1120279

Mouse monoclonal anti-CD45 Thermo Fisher Scientific Cat# 14-0459-82; RRID: AB_467274

Mouse monoclonal anti-Tryptase Abcam Cat# ab2378; RRID: AB_303023

Mouse monoclonal anti-CD68 Abcam Cat# ab783; RRID: AB_306119

Rabbit monoclonal anti-CSF1R Abcam Cat# ab183316; RRID: AB_2885197

Mouse monoclonal anti-DC-SIGN (DC28) Santa Cruz Biotechnology Cat# sc-65740; RRID: AB_1121347

Mouse monoclonal anti-CD66b BD Bioscience Cat# 555723; RRID: AB_396066

Rat monoclonal anti-DC-LAMP Novus Cat# DDX0191P-100; RRID: AB_2827532

Mouse monoclonal anti-HLA-DPB1 Abcam Cat# ab157210; RRID: AB_2827533

Mouse monoclonal anti-CD163 Thermo Fisher Scientific Cat# MA5-11458; RRID: AB_10982556

Mouse monoclonal anti-CD4 Thermo Fisher Scientific Cat# MA5-12259; RRID: AB_10989399

Mouse monoclonal anti-CD56 Thermo Fisher Scientific Cat# 07-5603; RRID: AB_2532931

Mouse monoclonal anti-pan cytokeratin Abcam Cat# ab27988; RRID: AB_777047

Rabbit monoclonal anti-Ki67 Abcam Cat# ab16667; RRID: AB_302459

Rabbit polyclonal anti-EOMES (Tbr2) EMD Millipore Sigma Cat# AB2283; RRID: AB_10806889

Mouse monoclonal anti-IDO EMD Millipore Sigma Cat# MAB10009; RRID: AB_1977068

Rabbit monoclonal anti-Granzyme-B EMD Millipore Sigma Cat# 262R-1; RRID: AB_2889344

Mouse monoclonal anti-IL-10 LifeSpan Bio Cat# LS-B7411-500; RRID: AB_11233179

Rabbit monoclonal anti-ICOS/CD278 LifeSpan Bio Cat# LS-C210350; RRID: AB_2827535

Rabbit monoclonal anti-CD4 Abcam Cat# ab213215; RRID: AB_2861280

Rabbit monoclonal anti-CD8 Abcam Cat# 4207-1; RRID: AB_764503

Mouse monoclonal anti-Siglec-1/CD169 Novus Cat# NB 600-534; RRID: AB_526814

Rabbit monoclonal anti-CD11b Abcam Cat# ab133357; RRID: AB_2650514

Rabbit monoclonal anti-MHC class I (HLA

A+ HLA B)

Abcam Cat# 2307-1; RRID: AB_1267243

Rabbit monoclonal anti-CD11c Abcam Cat# ab52632; RRID: AB_2129793

Rabbit monoclonal anti-T-bet/Tbx21 Abcam Cat# ab150440; RRID: AB_2889209

Mouse monoclonal anti-CCR2 R&D Systems Cat# MAB150; RRID: AB_2247178

Mouse monoclonal anti-MHC class II HLA-

DP/DR/DQ

LifeSpan Bio Cat# LS-C58506-200; RRID: AB_1511620

Histofine Simple Stain Human MAX PO

(Rat) (for Rat primary antibody)

Nacalai USA Cat# 414311F

Histofine Simple Stain Human MAX PO (R)

(for Rabbit primary antibody)

Nacalai USA Cat# 414144F
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Histofine Simple Stain Human MAX PO (M)

(for Mouse primary antibody)

Nacalai USA Cat# 414134F

Mouse monoclonal anti-a-SMA Santa Cruz Cat# sc-32251; RRID: AB_262054

Rabbit monoclonal anti-CD3 Abcam Cat# ab213608; RRID: AB_764498

Rabbit monoclonal anti-CD31 Abcam Cat# ab218582; RRID: AB_2857973

Rabbit monoclonal anti-CD4 Abcam Cat# ab196147

Rabbit monoclonal anti-CD44 Abcam Cat# ab216647; RRID: AB_764499

Rabbit monoclonal anti-CD45 Abcam Cat# ab200317; RRID: AB_726545

Rabbit monoclonal anti-CD45 Abcam Cat# ab214437; RRID: AB_726545

Mouse monoclonal anti-CD68 Biolegend Cat# 916104; RRID: AB_2616797

Mouse monoclonal anti-CD8 Abcam Cat# ab213017; RRID: N/A

Mouse monoclonal anti-CK14 Abcam Cat# ab7800; RRID: AB_306091

Rabbit monoclonal anti-CK17 Abcam Cat# ab185032; RRID: AB_2889195

Mouse monoclonal anti-CK19 Biolegend Cat# 628502; RRID: AB_439773

Rabbit monoclonal anti-CK5 Abcam Cat# ab193894

Rabbit monoclonal anti-CK7 Abcam Cat# ab203434

Rabbit monoclonal anti-Ecad Abcam Cat# ab201499

Rabbit monoclonal anti-ER Abcam Cat# ab205851; RRID: AB_2728817

Mouse monoclonal anti-HER2 Santa Cruz Cat# sc-33684; RRID: AB_627996

Rabbit monoclonal anti-Ki67 Cell Signaling Technology Cat# 12075; RRID: AB_2728830

Mouse monoclonal anti-PCNA Cell Signaling Technology Cat# 8580; RRID: AB_11178664

Rabbit monoclonal anti-Phospho-Histone

H3

Cell Signaling Technology Cat# 3465; RRID: AB_10695860

Rabbit monoclonal anti-Vimentin Cell Signaling Technology Cat# 9854; RRID: AB_10829352

Rabbit monoclonal anti-Collagen I Abcam Cat# ab215969

Mouse monoclonal anti-Collagen IV Thermo Fisher Scientific Cat# 51-9871-82; RRID: AB_10853027

Rabbit monoclonal anti-EGFR Cell Signaling Technology Cat# 5108; RRID: AB_10694337

Rabbit monoclonal anti-CK8 Abcam Cat# ab192467; RRID: AB_2864346

Trastuzumab Genentech N/A

RPPA Antibodies MD Anderson Cancer Center Functional

Proteomics RPPA Core Facility

https://www.mdanderson.org/

research/research-resources/

core-facilities/functional-proteomics-

rppa-core/antibody-information-

and-protocols.html

nCounter Vantage 3D Protein Solid Tumor

Panel for FFPE (D) Antibodies

Nanostring https://www.nanostring.com/

wp-content/uploads/2021/01/

LBL-10372-03_nCounter_

Vantage_3D_Protein_Solid_

Tumor_Panel_D_Probe_List_FFPE.xlsx

Biological samples

Universal Human Reference RNA Agilent Technologies Cat# 740000

Chemicals, peptides, and recombinant proteins

Human Epidermal Growth Factor Sigma-Aldrich Cat# SRP3027

Human Epidermal Growth Factor Cell Signaling Technology Cat# 8916

Tris Buffered Saline-Tween (with 0.05%

Tween-20, pH 7.4)

Boston Bioproducts Cat# IBB-181R

McCoy’s 5A (Modified) Medium Thermo Fisher Scientific Cat# 16600082

Fetal Bovine Serum Thermo Fisher Scientific Cat# 10082147

Alexa Fluor 647 NHS Ester (Succinimidy

Ester)

Thermo Fisher Scientific Cat# A37566
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Glucose Oxidase Sigma-Aldrich Cat# G2133–50KU

Catalase Sigma-Aldrich Cat# C100-50MG

Dextrose (D-Glucose), Anhydrous Fisher Scientific Cat# D16–500

Cysteamine Sigma-Aldrich Cat# 30070

Hematoxylin, ready-to-use Dako/Agilent Cat# S330130-2

Antigen Retrieval Citra Plus Solution (10x

Concentrated)

BioGenex Cat# HK0809K

Peroxidase and Alkaline Phosphatase

Blocking Reagent (Dual Endogenous

Enzyme-Block)

Dako/Agilent Cat# S2003

AEC Substrate Kit, Peroxidase (HRP), (3-

amino-9-ethylcarbazole)

Vector Laboratories Cat# SK-4200

Mol Bio Grad Ethanol (200 proof) Sigma-Aldrich Cat# E7023-500ML

Citrate Monohydrate Sigma-Aldrich Cat# C1909; CAS: 5949-29-1

Target Retrieval Solution, pH 9 (10X) Agilent Cat# S236784-2

Phosphate Buffered Saline (10X) Fisher Scientific Cat# BP39920

Normal Goat Serum Vector Laboratories Cat# S-1000

Bovine Serum Albumin Sigma-Aldrich Cat# A7906

SlowFade Gold Antifade Mountant with

DAPI

Thermo Fisher Scientific Cat# S36938

Sodium Hydroxide (Pellets) Fisher Scientific Cat# S318-500; CAS: 1310-73-2

Hydrogen peroxide solution, 30% (w/w) Sigma-Aldrich Cat# H1009-500ML; CAS: 7722-84-1

Paraformaldehyde Electron Microscopy Sciences Cat# 15714; CAS: 30525-89-4

Glutaraldehyde Electron Microscopy Sciences Cat# 16120; CAS: 11-30-8

Sodium cacodylate Electron Microscopy Sciences Cat# 12300; CAS: 124-65-2

Sucrose J.T. Baker Cat# 4072; CAS: 57-50-1

Osmium tetroxide Ted Pella, Inc. Cat# 18463; CAS: 20816-12-0

Potassium ferricyanide Sigma-Aldrich Cat# 702587; CAS: 13746-66-2

Thiocarbohydrazide Sigma-Aldrich Cat# 223220; CAS: 2231-57-4

Uranyl acetate Electron Microscopy Sciences Cat# 22400; CAS: #541-09-3

Lead nitrate Electron Microscopy Sciences Cat# 17900; CAS: 10099-74-8

Aspartic acid Sigma-Aldrich Cat# 11195; CAS: 323194-76-9

Acetone Electron Microscopy Sciences Cat# 10014; CAS: 67-64-1

EMbed 812 Embedding Kit with BDMA Electron Microscopy Sciences Cat# 14121

Critical commercial assays

nCounter FLEX analysis system Nanostring https://www.nanostring.com/products/

ncounter-analysis-system/flex-system/

nCounter Vantage 3D Protein Solid Tumor

Panel for FFPE (D)

Nanostring Cat# VPODC-SPKP-HSTF-12

Agencourt AMPure XP PCR Purification

Beads

Beckman-Coulter Cat# A63880

2100 Bioanalyzer High Sensitivity DNA Kit Agilent Cat# 5067-4626

KAPA HyperPrep Kit Roche Cat# KR8500

KAPA HiFi Hotstart PCR master mix Roche Cat# KK8500

Qubit 3 HS dsDNA Assay Kit Thermo Scientific Cat# Q33231

xGen Hybridization and Wash Kit IDT Cat# 1080584

TruSeq RNA Library Prep Kit Illumina Cat# 20020189

Tempus xE Tempus Labs, Inc. https://www.tempus.com/

genomic-profiling/
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GeneTrails Solid Tumor Panel OHSU Knight Diagnostic Laboratories https://knightdxlabs.ohsu.edu/

home/test-details?id=GeneTrails+

Comprehensive+Solid+Tumor+Panel

Reverse Phase Protein Array MD Anderson Cancer Center Functional

Proteomics RPPA Core Facility

https://www.mdanderson.org/

research/research-resources/

core-facilities/functional-

proteomics-rppa-core.html

QIAamp DNA FFPE Tissue Kit QIAGEN Cat# 56404

DNeasy Blood & Tissue Kit QIAGEN Cat# 69504

NucleoSnap cfDNA Kit Macherey-Nagel Cat# 740300.10

SureSelectXT Reagent Kit, HiSeq Platform Agilent Technologies Cat# G9611B

SureSelectXT Human All Exon V5, 96 Agilent Technologies Cat# 5190-6209

Deposited data

gnomAD 89 https://gnomad.broadinstitute.org/

Human reference genome UCSC hg19

(GRCh37/hg19)

Genome Sequencing Consortium https://genome.ucsc.edu/

cgi-bin/hgGateway

GENCODE 102 https://www.gencodegenes.org/

Raw next-generation sequencing data This work. https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?

study_id=phs002371.v1.p1

TCGA BRCA gene expression 100 https://osf.io/gqrz9

MSigDB 18 https://www.gsea-msigdb.org/

gsea/msigdb/

Processed next-generation sequencing

data

This work. Participant ID: HTA9_1; https://

htan-portal-nextjs.vercel.app/explore

Protein expression data from RPPA and the

Intracellular Signaling Protein Panel

This work. Participant ID: HTA9_1; https://

htan-portal-nextjs.vercel.app/explore

Raw and processed image data fromCycIF,

mIHC, and EM

This work. Participant ID: HTA9_1; https://

htan-portal-nextjs.vercel.app/explore

Processed images (web viewing) This work. Participant ID: HTA9_1; https://

idp.tissue-atlas.org/

Experimental models: Cell lines

Human MCF7 Characterized Cell Line Core (MDACC) https://www.atcc.org/products/

all/HTB-22.aspx; RRID: CVCL_0031

Human MDA-MB-468 Characterized Cell Line Core (MDACC) https://www.atcc.org/products/

all/HTB-132.aspx; RRID: CVCL_0419

Human MDA-MB-231 ATCC https://www.atcc.org/products/

all/HTB-26.aspx#generalinformation;

RRID: CVCL_0062

Human BT474 ATCC https://www.atcc.org/products/

all/HTB-20.aspx; RRID: CVCL_0179

Human HCC1954 ATCC https://www.atcc.org/products/crl-2338;

RRID: CVCL_1259

Human SKBR3 ATCC RRID: CVCL_0033; https://www.atcc.org/

products/htb-30

HCC1143 ATCC RRID: CVCL_1245; https://www.atcc.org/

products/crl-2321

HCC3153 UT-Southwestern RRID: CVCL_3377

T47D ATCC RRID: CVCL_0553; https://www.atcc.org/

products/htb-133

AU565 ATCC RRID: CVCL_1074; https://www.atcc.org/

products/crl-2351
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MDAMB436 ATCC RRID: CVCL_0623; https://www.atcc.org/

products/htb-130

Oligonucleotides

See Table S2 This paper N/A

Software and algorithms

LabVantage LabVantage Solutions Inc. https://www.labvantage.com/

LabKey 74 https://www.labkey.com/

Removal of Unwanted Variation (RUV-III) 111 https://cran.r-project.org/package=ruv

Removal of Unwanted Variation (RUVSeq) 105 https://bioconductor.org/packages/

release/bioc/html/RUVSeq.html

MATLAB MathWorks https://www.mathworks.com/

products/matlab.html

syngo.via Siemens Healthcare GmbH https://www.siemens-

healthineers.com/en-us/

molecular-imaging/pet-ct/syngo-via

Horos Nimble Co LLC https://horosproject.org/download-horos/

Cluster 3.0 110 http://bonsai.hgc.jp/�mdehoon/software/

cluster/software.htm

TreeView 109 http://jtreeview.sourceforge.net/

MATLAB, Computer vision toolbox MathWorks https://www.mathworks.com/help/vision/

SURF algorithm (for MATLAB) 113 https://www.mathworks.com/help/vision/

ref/detectsurffeatures.html

ImageJ 81 https://imagej.nih.gov/ij/

RGB to CMYK (FIJI Plugin) 81 https://imagej.net/tutorials/rgb-to-cmyk

CellProfiler 3.0 114 https://cellprofiler.org/

FCS Express Image Cytometry RUO DeNovo Software https://denovosoftware.com/

mpileup (Samtools) 90 http://samtools.sourceforge.net/

BWA-MEM 87 http://bio-bwa.sourceforge.net/

GATK 88 https://gatk.broadinstitute.org/hc/en-us

Galaxy 75 https://galaxyproject.org/

ape 91 http://ape-package.ird.fr/

CNVkit 92 https://github.com/etal/cnvkit

Trim Galore Babraham Institute https://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/

Kallisto 101 https://github.com/pachterlab/kallisto

tximport 103 https://bioconductor.org/packages/

release/bioc/html/tximport.html

SVA/Combat 106 https://bioconductor.org/packages/

release/bioc/html/sva.html

GSVA 17 https://www.bioconductor.org/

packages/release/bioc/html/GSVA.html

Pathway Commons 24 https://www.pathwaycommons.org/

Transcriptional Regulator Analysis This work. https://dx.doi.org/10.5281/zenodo.

5608590

CausalPath 25 https://causalpath.org/; https://github.

com/PathwayAndDataAnalysis/causalpath

Neoepiscope 93 https://github.com/pdxgx/neoepiscope

OptiType 94 https://github.com/FRED-2/OptiType

MHCflurry 95 https://github.com/openvax/mhcflurry

DIDA-Seq Error Correction Scripts 14 https://github.com/ohsu-cedar-

comp-hub/DIDA-Seq
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R 3.6 R Foundation for

Statistical Computing

https://www.R-project.org/

DIDA-Seq Bayesian Overlap Script 97 https://github.com/mheskett/SMMART

Zen 2.3 Slidescan Zeiss https://www.zeiss.com/microscopy/us/

products/microscope-software.html

Cellpose 117 https://github.com/MouseLand/cellpose

ComBat 118 https://doi.org/10.1093/biostatistics/

kxj037

scanpy 119 https://github.com/theislab/scanpy

SciPy 122 https://github.com/scipy/scipy

Umap https://arxiv.org/abs/

1802.03426

https://github.com/lmcinnes/umap

napari 121 https://zenodo.org/record/3555620

OMERO 76 https://www.openmicroscopy.org/omero/

Cyclic Immunofluorescence Analysis This work. https://dx.doi.org/10.5281/zenodo.

5637447

maps2ometiff This work. https://dx.doi.org/10.5281/zenodo.

5608828

em_segmentation https://doi.org/10.1101/2021.05.27.

446019

https://github.com/archana2890/

em_segmentation

Microscopy Image Browser 82 http://mib.helsinki.fi/

Amira Software Thermo Fisher Scientific https://www.thermofisher.com/

us/en/home/electron-microscopy/

products/

software-em-3d-vis/amira-software.html

Dragonfly Object Research Systems https://www.theobjects.com/dragonfly/

IrfanView Irfan Skiljan https://www.irfanview.com/

Maps Software Thermo Fisher Scientific https://www.thermofisher.com/

us/en/home/electron-microscopy/

products/

software-em-3d-vis/maps-software.html

ichorCNA 99 https://github.com/broadinstitute/

ichorCNA

microManager 83 https://micro-manager.org/

Download_Micro-Manager_

Latest_Release

Matlab packages for raw PALM/STORM

image data processing

84 https://www.ohsu.edu/school-

of-medicine/nan-lab/resources

Other

Signature Series Cover Glass Thermo Fisher Scientific Cat# 12460S

Microscope Slides Mercedes Scientific Cat# TNR WHT45AD

Plastic Coverslips IHC World Cat# IW-2601

Rectangular Cover Glass Corning Cat# 2980-243, 2980-245

Nunc Lab-Tek II Chambered Coverglass Thermo Fisher Scientific Cat# 155409

SEM pin stub Ted Pella, Inc. Cat# 16145

Leitsilber conductive paint Ted Pella, Inc. Cat# 16035

H20E Epo-TEK Silver conductive epoxy Ted Pella, Inc. Cat# 16014

Fisherbrand Transfer pipettes Fisher Scientific Cat# 13-711-7M

Axygen Centrifuge microtubes Fisher Scientific Cat# 14-222-180

Cytivia Whatman filter paper Fisher Scientific Cat# 1001-090

Flat embedding mold Ted Pella, Inc. Cat# 10504
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REAGENT or RESOURCE SOURCE IDENTIFIER

Helios NanoLab G3 DualBeam FIB-SEM FEI Company (now Thermo Fisher

Scientific)

https://www.thermofisher.com/

us/en/home/electron-

microscopy/products/

dualbeam-fib-sem-microscopes.html

Gemini 550 Crossbeam FIB-SEM ZEISS International https://www.zeiss.com/

microscopy/us/products/

fib-sem-instruments/crossbeam.html

Ultramicrotome Leica EM UC7 Leica Microsystems https://www.leica-

microsystems.com/products/

sample-preparation-for-

electron-microscopy/p/leica-em-uc7/

Trim90 diamond knife DiATOME https://www.diatomeknives.com/

product.aspx?pid=416

EM ACE600 High Vacuum Sputter Coater Leica Microsystems https://www.leica-

microsystems.com/products/

sample-preparation-for-

electron-microscopy/p/l

eica-em-ace600/

Managed workforce (800 hours) CloudFactory https://www.cloudfactory.com/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Joe Gray

(grayjo@ohsu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability

dRaw data generated by next-generation sequencing platforms have been deposited at dbGaP and are publicly available as of

the date of publication. The project accession number is listed in the key resources table. Processed next-generation sequencing

data, protein expression data, as well as raw and processed image data have been deposited with the HTAN Data Coordinating

Center. They are publicly available through theHTANData Portal as part of the HTANOHSUAtlas as of the date of publication. The

case number is listed in the key resources table. Processed images are also available for web-based viewing through the HTAN

Imaging Data Portal as of the date of publication. The case number is listed in the key resources table. This paper also analyzes

existing, publicly available data. The sources for these datasets are listed in the key resources table.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. DOIs are listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
This study was approved by the Oregon Health & Science University (OHSU) Institutional Review Board (IRB). All biospecimens and

data were acquired and analyzed under the OHSU IRB-approved protocols Molecular Mechanisms of Tumor Evolution and Resis-

tance to Therapy (IRB#16113) and Reconstructing the Tumor Genome in Peripheral Blood (IRB#10163). Participant eligibility was

determined by the enrolling physician and informed written consent was obtained from all subjects. This study includes a single

64 year-old female woman (HTAN participant ID HTA9_1).

Cell lines
Cell line SKBR3 was cultured in McCoy’s 5A (modified) Medium supplemented with 10% Fetal Bovine Serum (FBS). For cell lines

used as controls for the Intracellular Signaling Protein Panel, MCF7, and MDAMB468 were acquired from the Characterized Cell
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Line Core (CCLC) whileMDAMB231, BT474, andHCC1954were acquired from the American Type Culture Collection (ATCC). MCF7,

MDAMB468, and MDAMB231 were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% FBS. BT474 was cultured in

ATCC Hybri-Care Medium with 10% FBS. HCC1954 was cultured in Roswell Park Memorial Institute 1640 (RPMI1640) with 10%

FBS. For cell lines used as controls during CycIF, HCC1143, T47D, BT474, AU565, and MDAMB436 were acquired from the

ATCC while HCC3153 was acquired from UT-Southwestern. MDAMB436 was cultured in DMEM with 10% FBS. BT474,

HCC1143, T47D, AU565, and HCC3153 were cultured in RPMI1640 with 10% FBS. All cell lines were derived from human female

breast cancers, incubated in 5% CO2 at 37�C, and grown to near confluency. Genomic DNA was extracted from each cell line using

DNeasy Blood and Tissue Kits (QIAGEN) and submitted to either Labcorp Cell Line Testing (Genetica) or the MD Anderson Cytoge-

netics and Cell Authentication Core (CCAC) for short tandem repeat (STR) analysis. Cell line identities were confirmed by comparison

with reference STR profiles from the ATCC, DSMZ STR, or CCAC database.

METHOD DETAILS

Clinical decision making
All clinical decisions were the treating physicians’ discretion, with reference to clinical analytics results, established treatment guide-

lines, appropriate data from clinical trials, and input from an IRB-approved multidisciplinary tumor board. Research Use Only (RUO)

data from exploratory analytics were not used for clinical decision making. In Phase 1, palbociclib and fulvestrant were used as the

standard frontline for progression on adjuvant aromatase inhibitors. Everolimus was added due to rising tumor markers and clinical

concern for symptomatic progression as well as emerging data from the TRINITI-1 trial that suggested PI3K/AKT/mTOR pathway

targeting along with CDK4/6 to prevent resistance.72 In Phase 2, doxorubicin was introduced to counter progressive disease. Pem-

brolizumab was added to doxorubicin based on emerging data from the TONIC trial suggesting that anthracyclines (and platinum)

were the best immunotherapy combination.73 In Phase 3, doxorubicin was replaced with capecitabine to counter progressive dis-

ease. Enzalutamide was added because of increased high expression of AR. Fulvestrant was added to counter persistent ER

signaling. Pembrolizumab was continued since it was well-tolerated in Phase 2. Carboplatin was introduced in Phase 4 to counter

disease progression.

Drugs given to moderate aspects of therapy-induced toxicities included (a) denosumab to reduce risk of skeletal related events

due to bone metastases; (b) pegfilgrastim to stimulate production of neutrophils; and (c) hydroxychloroquine for suspected drug-

induced amyopathic dermatomyositis as recommended by dermatology.

Radiology
FDG-PET/CT imaging was performed according to the standard institutional protocol, with patients fasting for 6 hours following 24

hours of rest. Prior to the examination and FDG injection, blood glucose levels were confirmed to be less than 200mg/dL. The patient

received a dose of 18F-FDG of 370 to 555 MBq (10–15 mCi) on the basis of body weight. After an uptake period of 90 minutes, a ver-

tex-to-mid-thigh FDG-PET/CT scan was performed using 3min/bed position on a CTI Biograph duo PET/CT scanner (SiemensMed-

ical Systems, Hoffman Estates, Illinois, USA) or a CTI Biograph TruePoint 40 PET/CT scanner (Siemens Medical Systems, Knoxville,

Tennessee, USA). CT imaging was performed according to the standard institutional protocol from clavicles to mid-thigh on a Phillips

Brilliance CT 128slice helical scanner (Philips Medical Systems, Amsterdam, NE).

Clinical and exploratory workflows
All blood and metastatic biopsy biospecimens used in this study were prospectively collected by trained study coordinators. Pres-

ervation procedures for biopsy tissue were started within two to fiveminutes of removal of tissue from the patient in order to preserve

the molecular and architectural features of the tumor that may quickly degrade. Clinical analytics were performed in CLIA-certified,

CAP-accredited laboratories. RUO exploratory analyses were performed in academic research laboratories or core facilities. Both

manual and automated abstraction from the patient’s medical record were used to generate the clinical metadata, including detailed

information about anticancer treatments and supportive care for integration with the analytic results.

Biospecimens were tracked andmanaged using a custom implementation of the LabVantage laboratory information management

system. The LabKey systemwas used to store and visualize both clinical data and analytic results.74 TheGalaxy computational work-

bench was used to create and run multi-step analysis workflows that process raw omics and imaging datasets.75 The OMERO sys-

tem was used to visualize multiplex imaging and electron microscopy datasets.76

GeneTrails� solid tumor panel
Formalin-fixed biopsy tissue was submitted to the CLIA-certified/CAP-accredited OHSU Knight Diagnostic Laboratories for targeted

DNA sequencing with the clinical GeneTrails Solid Tumor Panel assay. There, genomic DNA was extracted from macro-dissected,

tumor-rich regions of FFPE. Next-generation sequencing libraries were prepared using custom QIASeq chemistry (QIAGEN) with

multiplexed PCR and sequenced on an Illumina NextSeq500/550. The DNA library was generated by 9,229 custom-designed primer

extension assays covering 613,343 base pairs across 225 cancer-related genes (including whole exons of 199 genes and hotspot

regions of 26 genes). This panel is routinely sequenced to an average read depth of >2,000, providing high sensitivity for SNVs, short

insertions/deletions, and copy number alterations. All variants identified were reported out clinically.
e8 Cell Reports Medicine 3, 100525, February 15, 2022
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Blood collection and DNA isolation
Up to 40 mL (range 6–40 mL) of blood were collected in 5 3 6-mL or 4 3 10-mL, purple-capped EDTA tubes. Consistent with pub-

lished recommendations, blood plasma was isolated within 6 hours of collection by first spinning whole blood at 1000g for 10 min,

separating the top plasma layer into 1mL aliquots, then spinning those aliquots at 15,000g for 10 min, transferring the supernatant to

cryovials, and storing at �80�C.77 DNA extraction of tumor tissue from FFPE was carried out using QIAamp DNA FFPE Tissue Kit

(QIAGEN). DNAwas extracted from plasma using the NucleoSnap cfDNA kit (Macherey-Nagel) and from buffy coat using the DNeasy

Blood & Tissue Kit (QIAGEN). DNA isolated from both FFPE samples and buffy coat were fragmented by sonication to 150 bp using a

Covaris E220 prior to library preparation.

Whole exome sequencing
Sequencing libraries were prepared from 100-500 ng of cell free DNA (cfDNA) or sonicated genomic DNA using the KAPAHyper-Prep

Kit (KAPA Biosystems), enriched using the SureSelectXT Target Enrichment System (Agilent Technologies) and the SureSelectXT

Human All Exon V5 capture baits (Agilent Technologies). Next generation sequencing was carried out using the Illumina NextSeq500

or HiSeq 2500 platform with 2x79-144 cycles by the OHSU Massively Parallel Sequencing Shared Resource to an average depth of

100x per library replicate. For Bx3 and Bx4 only, DNA isolated from both FFPE samples and buffy coat were submitted to Tempus

Labs, Inc. for whole exome sequencing (WES) with the Tempus xE assay (Tempus Labs, Inc., Chicago, IL, USA).

Dual index degenerate adaptor sequencing
Bait Design: Single nucleotide variants (SNVs) were filtered by frequency (>5% in the tumor and <2% in the matched normal) and

depth (>30x in the tumor and >15x in a patient-matched matched buffy coat normal). A set of 20–40 SNVs per tumor tissue sample

were then hand-selected for bait design based on high variant allele frequency (VAF) and potential clinical relevance. In total, 55 mu-

tations were selected with varying presence across the primary tumor and all four biopsies, to monitor longitudinal blood draws for

the presence of tumor-derived circulating tumor DNA (ctDNA). Biotinylated oligonucleotides (IDT, Coralville, IA, USA) matching the

120bp UCSC GRCh37/hg19 human genome reference sequence spanning each mutation were synthesized for use as baits in hy-

bridization capture library preparation (Table S2). Oligonucleotides for mutations in INVS and LILRA3 were eventually discarded for

inconsistent coverage and high error rates.

Library Preparation: Dual Index Degenerate Adaptor Sequencing (DIDA-Seq) error-correction libraries were created using the

KAPA Biosystems HyperPrep kit (KAPA Biosystems) using at least 30 ng of cell-free DNA (cfDNA) as input as previously described,14

using a single over-night capture incubation instead of two incubations. Briefly, DIDA-Seq adaptors (Table S2) were ligated to ex-

tracted cfDNA using KAPA Hyper Prep Reagents and protocol (with 16�C overnight incubation) and then PCR amplified for 8 cycles

using library amplification primers (Table S2). Approximately 250 ng of amplified libraries were pooled (4–5 libraries per pool) and

overnight hybridization capture and purification was carried out using the xGen Hybridization and Wash kit (IDT, Coralville, IA,

USA). Libraries were then PCR amplified for 10 cycles as before. Amplified libraries were then purified 1:1 with Agencourt AMPure

XP beads (Beckman-Coulter) and assessed using the 2100 Bioanalyzer system (Agilent Technologies, Santa Clara, CA, USA) High

Sensitivity dsDNA kit. Samples were then sequenced on either the Illumina HiSeq 2500, paired-end 100 bp with dual 14-bp indexing

cycles (high-capacity, rapid runmode) or the Illumina NextSeq 500, paired-end 75 bpwith dual 14-bp indexing cycles (high-capacity,

150-cycle kit).

Low-pass whole genome sequencing
Low-PassWholeGenomeSequencing (LP-WGS) libraries were preparedwith 50 ng of sonicated tumor DNA (extracted fromFFPE as

described above) and patient-matched buffy coat DNA using the KAPA Hyper-Prep kit (KAPA Biosystems) with Illumina single index

TruSeq adaptors (IDT, Coralville, IA, USA) and sequenced on the Novaseq S4 platform (Illumina) to 0.9X mean coverage.

Whole transcriptome sequencing
Library construction and sequencing: RNA was extracted from macro-dissected, tumor-rich regions of FFPE at the OHSU Knight

Diagnostic Laboratories. Sequencing libraries are constructed with the TruSeq RNA Library Prep Kit, followed by sequencing on Il-

lumina NextSeq500. A Universal Human Reference RNA (UHR; Agilent Technologies) was sequenced with each batch of samples to

allow for assessment and removal of technical artifacts (due to, e.g., library preparation).

Reverse phase protein arrays
Tumor tissue collected from core needle biopsies was flash frozen in liquid nitrogen within two to five minutes of removal from the

patient and stored at �80�C. Frozen tissue was then submitted to the MD Anderson Cancer Center Functional Proteomics RPPA

Core for proteomic profiling of the abundances of 450 proteins and phosphoproteins with the Reverse Phase Protein Array

(RPPA) assay.21,22

Intracellular signaling protein panel
TheGeneTrails� Intracellular Signaling Protein Panel is an assay validated for clinical usewithin the Knight Diagnostic Laboratories at

OHSU. It utilizes the NanoString nCounter Vantage 3D Solid Tumor Panel for FFPE, including 23 antibodies, with 12 targeting
Cell Reports Medicine 3, 100525, February 15, 2022 e9
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phosphorylated proteins, specifically designed to interrogate theMAPK and PI3K/mTOR signaling pathways (Table S2).23 This multi-

plexed panel allows for the simultaneous quantification of multiple proteins from a single section of FFPE tissue. Four micrometer

FFPE sections from six control cancer cell lines [MCF7, MDA-MB-468, MDA-MB-231, BT474, HCC1954, and human Epidermal

Growth Factor (Sigma-Aldrich) treated MDA-MB-468] and tumor biopsy tissue were deparaffinized in Xylene, 100% ethanol, and

95% ethanol sequentially and subjected to citrate-based antigen retrieval (pH6.0) in a high-pressure cooker. Samples were blocked

with blocking buffer (Buffer W) for 1 hour and incubated overnight at 4�C with the cocktail of target-specific oligonucleotide-tagged

antibodies. After washing with TBS-T buffer, the oligo-tags were released by UV light (3 minutes on a UV lightbox) and hybridized

overnight with NanoString’s four color-barcoded probe tagsets. Hybridized codesets (oligo target + probe tagset) were bound

and immobilized to the nCounter cartridge during purification process. Target protein expression levels were semi-quantitatively

measured with codeset molecule counts using the NanoString nCounter FLEX analysis system. Six cancer cell lines were selected

as positive controls and were included on every run to assess antibody and control performance and to correct for batch effects.

Multiplex immunohistochemistry
Immunohistochemical staining: Glass mounted FFPE tissue sections (5 mm) were baked at 60�C for 60 minutes, deparaffinized with

xylene, and rehydrated in serially graded alcohols, then place in distilled water. Slides were stained with hematoxylin (Dako) for 1min-

ute, mounted with 1x Tris Buffered Saline-Tween (TBST) buffer (Boston Bioproducts), coverslipped with Signature Series

Cover Glass (Thermo Scientific), and subjected to whole slide digital scanning at 20x magnification using an Aperio ImageScope

(Leica Biosystems). Slides were de-coverslipped with 1 min of agitation in TBST and subjected to heat-mediated antigen retrieval

in 1x pH 6.0 citrate buffer (Biogenex Laboratories) for 20 min at 95�C, followed by blocking of endogenous peroxidase activity

with Peroxidase and Alkaline Phosphatase Blocking Reagent (Dako, per manufacturer’s instructions). Slides were then subjected

to 12 cycles of multiplex immunohistochemistry (mIHC), each cycle consisted of either 1 or 2 rounds of IHC. Each round consisted

of application of primary antibody, HRP-linked secondary antibody (Histofine Simple StainMax PO, Nacalai USA, 414311F, 414144F,

414134F), and HRP-mediated development of AEC chromogen (Vector Laboratories, SK4200), followed by whole slide scanning.

Citrate antigen retrieval was used between cycles to remove primary antibodies, and HRP inactivation was used between rounds

(Dako, S2003, per manufacturer’s instructions) to eliminate HRP carry-over as described previously.27,28 Several antibody panels

(and variations thereof) were utilized for the current study (Table S2). Each mIHC antibody panel required one FFPE tissue specimen,

thus, in instances where more than one antibody panel was used on a single timepoint (e.g., PT, Bx1, and Bx2), serial sections

were used. In all other instances (e.g., Bx3 and Bx4), only one FFPE tissue section was used for one antibody panel (Discovery).

Where IHC and chromogenic staining did not pass QC, they were not included in analysis: e.g., PD-L1 and CSF1R on the myeloid

panel, and CD68 and ICOS on the functional panel(s). Several antibodies were not common across all or some panels, thus not

included in results: IDO on functional panel (Bx1), Tryptase on myeloid panel (Primary, Bx1 and Bx2), RORyT and GATA3 on the

lymphoid panel (primary, Bx1, and Bx2), and CCR2, HLA class-I, CD169, CD11b, and CD11c on the discovery panel (23 antibodies)

(Bx3 and Bx4).

Cyclic immunofluorescence
Immunofluorescence analysis of tumor tissue: FFPE biopsy tissues and control biospecimens prepared from normal breast tissue,

tonsil, and six cell lines representing basal-like (HCC1143, HCC3153), claudin-low (MDAMB436), luminal (T47D), and HER2 positive

(BT474, AU565) breast cancers were sectioned at 4 mm and mounted on adhesive microscope slides (Mercedes Scientific). The

slides were baked overnight in an oven at 55�C (Robbin Scientific, Model 1000) and an additional 30 minutes at 65�C (Clinical Sci-

entific Equipment, NO. 100). Tissues were deparaffinized with xylene and rehydrated with graded ethanol baths. Two step antigen

retrieval was performed in the Decloaking Chamber (Biocare Medical) using the default settings. After completion of the first step in

10 mM citrate buffer pH 6 (Sigma-Aldrich) in the chamber, slides were further incubated in pre-boiled Target Retrieval Solution, pH 9

(Agilent) for 15 minutes. Slides were then washed in two brief changes of deionized water (diH2O) for�2 seconds and once for 5 mi-

nutes in 1x phosphate buffered saline (PBS), pH 7.4 (Fisher Scientific). Sections were blocked in 10% normal goat serum (NGS, Vec-

tor Laboratories), 1% bovine serum albumin (BSA, Sigma-Aldrich) in PBS for 30 minutes at 20�C in a humid chamber, followed by

PBS washes. Direct labeled primary antibodies (Table S2, key resources table) were diluted in 5% NGS, 1% BSA in 1x PBS and

applied overnight at 4�C in a humid chamber, covered with plastic coverslips (IHC World). Following overnight incubation, tissues

were washed 3 3 10 min in 1x PBS. Rectangular Cover Glass (Corning) were mounted in SlowFade Gold Antifade Mountant plus

DAPI mounting media (Thermo Fisher Scientific).

Fluorescence Microscopy: Fluorescently stained slides were scanned on the Zeiss AxioScan.Z1 (Zeiss, Germany) with a Colibri 7

light source (Zeiss). The filter cubes used for image collection were DAPI (Zeiss 96 HE), Alexa Fluor 488 (AF488, Zeiss 38 HE), AF555

(Zeiss 43 HE), AF647 (Zeiss 50), and AF750 (Chroma 49007 ET Cy7). The exposure time was determined individually for each slide

and stain to ensure good dynamic range but not saturation. Full tissue scans were taken with the 20x objective (Plan-Apochromat

0.8NA WD = 0.55, Zeiss), and stitching was performed in Zen Blue image acquisition software (Zeiss).

Quenching Fluorescence Signal: After successful scanning, slides were soaked in 1x PBS for 10–30 minutes in a glass Coplin jar,

waiting until the glass coverslip slid off without agitation. Quenching solution containing 20 mM sodium hydroxide (NaOH) and 3%

hydrogen peroxide (H2O2) in 1x PBSwas freshly prepared from stock solutions of 5 MNaOH and 30%H2O2, and each slide placed in

10 ml quenching solution. Slides were quenched under incandescent light, for 30 minutes for FFPE tissue slides. Slides were then
e10 Cell Reports Medicine 3, 100525, February 15, 2022
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removed from the chamber with forceps and washed times for 2 min in 1x PBS. The next round of primary antibodies was applied,

diluted in blocking buffer as previously described, and imaging and quenching were repeated over ten rounds for FFPE tissue slides.

Scanning electron microscopy
Sample Fixation:41,78 Tumor tissue for scanning electronmicroscopy (SEM) was collected at the time of biopsy and placed into SEM-

specific fixative (2.5% paraformaldehyde, 2.5% glutaraldehyde in 0.1M sodium cacodylate buffer) as rapidly as possible to preserve

tissue ultrastructure. Tissues were then stored in fixative at 4�C indefinitely until processing could take place. No tissue was available

for SEM from Bx3.

Sample Preparation:41,79 Tissue samples were prepared for SEM by post-fixation heavy metal infiltration followed by epoxy-resin

embedding with the EMbed 812 Embedding Kit. Heavy metal staining using osmium tetroxide, uranyl acetate, and lead aspartate

provided contrast for imaging by dissociating the metals and allowing them to bind to lipids and proteins within cellular membranes

and organelles. After staining and resin embedding, polymerized blocks were mounted directly to SEM pin-style stubs (Ted Pella,

Inc.) and trimmed to create a flat surface using a Ultramicrotome Leica EMUC7 (LeicaMicrosystems) equipped with trim 90 diamond

knives (DiATOME). Mounted blocks were conductively coated with 8-nm carbon using an EM ACE600 High Vacuum Sputter Coater

(Leica Microsystems).

Imaging:41,80 Two-dimensional large-format SEM maps were collected on trimmed block faces using a Helios NanoLab G3 Dual-

BeamTM (FEI) focused ion-beam-scanning electron microscope (FIB-SEM) equipped with the Thermo Scientific Maps Software

package. Using this software for automation, hundreds of tiled images were collected over the entire block surface and stitched

together, creating a pyramidal viewing architecture that provides observations starting at the millimeter-scale and zooms all the

way down to 4-nm/pixel spatial resolution. Imaging conditions were 3 keV, 200–400 pA, 4-mm working distance, and 3 ms dwell

time using the concentric backscatter detector (CBS). A custom script converts these large maps from TIFF into OME-TIFF format

(maps2ometiff, part of the ometiff_converters library) for web-based viewing and sharing via OMERO.76

Regions of interest for three-dimensional electron microscopy (3DEM) were selected from the high-resolution maps. Three sepa-

rate 3DEM datasets collected using FIB-SEM technology were generated using vendor-specific automated serial-sectioning soft-

ware: two high-resolution, small volumes (4-nm/voxel, 25 3 20 3 6–10 mm3) on each respective biopsy and one lower resolution,

larger volume (10-nm/voxel, 48 3 48 3 17 mm3). The high-resolution image stacks were collected using the aforementioned Helios

FIB-SEM with the same electron beam conditions and the In-Column Detector (ICD). The large volume was collected from the pre-

treatment biopsy using a Gemini 550 Crossbeam FIB-SEM (ZEISS International), using 1.5 keV, 1.0 nA, 5-mm working distance,

1.6 ms dwell time, and the Energy-Selective Backscatter (EsB) detector.

Segmentation: 2D SEM maps were manually reviewed using ImageJ and IrfanView.81 Segmentation of image stacks was per-

formed manually with the assistance of a CloudFactory managed workforce using Microscopy Image Browser.82 Deep learning

models were utilized for nucleus and nucleoli segmentation on the high-resolution image stacks (em_segmentation; 10.1101/

2021.05.27.446019). 3D reconstruction and movies were created using Amira Software and Dragonfly.

Stochastic optical reconstruction microscopy
Alexa Fluor 647 conjugated trastuzumab was prepared using Alexa Fluor 647 NHS Ester (Thermo Fisher Scientific) and purified ac-

cording to manufacturer recommended procedures; the final dye to antibody conjugation ratio wasmeasured to be around 2:1 using

a UV-Vis spectrometer.

SKBR3 cells were cultured in McCoy’s 5A (Modified) Medium (Thermo Fisher Scientific) supplemented with 10% Fetal Bovine

Serum (Thermo Fisher Scientific). For Stochastic Optical Reconstruction Microscopy (STORM) experiments, the cells were plated

in Nunc Lab-Tek II Chambered Coverglass (Thermo Fisher Scientific) for 36 to 48 hours before labeling and imaging. To prepare

for imaging, the cells were first serum starved overnight (�16 h); on the day of imaging, the cells were treated with 100 nM Alexa Fluor

647 conjugated trastuzumab for�15min, washed with pre-warmed blankmedium, and placed on themicroscope stage for imaging.

Next, fresh STORM imaging buffer was added at 1:1,000 v/v dilution to the medium; the buffer is Phosphate Buffered Saline (PBS)

supplementedwith 0.5mg/mL glucose oxidase (Sigma-Aldrich), 40 mg/mL catalase (Sigma-Aldrich), and 10%D-Glucose (Fisher Sci-

entific); this was followed by addition of 10 mM (final concentration) cysteamine (Sigma-Aldrich). The sample was then explored at

low 647 nm laser power (�100 W/cm2; this avoids unnecessary loss of AF647 due to photobleaching) to identify regions of interest.

Human Epidermal Growth Factor (EGF; Cell Signaling Technology) was diluted from a 1 mg/mL stock in PBS to 10 mg/mL and then

added to the cell culture at 1:100 v/v dilution to yield a final concentration of 10 ng/mL. Image acquisition was initiated right after

adding EGF, as described below. Throughout the imaging process, the cells were kept in an on-stage incubator (TokaiHit) at

37�C with 5% CO2.

The STORM microscope setup was the same as described previously.43 A custom single-molecule fluorescence imaging

setup was built on a Nikon Ti-U microscope frame, with other essential components including an objective lens with high numerical

aperture (Nikon 60x oil, TIRF, NA = 1.49), a 647 nm laser (Coherent OBIS, max output = 140 mW; for exciting and converting AF647

into a dark state), a 405 nm laser (Coherent CUBE; for converting AF647 to fluorescent on-state), and an EM-CCD (Evolve 512 Delta,

Photometrics), as well as other components including dichroic mirrors and emission filters. Image acquisition was performed using

microManager with an EM-CCD gain setting typically set at 300 and the frame acquisition time 8 ms (possible by selecting a small
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region of interest).83 Typical power densities for the 647 nm and the 405 nm lasers were 1–2 kW/cm2 and 1–20 W/cm2, respectively.

Raw STORM images were processed and reconstructed using custom Matlab scripts.84

QUANTIFICATION AND STATISTICAL ANALYSIS

Radiology
Pre- and on-treatment FDG PET/CT studies were reviewed by an expert nuclear medicine physician with analysis performed by a

body imager with 15 years of experience in oncologic imaging. Target lesions were selected by having maximum standard uptake

values (SUVmax) greater than normal mediastinum average (lymph nodes) and greater than background liver SUV (liver lesions)

and were recorded on the pre- and on-treatment scans at the same tumor region. Image analysis was performed using syngo.via

advanced visualization software (Siemens Healthcare GmbH, Erlangen, Germany) and Horos visualization software. All lesions

meeting these criteria were recorded both on FDG-PET/CT and combined with long axis measurements (e.g., liver, splenic, lung le-

sions) and long and short-axis measures (lymph nodes) at all time points during the care of the patient. Variability in themeasurement

of the long axis of each lesion was estimated to be about 20%.85 Change in tumor burden was assessed for each phase of treatment

using RECIST 1.1 criteria.8 All SUVmax measures were normalized by subtracting the mean background SUVmax from the organ of

origin (e.g., mediastinum or liver). The uncertainty in SUVmaxmeasurements was estimated to be up to 18%based on historical test-

retest reproducibility.86

Whole exome sequencing
Somatic mutation calling: sequence read FASTQ data files were aligned to the UCSC GRCh37/hg19 human genome build using

BWA-MEM (0.7.12, GATK, Broad Institute), followed by marking duplicate reads (Mark Duplicates, GATK) and base recalibration

(BQSR, GATK).87,88 Bam files for replicate libraries were merged and somatic variants were called using MuTect2 (4.0.4.0, GATK,

Broad Institute) between tumor or cfDNA and the patient’s matched normal from buffy coat.88 A panel of normal (PON) and the

gnomAD (2.0.1) germline reference resource were used to filter out technical sequencing artifacts and common polymorphisms,

respectively.89 All analysis tools were run using an OHSU Galaxy instance (v17.09).75

Phylogenetic and Clonal Analysis: Mutect2 (GATK) and mpileup (Samtools) were used to call or detect presence of variants across

all samples.88,90 Only sequence reads with base quality greater than 20 and mapping quality greater than 30 were used for mpileup.

Variants with VAF lower than 5%or depth lower than 30 readswere filtered. The R package apewas used for phylogenetic analysis.91

A binary table of variants present across all tumor samples was generated as input. Genetic distance was estimated using the dis-

t.gene function with the pairwise method. Minimum Evolution (ME) fit with ordinary least-squares (OLS) using the FastME function

was used to reconstruct the phylogeny.

Copy Number Analysis: Copy number analysis of WES data was performed with CNVkit (v0.9.4a0) using the tumor/ctDNA aligned

reads (BAM) and a pooled normal reference.92 On- and off-target read depths from each sample weremedian-centered log2 normal-

ized, followed by GC bias correction and repeat masking. Tumor copy ratios were estimated by subtracting the log2-normallized

depths for each bin. Corrected copy ratio profiles were segmented using circular binary segmentation (CBS). Tumor purity estimates

were then used to call each segment’s absolute integer copy number.

Tumor Mutational Burden (TMB) and Neoepitope Prediction: TMB was calculated based on the number of somatic nonsynony-

mous mutations per megabase of the targeted regions. Neoepitopes were identified across all biopsy samples using neoepiscope

v.0.5.0,93 with HLA types predicted for all samples using OptiType v1.3.394 and MHC binding affinities predicted using MHCflurry

v2.0.95 All potential neoepitopes that could arise from each identified mutation were subsequently filtered based on MHC binding

affinity, retaining only neoepitopes with binding affinity <500 nM for at least one patient allele.

Dual index degenerate adaptor sequencing
Error-Correction, Bait Evaluation, and Variant Analysis: The DIDA-Seq computational pipeline was implemented as previously

described,14 based on substantial modification of previous work.96 Indexing reads containingmultiplexing barcodes and degenerate

unique molecular identifiers (UMI) were appended to the read header of each set of paired-end sequencing reads. Next, paired-end

reads were aligned using BWA-MEM87 and UMI families were collapsed to generate consensus sequences (requiring at least three

reads and 90% agreement between reads, otherwise resulting in read omission or an ‘‘N’’ at a given consensus site), which were

output as a FASTQ file. These FASTQ files were then realigned using BWA-MEM,87 3 bases from either end were replaced with

‘‘N’’s, and overlapping reads were collapsed to avoid double-counting. Final BAM files were used for downstream VAF calculation

(mutant allele read count divided by total read count at each site of interest) for each mutation of interest at each timepoint. All hybrid

capture baits were also evaluated using unrelated patient cfDNA samples as negative controls. We sequenced each library to an

average post-error correction depth of 4,000–15,000x for each site of interest and determined the VAF in these negative controls.

Quantification and Analysis: To determine the significance of a given VAF measurement, we compared the mutation-specific VAF

in the patient’s plasma sample data to the VAF of the same site in a set of pooled negative controls (sequenced to an average post

error-correction depth of 100,000X per site, giving an average error rate of 1 in 30,000 reads) as previously described.97 We used a

Bayesian approach to test the null hypothesis that the sample VAF and negative control VAF were generated from the same

distribution using R. To do this, A p value was generated for each site and mutational group of sites (Figure S2E) using the overlap
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coefficient of the beta distributions between the VAF in the sample and VAF in the negative controls.98 Any site with greater than 1%

VAF in the negative controls was omitted from further evaluation. Data points having a p value greater than 0.05 were considered not

statistically different from the negative controls, effectively determining our lower limit of detection given the individual or aggregated

sites’ sequencing depth at each time point.

Low-pass whole genome sequencing
FASTQ files were aligned to the UCSC GRCh37/hg19 human genome build using BWA-MEM,87 and copy number alterations were

called using ichorCNA with window set to ‘‘50000’’.99

Whole transcriptome sequencing
Gene Quantification: Transcript quantification followed the methods described by Tatlow and Piccolo.100 The raw sequence reads

were quality trimmed using TrimGalore, followed by pseudo-alignment and transcription quantification using Kallisto with GENCODE

reference transcriptome (version 24).101,102 Transcript level expression was aggregated to gene level abundance using the R pack-

age tximport yielding expression values for 60554 Ensembl genes.103

Batch Correction: Genes were filtered based on a minimum of 3 transcripts per million (TPM) in at least 3 of 48 samples, which

included 29 ER+ metastatic breast cancer samples and 19 UHR samples. The filtered gene expression matrix (16,364 genes) was

batch corrected by removing unwanted variation (RUV; RUVSeq).104,105 RUV correction uses factor analysis to identify the factors

of unwanted variation observed in theUHR batch control and corrects for them across all samples. RUVSeqwas applied by removing

1 factor (k) using the 5% of genes with the lowest standard deviation. In addition to intra-cohort batch correct, the patient samples

were batch adjusted for analyses comparing to TCGA BRCA.100 TCGA BRCA gene expression matrix was filtered to samples with a

Luminal (A or B) molecular subtype and joined with the RUV corrected patient sample gene expression. The combinedmatrix was log

transformed, filtered to genes with a minimum of 3 log2 TPMs in at least 3 samples, and batched corrected using SVA/ComBat with

TCGA samples set as the reference.106

Molecular Subtype Signature: The PAM50 subtype gene signature was used to classify samples into intrinsic molecular sub-

types.15 A cohort of 20 ER+ and 20 ER- samples was used as the background for classifying the patient samples’ subtypes. The

gene expression matrix using these 40 samples and the patient samples was mean centered and correlated (Spearman) to the

pre-defined centroids from Parker et al.15 The samples were assigned to the molecular subtype with the highest Spearman correla-

tion to the subtype centroid.

Pathway enrichment analysis: Gene set variation analysis (GSVA) was used to estimate pathway enrichment of the MSigDB

Cancer Hallmark Pathways (50 gene sets), All MSigDB Pathways (�20K gene sets), and Reactome Pathway Database (�2K

gene sets).17,18,107 GSVA used a Gaussian kernel for estimating the cumulative density function and the enrichment statistic

was calculated as the difference between the maximum positive/negative random walk deviations. This analysis was applied to

the RUV/ComBat adjusted log2 gene expression matrix that included both TCGA BRCA Luminal Samples and the patient

samples.

Transcriptional regulator networks
Regulatory pathway and molecular interactions network: The regulatory network used to generate enrichment signatures is derived

from the aggregation of publicly available molecular interactions and biological pathway databases provided by the Pathway Com-

mons (PC) resource.24 The aggregated data is represented in the standard Biological Pathway Exchange (BioPAX) language and pro-

vides the most complete and rich representation of the biological network models stored in PC. These complex biochemical reac-

tions were reduced to pairwise relationships using rules to generate a Simple Interaction Format (SIF) representation of BioPAX

interactions. The reduction of BioPAX interactions to the SIF allows for the representation of pairwise molecular interactions in the

context of specific binary relationships. The feature space of the SIF regulatory network was restricted to primary and secondary

downstream interactions for genes within Pathway Commons. The regulatory network was then reduced to edges that are associ-

ated with the binary relationship ‘‘controls-expression-of’’, defined as any reaction where the first protein controls a conversion or a

template reaction that changes the expression of the second protein.

Network weight assignment: Weights are assigned to the protein-protein edges within the graph for each regulator-target pair

within the regulatory network that is represented in the expression data set. These weights are derived from the integration of an

F-test statistic to capture linear dependency and the Spearman rank-order correlation coefficient for a given regulator-target pair.

Regulon enrichment: This method leverages pathway information and gene expression data to produce regulon-based protein ac-

tivity scores. Our method tests for positional shifts in experimental-evidence supported networks consisting of transcription factors

and their downstream signaling pathways when projected onto a rank-sorted gene-expression signature. The gene-expression

signature is derived by comparing all features to the median expression level of all samples considered within the data-set. After

weights have been assigned to the regulatory network, the positive and negative edges of each regulator are rank ordered. The first

component of the enrichment signature, the local delta concordance signature, is derived by capturing the concordance between the

magnitude of the weight assigned to a particular edge and the ranked position of that edge. The features associated with activation,

positive edges within the regulatory network, are monotonically ranked from most lowly to highly expressed in the restricted feature

space, where the features that are repressed are ranked by a monotonically decreasing function. This component of the signature
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considers positive and negative edges independently, which captures support for an enrichment signature even if one of the edge

groups is underrepresented in the network graph. The second component of the enrichment signature, the local enrichment signa-

ture, captures positional shifts in the local gene ranked signature and integrates those shifts with the weights assigned to overlapping

features for a given regulon and the expression data set. The last component of the enrichment signature considers the entire feature

space and projects the rank-sorted local signature onto this global ranked feature space. We derive our global enrichment signature

from this projection for each regulator we consider.We use themedian of robust quantile-transformed ranked positions as the enrich-

ment scores for both the local enrichment and global enrichment signatures. We then integrate these three individual signatures

together, which allows us to capture differences between individual regulator signatures within the context of an individual patient

as well as at a cohort level.

Reverse phase protein arrays
In order to scale the reported protein expression values, the RPPA data from the patient samples wasmergedwithin the TCGA breast

cancer RPPA dataset, using the replicate-based normalization (RBN) method.108 The protein expression values were then z-scored

by using the median and standard deviation, and a heat-map was generated using Rank-Sum ordering of the proteins fold change.

The heat map was produced using publicly available Cluster 3.0 and TreeView software.109,110

Pathway Analysis: All pathway predictors have been previously described.22 Proteins used as predictors of the different pathways

are listed in Table S2. To determine a pathway score, for each sample all positively associated predictors were summed minus the

predictors that are negatively associated with the pathway. The total was then divided by the numbers of predictors in the pathway.

To generate the pathway scores histograms, the distribution of each TCGA samples subtype was plotted and the value of the patient

pre- and post-treatment sample was added to the histograms.

Intracellular signaling protein panel
Batch correction was performed using Removal of Unwanted Variation (RUV-III) using the replicate positive controls to estimate the

factors associated with batch effect.111 RUV parameters were optimized by measuring the consistency of replicate controls and

careful evaluation of outliers to ensure validity of results. TheGeneTrails Intracellular Signaling Protein Panel assay reports out protein

expression levels from RUV-normalized data relative to tumor-type-matched reference cohorts, in this case a panel of 57 metastatic

breast cancer patient samples.

Integrative analyses
Multi-omic integrated pathway analysis: CausalPath was used for integrated pathway analysis of protein, phosphoprotein, gene

abundance, and transcriptional regulator activity.25 CausalPath is a hypothesis generating tool that uses literature-grounded inter-

actions from Pathway Commons to produce a graphical representation of causal relationships that are consistent with patterns in a

multi-omic datasets.25 This integrative approach allows for holistic evaluation of signaling networks and pathway activity across lon-

gitudinal biopsies. The CausalPath analysis used the log fold change of total and phosphoprotein (RPPA) and gene expression from

Bx1 and Bx2with the following parameters: threshold-for-data-significance = 0.3 for RNA, protein, and phosphoprotein, value-trans-

formation = max, calculate-network-significance = true, permutations-for-significance = 10,000, color-saturation-value = 2.5, data-

type-for-expressional-targets = rna and protein, show-all-genes-with-proteomic-data = true. The resulting network was pruned to

include the neighborhoods encompassing MTOR, AKT, MUC1, STAT3, MYC, and E2F1 to highlight biologically interesting patterns

discussed in the text. For additional depth, the difference in transcriptional regulon enrichment activity between Bx2 and Bx1 was

mapped to and overlaid on the pruned CausalPath network.

Integrated Heatmap: The gene, protein, phosphoprotein abundances, and transcriptional regulon enrichment activities were inte-

grated into a single heatmap. Each data type was independently scaled to �1 to 1 with the exception of protein/phosphoprotein,

which were scaled together. Fold change of Bx2 to Bx1was calculated for each scaled feature and represented as a heatmap group-

ed by pathway categories of interest.

Multiplex immunohistochemistry
Image analysis pipeline:112 Regions of interest (ROIs) were selected from hematoxylin-stained images in ImageScope (Leica) based

on histopathological assessment. ROIswere selected to capture all possible tumor area (composed of neoplastic cells and surround-

ing stroma), while excluding regions of adjacent normal appearing tissue, heavy RBC infiltrate, necrosis, acellular material, or areas of

tissue deformation/folding which are all known to create artifactual results. The number of ROIs selected per sample was variable and

sample dependent (range 2–4, average 3). ROI size was also variable (range 0.6–7.9 mm2, average 3.7 mm2). The tissue area and cell

counts from each ROI on a given tissue were summed in order to generate global immune composition. Across the cohort, the

average amount of tissue assessed per sample was 11.1 mm2, containing an average of 68,223 nucleated cells. Digitally acquired

images were registered in MatLab (MathWorks) utilizing the SURF algorithm113 in the Computer Vision Toolbox. Nuclear segmenta-

tion and color deconvolution were performed using FIJI81 (ImageJ, NIH).Watershed based segmentation on hematoxylin only stained

tissue was used to identify single cell objects. In short, preprocessing to isolate signal and remove background was performed, then

nuclear objects were identified by watershed and standard image processing (erosion, dilation, and noise removal). AEC chromo-

genic signal was extracted by converting images from RGB to CMYK in ImageJ81 using the NIH plugin RGB_to_CMYK. The contrast
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of AEC chromogen intensities on a 0–255 scale in the yellow channel, as compared to RGB or the built-in AEC deconvolution vector,

utilizes the full range of intensity without a threshold. For single cell quantification, each channel was normalized by dividing all pixels

in each image by themax intensity of that image to rescale intensity values to a range of 0–1. Next, mean intensity from each stain was

quantified for every indexed nuclear object in Cell Profiler 3.1.5114 (Broad Institute). Image cytometry hierarchical gating was per-

formed in FCS Express Image Cytometry RUO 6.1.4 (DeNovo Software) to quantify distinct populations of cells.

Cyclic immunofluorescence
Quantification and Analysis:115 Each image acquiredwas registered based on DAPI features acquired from each round of staining.116

Cellpose, a generalist algorithm for cellular segmentation, was used to generate nuclear and cell segmentation masks with a pre-

trained neural network classifier.117 Extracted single-cell features included centroids and mean intensity of each marker from its bio-

logically relevant segmentation mask (e.g., Ecad_Cytoplasm, Ki67_Nuclei). The last round DAPI image was used to filter out cells lost

during each round of cyclic immunofluorescence staining.

For cell type determination and composition analysis, single cell mean intensities from each biopsy were batch corrected using the

ComBat algorithm.118 ComBat was used to adjust the mean and variance of fluorescence intensity on control tissue-microarrays

(TMAs) that were stained with each biopsy, and the same adjustments were applied to the corresponding biopsies. Eighteenmarkers

were selected for clustering; some markers were excluded due to tissue loss in the TMA controls. Principal component analysis was

performed with scanpy to reduce dimensionality, and Umap (https://arxiv.org/abs/1802.03426) was run on the top 17 principal com-

ponents to calculate a nearest neighbor graph based on the 30 nearest neighbors.119 Leiden clustering was performed on the nearest

neighbor graph to define clustering-based cell types.120 The Leiden clustering resolution of 0.5 was selected based on appropriate

clustering of technical replicates in the control TMAs.

Immune, endothelial, and stromal cells were identified bymanual thresholding and gating. Endothelial cells were defined asCD31+,

immune cells were either CD45+ or CD68+ and CD31-, and stromal cells were cytokeratin-, E-cadherin-, CD31-, CD45-, and CD68-.

Tumorwas defined as cytokeratin+, and proliferating cells were Ki67+. Cell segmentation borders ofmanually defined cell typeswere

visualized on the images using napari.121

To calculate distance to extracellular matrix proteins, a threshold was applied to create a pixel mask of positive staining. The dis-

tance from each nuclear centroid to the nearest mask pixel was measured. Cells were grouped into bins of 0–25 microns, 25-50 mi-

crons, and 50-75 microns from the mask, and the intensity distributions of cells (n = 2 to 32324 cells) were compared using ANOVA

implemented in SciPy.122 Significance was assigned to Bonferroni-corrected p values < 0.001.

ADDITIONAL RESOURCES

Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART): https://www.ohsu.edu/knight-

cancer-institute/serial-measurements-molecular-and-architectural-responses-therapy

Human Tumor Atlas Network (HTAN): https://humantumoratlas.org/
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