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Abstract

The diversity and wide availability of trialkylamines render them ideal sources for rapid 

construction of complex amine architectures. Herein, we report that a nickel/photoredox dual 

catalysis strategy effects site-selective α-arylation of various trialkylamines. Our catalytic system 

shows exclusive N-Me selectivity with a wide range of trialkylamines under mild conditions, even 

in the context of late-stage arylation of pharmaceutical compounds bearing this common structural 

motif. Mechanistic studies indicate the unconventional behavior of Ni catalyst upon intercepting 

the α-amino radicals, in which only primary α-amino radical undergoes successful cross-coupling 

process.
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Trialkylamines are well-represented subunits in numerous alkaloid natural products, 

synthetic agrochemicals, clinical molecules and marketed pharmaceuticals (Figure 1A).1 

The functionalization of C-H bonds alpha to N provides endless opportunities to fine-
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tune their physical properties as well as their biological activities and pharmacokinetics.2 

The further development of direct late-stage α-C(sp3)–H functionalization of complex 

trialkylamines with improved structural modularity and functional diversity would enable 

novel synthetic disconnections and expedite discovery of lead compounds from existing 

medicinal chemistry libraries. To date, the late-stage α-alkylation of complex trialkylamines 

has experienced rapid growth (Figure 1B);3 however, the related arylation has remained 

underexplored with sporadic examples (Figure 1C, left).3e

Recently, transition-metal/photoredox dual catalysis has emerged as a transformative 

platform enabling a diverse set of formerly challenging chemical bond-forming events under 

mild conditions.4 Given that trialkylamines are commonly used as hydride, hydrogen or 

electron sources in a number of transition-metal/photoredox catalysed transformations,5 

it would not be trivial to compete with the established reactivity for direct arylation 

of trialkylamines. However, Molander’s seminal work of desilylative arylation of α-silyl 

trialkylamines indicates otherwise,6 in which the silyl group is preinstalled from secondary 

amine to control the site-selective generation of α-amino radical.7 As part of our interest to 

derivatize amines,8 we questioned whether we could develop a general method for selective 

arylation of trialkylamines even in the context of late-stage functionalization with improved 

practicality and complexity (Figure 1C, right).

If accomplished, it would offer new opportunities to rapidly access novel benzyl 

dialkylamines — privileged moieties embedded within many bioactive molecules and 

lead compounds9 — with complementarity to classical alkylation or reductive amination 

strategies from secondary amines, where the complex benzaldehydes or benzyl electrophiles 

are often difficult to access.10

We started our investigation by conducting arylation of N-Me piperidine with 4-

bromobenzonitrile under Ni/photoredox conditions.11 Gratifyingly, when reaction occurs, 

we observe exclusive N-Me arylation product 1. Further screening revealed the optimized 

conditions to be NiCl2(dtbbpy)(H2O)4 (Ni-1) (5 mol%), 4CzIPN (1 mol%) as organic 

photocatalyst,12,13 and Na2CO3 (1.0 equiv) as a base in Dioxane (0.2 M) under blue-LEDs 

irradiation (440 nm), affording 1 in 50% isolated yield (see SI for extensive screening 

details). Our system turns out to be highly efficient as 2 mol% of Ni-1 works equally 

well (entry 2). Switching to Ir-based photocatalyst leads to a decrease in yield (entry 3). 

While DME as solvent gives similar yield (entry 5), other solvents demonstrate lower 

chemoselectivity (entries 6 & 7). Using 4-iodobenzo-nitrile as aryl source (entry 4) shows 

low reactivity under our conditions. The use of an organic base, such as collidine, gives 

comparable results (entry 8). Control studies reveal the necessity of irradiation and both 

catalysts for arylation to occur (entries 9 & 10).

With the optimized conditions, we next studied the scope of our protocol. As shown 

in Table 2, the method displays exclusive N-Me selectivity. A variety of trialkylamines 

bearing various alkyl substituents underwent the desired arylation (1-9). Aryl bromides 

containing different functional groups and heterocycles (10-18, 21) are well accommodated. 

In addition, the ketone (11) and aldehyde (12) functionalities hold promise for further 

reductive amination events. Interestingly, arylation of sterically encumbered trialkylamines, 
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often used as frustrated Lewis pair and hindered amine light stabilizers,14 is successful upon 

switching to a nickel/1,3-diketone-ligand combination (19-21) (see Table S4 for details), a 

system known for forging congested bonds.15

Encouraged by the broad generality of this approach, we anticipated that our protocol 

might not only streamline the synthesis of simple benzyl dialkylamines but might also be 

applicable to late-stage functionalization.16 To this end, we were pleased to find that a 

series of trialkylamine-containing pharmaceuticals and natural products could be coupled 

with complex aryl bromides. As evident by the results compiled in Table 3, a variety of 

valuable, yet not easily accessible druglike benzyl dialkylamines were rapidly synthesized 

with moderate to high yields (22-35), highlighting the potential impact of our protocol on 

generating complex amine architectures to accelerate lead compound discovery.

In general, oxidation/deprotonation of trialkylamines furnishes the less hindered α-amino 

radical preferentially.7a,7b,8a However, this does not completely explain the exclusive N-

Me selectivity observed in our photochemical arylation, especially for substrates that are 

known to generate a mixture of α-amino radicals with moderate ratios upon oxidation/

deprotonation sequence (e.g. N-Me piperidine gives 2:1 selectivity for 1° over 2° under 

typical conditions8a,8c). We then turned our attention to understand the source of the high 

site-selectivity. A simple control experiment with triethylamine under standard conditions 

indicated the recalcitrance of a putative ArNiIILnBr (Ni-2) intermediate to intercept 

secondary α-amino radicals, as no desired arylation was observed. Instead, a considerable 

amount of hydrodebromination and homodimerization products from the aryl bromide were 

detected (Figure 2A). This helps to explain the parasitic by-products formed during the 

reaction screening of N-Me piperidine (Table 1). Further studies with α- and β-deutero- 

tributylamine as starting materials revealed that the H source of hydrodebromination 

partially comes from both α- and β-C(sp3)–H of tributylamine (Figure 2B), with the balance 

likely coming from the solvent (dioxane). When optimizing the arylation on sterically 

hindered trialkylamines, we found significant dimerization of the amine when the reaction 

was conducting in polar aprotic solvents (DMF or DMA) (Figure 2C). This likely stems 

from the amino radical attacking an iminium ion intermediate (Figure 2C).10b Indeed, 

adding H2O (50 equiv) to the standard arylation of N-Me piperidine completely shuts 

down the desired reactivity leading to exclusive generation of the hydrodebromination 

product, which presumably occurs via hydrolysis of the iminium ion intermediate (see 

Table S3 for H2O titration). On the basis of these results, along with the literature 

precedent on the coordination of Ni-complexes and iminium ions,10a,17 we tentatively 

propose that the arylation occurs through interception of α-amino radical by oxidative 

addition complex (Ni-2) to generate a NiIII intermediate (Ni-3),5g,6 which may undergo an 

off-cycle equilibrium between iminium ion and Ni-4 intermediate (Figure 2D). While Ni-3 
may undergo reductive elimination to give rise to the desired product, the iminium ion with 

β-H instead results in the decomposition of Ni-3, leading to the hydrodebromination and 

homodimerization of the aryl bromide. These phenomena are consistent with the stability of 

(R3P)2Ni(0)/iminium ion complexation reported by Pierpont and Barefield.17a

In summary, we have developed a late-stage arylation of trialkylamine-containing 

pharmaceuticals by employing Ni/photoredox dual catalytic platform under mild conditions. 
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The reaction displays exclusive selectivity for N-Me C(sp3)-H bonds, not only streamlining 

the synthesis of benzyl dialkylamines, but also holding great promise to accelerate 

lead molecule discovery. Studies to enable arylation at higher α-substituted positions of 

trialkylamines are currently ongoing in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prevalence and α-Functionalization of complex trialkylamines
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Figure 2. 
Mechanistic Studies.
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Table 1.

Optimization and Control Studies

0.2 mmol scale; amine (2.0 equiv), homocoupling of ArBr accounts for mass balance. a GC-MS yield with ethyl benzoate as internal standard. b 

Isolated yield. c 24 h. d low conversion of ArBr. e no conversion of ArBr.
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Table 2.

Scope of Trialkylamines and Aryl Bromides

0.2 mmol scale; a Ni-1(5 mol%), 4CzIPN (1 mol%), Na2CO3 (1.0 eq.) in Dioxane (0.2 M) at 28 °C for 18 h; b NiCl2(H2O)6 (5 mol%), Dipivaloyl 

methane (10 mol%), 4CzIPN (1 mol%), Na2CO3 (1.0 equiv) in MeCN (0.2 M) at 28 °C for 24 h.
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