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ABSTRACT

Introduction: Neutralizing antibodies (NAbs) that target key domains of the spike protein in severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have therapeutic value because of their
specificity. Depending on the targeted epitope, single agents may be effective, but combined treatment
involving multiple NAbs may be necessary to prevent the emergence of resistant variants.

Areas covered: This article highlights the accelerated regulatory processes established to facilitate the
review and approval of potential therapies. An overview of treatment approaches for SARS-CoV-2
infection, with detailed examination of the preclinical and clinical evidence supporting the use of
NAbs, is provided. Finally, insights are offered into the potential benefits and challenges associated
with the use of these agents.

Expert opinion: NAbs offer an effective, evidence-based therapeutic intervention during the early
stages of SARS-CoV-2 infection when viral replication is the primary factor driving disease progression.
As the pandemic progresses, appropriate use of NAbs will be important to minimize the risk of escape
variants. Ultimately, the availability of effective treatments for COVID-19 will allow the establishment of
treatment algorithms for minimizing the substantial rates of hospitalization, morbidity (including long
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COVID) and mortality currently associated with the disease.

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic con-
tinues to pose an ongoing global public health emergency.
Infection rates are high, particularly in the developing world
where access to vaccines and treatment can be limited [1].

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection can cause considerable morbidity and
mortality. Upon infection, most individuals exhibit mild symp-
toms and experience swift recovery. However, outcomes can
be poor in some patients, particularly the elderly and those
with comorbidities. A US study of hospitalized patients esti-
mated mortality rates greater than 20% in the overall hospi-
talized population, which increased to greater than 70%
among those on mechanical ventilation [2]. In the early stages
of COVID-19, disease progression is driven by viral replication
and infection and represents an early opportunity to effec-
tively change the course of the disease and prevent the devel-
opment of severe or critical illness and hospitalization. An
additional potential benefit of early treatment is a reduction
in transmission by decreasing the time that an individual is
infectious [3]. Therefore, there is a need for effective treatment
options to cover the spectrum of COVID-19, including early-
stage disease, and to counteract the emergence of SARS-CoV
-2 variants that might confer treatment resistance [4,5].

In the present article, we provide an overview of current
and potential treatment approaches for SARS-CoV-2 infection,
with a focus on the therapeutic application of neutralizing
antibodies (NAbs). A summary of evidence is provided from
clinical trials of NAbs currently available for the treatment of
patients with SARS-CoV-2 infection. The article concludes with
expert commentary on the future prospects for these agents
as the pandemic continues to evolve.

2. Regulatory processes during the COVID-19
pandemic

In response to the COVID-19 pandemic, the US Food and Drug
Administration (FDA) and European Medicines Agency (EMA)
adopted policies for the accelerated review and approval of
treatments for COVID-19, as summarized in Figure 1.

The FDA established the emergency Coronavirus Treatment
Acceleration Program (CTAP) to facilitate the timely evaluation
of novel treatments for COVID-19, and the FDA’s Center for
Drug Evaluation and Research has established a specific team
to oversee investigational new drug (IND) applications related
to COVID-19 [6]. Additionally, the US Department of Health
and Human Services declared on 1 April 2020 that “circum-
stances justified the authorization of emergency use of drugs
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Article highlights

o With an urgent need for effective treatments for COVID-19, regulatory
agencies have adopted policies for the accelerated review and
approval of COVID-19 treatments.

¢ Neutralizing antibodies (NAbs) bind specifically to important compo-
nents of SARS-CoV-2, and clinical trials have shown NAbs to have
therapeutic potential.

e In a randomized, placebo-controlled Phase 3 study, regdanvimab
reduced the risk of hospitalization, oxygen therapy and mortality by
72% versus placebo in patients at high risk of progression to severe
COVID-19.

¢ In a randomized, placebo-controlled Phase 3 study, casirivimab plus
imdevimab 1200 mg reduced the risk of hospitalization or death by
70% versus placebo in high-risk outpatients; the corresponding risk
reduction with casirivimab plus imdevimab 2400 mg was 71%.

e The randomized, placebo-controlled Phase 3 COMET-ICE study
demonstrated an 85% relative risk reduction for hospitalization or
death with sotrovimab versus placebo in adults with SARS-CoV-2
infection at high risk of hospitalization.

e Data from the Phase 3 cohort of the BLAZE-1 study demonstrated
reduced rates of COVID-19-related hospitalization or death from any
cause with bamlanivimab plus etesevimab (2.1%) compared with
placebo (7.0%) in patients with SARS-CoV-2 infection.

This box summarizes key points contained in the article.
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and biological products during the COVID-19 pandemic” [7].
Regardless of previous approval status, medical products may
be granted Emergency Use Authorization (EUA) in a public health
emergency [7]. The EMA also issued guidance to accelerate
medicine and vaccine development for COVID-19, and estab-
lished the COVID-19 EMA pandemic Task Force (COVID-ETF) to
coordinate and accelerate regulatory action, for both new pro-
ducts and those already authorized for other conditions.

As of October 2021, more than 640 drug development
programs had been planned under the FDA CTAP, more
than 470 trials had been reviewed by the FDA, 11 treatments
had been authorized for emergency use and one treatment
had been approved for COVID-19 [8]. More than 60 studies of
NAbs had received safe-to-proceed IND status [8]. In Europe,
by October 2021, over 80 COVID-19 treatments had received
EMA advice, three treatments were undergoing rolling review,
five treatments were under evaluation for marketing author-
ization extension and one treatment was authorized for use in
COVID-19 [9,10]. Five products, including four NAbs or NAb
combinations, had been approved for use in the European
Union (EU) to treat COVID-19 following Article 5(3) review,
which is intended to support national decision-making before
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for fast-track approval
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Figure 1. Regulatory pathways adopted by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) during the COVID-19 pandemic.
COVID-19, coronavirus disease 2019; COVID-ETF: COVID-19 EMA pandemic Task Force; CTAP: Coronavirus Treatment Acceleration Program; EUA: Emergency Use

Authorization; IND: investigational new drug; RCT: randomized controlled trial.



formal authorization is issued [11]. In October 2021, the
European Commission announced a list of 10 promising can-
didate therapeutics as part of its EU Strategy on COVID-19
Therapeutics, based on the EMA'’s rolling review evaluation.
These consisted of six treatments undergoing evaluation for
marketing authorization extension or under rolling review and
four waiting for rolling review to start [12,13].

3. Overview of treatment approaches for SARS-CoV-2
infection

A broad range of both novel and repurposed therapies have
been evaluated as potential treatments for SARS-CoV-2 infec-
tion, to be used in combination with supportive care mea-
sures. EUAs have permitted clinical use of several agents that
have shown promise during early testing. In response to the
need for evidence-based treatment of SARS-CoV-2 infection,
a number of rapidly evolving guidelines have been published
to guide and standardize clinical use of these agents.
Recommendations from recognized treatment guidelines, stra-
tified according to patient population and severity of infec-
tion, are summarized in Table 1 [14-17].

To date, NAbs have gained EUA and some have received
marketing authorization for use in patients with mild-to-
moderate disease who are at high risk of progression to severe
disease, as described in Table 2 [18-26]. Remdesivir is recom-
mended within some guidelines as a targeted antiviral therapy
for hospitalized patients with SARS-CoV-2 infection [27,28] and
more recently, with the emergence of omicron as the domi-
nant variant, for ambulatory patients at high risk of progres-
sion to severe disease [14,17]. Dexamethasone or other
systemic corticosteroids are suggested for hospitalized
patients receiving supplemental oxygen or mechanical venti-
lation [29,30]. In patients with a contraindication to corticos-
teroid therapy, baricitinib should be used as an add-on to
remdesivir instead of remdesivir alone [17,31]. Tocilizumab is
recommended in certain guidelines for use in patients with
elevated markers of systemic inflammation, generally in com-
bination with corticosteroids [32,33]. Early data from investiga-
tion of the IL-10/B inhibitor anakinra suggested a significant
reduction in the risk of disease worsening among patients at
risk of respiratory failure, defined by elevated soluble uroki-
nase plasminogen activator receptor levels; in December 2021,
the EMA approved anakinra for the treatment of COVID-19 in
adult patients with pneumonia requiring supplemental oxy-
gen who are at risk of severe respiratory failure [34,35].
Candidates for oral treatment include the nucleoside analogue
molnupiravir, which inhibits SARS-CoV-2 replication via muta-
genesis, i.e. by introducing errors into the viral genome [36-
38]. Results from the Phase 2/3 MOVe-OUT study demon-
strated a reduction in the number of hospitalizations or deaths
with molnupiravir compared with placebo when used to treat
non-hospitalized patients [39,40]. The EMA has granted mol-
nupiravir conditional authorization for the treatment of adults
with COVID-19 who are at increased risk of progressing to
severe disease but who do not require supplemental oxygen,
and the FDA has issued EUA approval for molnupiravir for the
treatment of adults with COVID-19 who are at high risk of
progressing to severe disease and are ineligible for other
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treatments authorized by the FDA [41,42]. In addition, the
FDA has issued EUA for nirmatrelvir/ritonavir for the treatment
of mild-to-moderate COVID-19 in adults and pediatric patients
who are at high risk of progression to severe disease [43].
Other oral treatment candidates include ATR-002, which is
being evaluated in a Phase 2 trial in patients with moderate-
to-severe COVID-19 requiring hospitalization (NCT04776044),
and AT-527, which is currently undergoing a Phase 3 trial
having demonstrated antiviral activity in high-risk patients
with underlying health conditions at Phase 2 [44,45].

Mesenchymal stem cells (MSCs) have also been assessed for
their potential for treating patients with COVID-19 [46].
Preliminary clinical data from several small studies of patients
with COVID-19 (including COVID-19 pneumonia and acute
respiratory distress syndrome) support the potential of intra-
venous administration of MSCs to improve pulmonary func-
tion, clinical symptoms and survival [47-49]. Several clinical
trials of adipose-derived MSCs for the treatment of COVID-19
are ongoing [50].

4. NAbs as a therapeutic approach to the
management of SARS-CoV-2 infection

SARS-CoV-2 has four main structural proteins: spike (S), envel-
ope, membrane and nucleocapsid [51]. S, which forms
a glycoprotein, contains S1 and S2 subunits that are respon-
sible for receptor attachment and membrane fusion, respec-
tively [52]. The S protein facilitates viral entry into host cells by
binding to angiotensin-converting enzyme 2 (ACE2) receptors
and promoting endocytosis. It is therefore a key target for the
development of antiviral therapies [52,53]. S1 and S2 protein
priming by cellular transmembrane serine protease 2
(TMPRSS2) promotes fusion of viral and host cellular mem-
branes, a process that can be inhibited by anti-SARS-CoV-2
antibodies induced by infection [53].

Antibodies have extremely high specificity for their target
epitopes and therefore represent a vital approach to the
therapeutic management of SARS-CoV-2 infection. Given the
importance of the S protein — and specifically the receptor-
binding domain (RBD) - in virus—cell fusion and entry, this
represents an ideal target site to disrupt virus—ACE2 interac-
tion and inhibit virus entry into the cell [4] (Figure 2). In
addition to blocking the binding of RBD to ACE2, NAbs may
target other subunits of the S protein, preventing the confor-
mational changes needed for fusion, and some NAbs may also
activate immune-related mechanisms, such as antibody-
dependent cellular phagocytosis or antibody-dependent cel-
lular cytotoxicity, via fragment crystallizable (Fc)-mediated
effector functions [54,55].

A number of different NAb structures have been character-
ized and classified into one of four categories, according to
their mode of binding to the S protein [56-58] (Figure 3). Class
1 NAbs (e.g. regdanvimab, etesevimab and imdevimab) are
IGHV3-encoded NAbs with short CDRH3 loops and bind to
epitopes on the ACE2 binding site (or receptor-binding motif
[RBM]) of the RBD in the ‘up’ conformation only. Class 2 NAbs
(e.g. bamlanivimab) are also IGHV3-encoded antibodies but
with longer CDRH3 loops and bind the RBD in the ‘up’ and
‘down’ conformations [56,58]. Class 1 and Class 2 NAbs exert
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their neutralizing effect through direct competition with the
human ACE2 receptor (i.e. ‘ACE2 blockers’) [57,58]. Class 3
NAbs block the ACE2 binding site, recognize both ‘up’ and
‘down’ RBD conformations and can interact with adjacent RBD
protomers. Class 4 NAbs (e.g. casirivimab, sotrovimab) do not
overlap with the ACE2 binding site and bind to a highly con-
served epitope that is only accessible when the RBD is in the
‘up’ conformation [56,58].

Several NAbs are in development and some have been
approved for the treatment of patients with mild-to-
moderate COVID-19 who are considered at risk of progression
to severe disease [19,26,59]. Patients with mild-to-moderate
COVID-19 have been selected as good candidates for treat-
ment with NAbs because early disease is likely virally
mediated, whereas in patients with advanced disease, post-
viral or peri-viral phenomena (e.g. hypoxia, hyperinflamma-
tion) are thought to be the main contributors to disease
progression [59-61]. Combinations of NAbs (so-called ‘cocktail
therapy’) that target different sites on the S protein can act
synergistically, leading to enhanced neutralization [62,63]. In
addition, cocktail therapy using combinations of antibodies
that bind distinct and non-overlapping regions of the
S protein RBD may prevent the emergence of resistant strains,
as mutations are unlikely to occur simultaneously at two dis-
tinct genetic sites [64]. However, some NAbs may be suitable
for use as single agent therapy (i.e. without other NAbs).

Finally, in addition to treating SARS-CoV-2 infection, NAbs
may offer protection against infection. Several NAbs that tar-
get the N-terminal domain of the S1 subunit have been shown
to protect against viral challenge in preclinical models [55,65].
Similarly, RBD-targeting NAbs may also offer prophylactic pro-
tection against SARS-CoV-2 infection. Bamlanivimab was
shown to protect against SARS-CoV-2 infection in non-
human primates [66] and the randomized, placebo-
controlled BLAZE-2 study subsequently provided clinical evi-
dence for the preventative potential of this NAb [67].
Casirivimab plus imdevimab prevented COVID-19 and pro-
tected against SARS-CoV-2 infection when given to previously
uninfected household members of infected individuals [68].
While of interest, comprehensive discussion of NAbs for pro-
phylaxis of SARS-CoV-2 infection is beyond the scope of the
present article, which is focused on the application of NAbs for
the treatment of SARS-CoV-2 infection.

5. NAbs in the treatment of SARS-CoV-2 infection

In this section, the primary and key secondary efficacy end-
points, together with safety information, are presented for
each study reviewed.

5.1. Bamlanivimab plus etesevimab

Bamlanivimab (LY-CoV555) is a recombinant, neutralizing
human immunoglobulin G1 monoclonal antibody (mAb) [66]
and etesevimab (LY-CoV016, also known as JS016) is
a recombinant human monoclonal NAb [69]. Both specifically
bind to the SARS-CoV-2 S protein, inhibiting viral attachment
and entry into host cells.
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The randomized, Phase 2/3 BLAZE-1 clinical trial [18,21]
included 613 patients with SARS-CoV-2 infection, and
those participating in Phase 2 had to have at least one
symptom of mild or moderate disease. Bamlanivimab
monotherapy (doses of 700 mg, 2800 mg or 7000 mg)
was not associated with statistically significant reductions
in viral load at day 11 compared with placebo. However,
statistically significant changes in viral load were seen in
patients receiving combination therapy (2800 mg each of
bamlanivimab and etesevimab; Table 3) [18,70]. The differ-
ence (95% confidence interval [Cl]) from placebo in change
from baseline in log viral load at day 11 was —0.27 (-0.71
to 0.16; p = 0.21) with bamlanivimab 2800 mg and —0.57
(—=1.00 to —0.14; p = 0.01) with combination treatment [18].
COVID-19-related hospitalizations or emergency depart-
ment visits were reported in nine patients receiving pla-
cebo (5.8%) and one patient (0.9%) receiving combination
therapy. Data from the Phase 3 cohort of the study
(n = 1035) demonstrated reduced COVID-19-related hospi-
talization or death from any cause (primary endpoint) in
11/518 (2.1%) patients in the bamlanivimab and etesevi-
mab group versus 36/517 (7.0%) of patients in the placebo
group. No deaths were reported in the bamlanivimab and
etesevimab group, whereas 10 were reported in the pla-
cebo group (nine of which were deemed COVID-19
related). By day 7, a greater reduction from baseline in
log viral load was observed among patients in the bamla-
nivimab and etesevimab group compared with placebo
[70]. The BLAZE-4 trial (NCT04634409) has evaluated treat-
ment of symptomatic SARS-CoV-2 infection with bamlani-
vimab in combination with other NAbs, including
etesevimab and sotrovimab.

Despite these promising findings, there are also data point-
ing to limitations regarding treatment with NAbs. In the
ACTIV-3/TICO LY-CoV555 study, the addition of bamlanivimab
to remdesivir did not improve the likelihood of a favorable
pulmonary outcome in hospitalized patients without end-
organ failure [20]. The FDA revoked the EUA for bamlanivimab
monotherapy in April 2021 due to concerns regarding an
increase in circulating viral variants that were resistant to
bamlanivimab alone [70,71]. Combination therapy with bam-
lanivimab plus etesevimab has been granted an EUA by the
FDA and a positive scientific opinion by the EMA’s Committee
for Medicinal Products for Human Use [60], for use in adult
and pediatric patients (aged =12 years and weighing =40 kg)
with mild-to-moderate disease, a positive SARS-CoV-2 viral test
result and high risk of progression to severe COVID-19 and/or
hospitalization (Table 2). However, some SARS-CoV-2 variants
may be unsusceptible to treatment with bamlanivimab plus
etesevimab [72,73]. Both of these antibodies lack neutraliza-
tion activity against B.1.351 (beta variant) and P.1 (gamma
variant). For this reason, the US National Institutes of Health
(NIH) recommended that use of bamlanivimab plus etesevi-
mab be stopped temporarily; however, with activity against
the recently predominant delta variant, its use has again been
considered acceptable where the combined frequency of
potentially resistant variants is low [23,76]. Neutralization
assays have shown smaller reductions in susceptibility with
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Figure 2. Mechanism of action of anti-receptor-binding domain (RBD) SARS-CoV-2 neutralizing antibodies (NAbs). (a) SARS-CoV-2 infection occurs via binding of the
RBD to the angiotensin-converting enzyme 2 (ACE2) receptor on host cells; (b) NAb interferes with binding of the RBD/spike (S) protein to the ACE2 receptor,
blocking virus entry into host cells. Fab: fragment antigen binding; Fc: fragment crystallizable.

other variants, such as epsilon, iota and kappa, and the effects
on clinical outcomes are not yet known [23]. The omicron
variant is predicted to have markedly reduced susceptibility
to bamlanivimab plus etesevimab [77].

5.2. Casirivimab plus imdevimab

Casirivimab (REGN10987) and imdevimab (REGN10933), collec-
tively known as REGN-COV2, are two non-competing NAbs
that target non-overlapping epitopes on the SARS-CoV-2
S protein [78]. Preclinical studies in rodents and non-human
primates have shown that this cocktail of NAbs can reduce
viral load in the upper and lower respiratory tract and also
reduce virus-induced pathological sequelae, such as interstitial
pneumonia [78].

In a randomized, double-blind, placebo-controlled Phase 1-
3 clinical trial, data from the first 275 non-hospitalized patients
with SARS-CoV-2 infection indicate that REGN-COV2 (at a dose
of 2400 mg or 8000 mg intravenously) is associated with
a significant reduction in viral titer, when compared with
placebo 7 days after treatment initiation (Table 3) [22].
Among patients who were serum-antibody negative at base-
line, the difference versus placebo in the change in viral load
from day 1 through day 7 was —0.41 log;o copies/mL £ 0.15
(95% Cl —0.71 to —0.10) in the overall population (both doses
of REGN-COV2) and -0.56 log;q copies/mL £ 0.18 (95% ClI
—0.91 to —0.21) in those receiving the 8000 mg dose of REGN-
COV2. In total, 6% of patients receiving placebo and 3% of
those receiving the REGN-COV2 cocktail required one or more
medically attended visits (absolute difference vs placebo: —3%;
95% Cl —16% to 9%). More recent information from a Phase 3
trial including 4567 patients suggests that casirivimab plus
imdevimab may reduce the risk of hospitalization or death
[79]. The number of patients who were hospitalized or died
was lower with casirivimab plus imdevimab 1200 mg (7 [1%])
versus placebo (24 [3.2%]), corresponding to a risk reduction
of 70%. The corresponding risk reduction with the 2400 mg
dose was 71%. Median time to COVID-19 symptom resolution
was 10 days in patients receiving casirivimab plus imdevimab

at doses of 1200 mg or 2400 mg, compared with 14 days in
patients receiving placebo [79].

The FDA has issued an EUA for casirivimab plus imdevimab
for the treatment of adult and pediatric patients (aged
>12 years) with mild-to-moderate COVID-19 infection who
are at high risk of progressing to severe COVID-19 and/or
hospitalization (Table 2) [80]. Casirivimab plus imdevimab
was granted marketing authorization by the EMA and is indi-
cated for treatment of COVID-19 in adults and adolescents
aged =12 years and weighing =40 kg who do not require
supplemental oxygen and who are at increased risk of pro-
gressing to severe COVID-19 (Table 2) [19].

Data from the R10933-10987-COV-2067 casirivimab plus
imdevimab clinical trial indicate that the G446V mutation,
which had a 135-fold reduced susceptibility to imdevimab
compared with wild-type in a neutralization assay, but which
retained susceptibility to casirivimab and the casirivimab plus
imdevimab combination, was detected at an allele fraction of
>15% [24]. The clinical impact of this mutation is currently
unknown; thus far it has not been associated with any of the
currently identified variants of concern (VOCs) [81]. According
to US NIH COVID-19 treatment guidelines, the alpha, beta,
gamma and delta VOCs remain susceptible to casirivimab
plus imdevimab based on in vitro studies, and no change in
clinical activity against these variants is anticipated [14]. The
omicron variant is predicted to have markedly reduced sus-
ceptibility to casirivimab plus imdevimab [77].

5.3. Regdanvimab

Regdanvimab (CT-P59) is a NAb with activity against various
SARS-CoV-2 isolates, including those containing the D614G
mutation that is associated with all currently identified VOCs
[81]. Complex crystal structure analyses indicate that regdan-
vimab blocks the interaction regions of the SARS-CoV-2 RBD
for the ACE2 receptor. In animal models of SARS-CoV-2 infec-
tion, administration of regdanvimab was associated with
a reduction in viral load and alleviation of symptoms [82].
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Figure 3. SARS-CoV-2 spike protein structure, conformation and targets of receptor-binding domain (RBD)-dependent neutralizing antibodies (NAbs). (a) Different
conformations of spike protein. (b) Representation of four classes of SARS-CoV-2 RBD-dependent NAbs. Figure reproduced with modification from Kumar S, Chandele
A, Sharma A. Current status of therapeutic monoclonal antibodies against SARS-CoV-2. PLoS Pathog. 2021;17(9):e1009885 [58] under CC-BY license.

Regdanvimab was shown to be well tolerated in Phase 1
studies [83]. In a Phase 1 study in 32 healthy volunteers,
adverse events of headache, elevated C-reactive protein level
and pyrexia (all grade 1) were reported in two participants
within the first 14 days after regdanvimab intravenous infu-
sion [83]. In a Phase 1 study of 18 patients with mild SARS-CoV-2
infection, reduction in viral load was greater with regdanvimab
than with placebo among patients with maximum viral loads
>10° copies/mL [83]. However, there was no difference in viral
load reduction between regdanvimab and placebo in patients
with lower viral loads (<10° copies/mL). The mean time to
recovery was 3.39 days in patients receiving regdanvimab
(three dose-groups combined), compared with 525 days
among those receiving placebo. The mean times to recovery
with regdanvimab 20, 40 and 80 mg/kg were 4.43, 3.21 and
2.52 days, respectively [83].

Data up to 28 days are also available from a two-part,
randomized, placebo-controlled, double-blind study that

enrolled outpatients with mild-to-moderate COVID-19 [84]. In
part 1 of the study, patients received a single dose of regdan-
vimab 40 mg/kg (n = 101), regdanvimab 80 mg/kg (n = 103) or
placebo (n = 103) [84]. For these treatment groups, respec-
tively, median time to undetectable viral load was 12.8, 11.9
and 12.9 days; median time to clinical recovery was 5.35, 6.23
and 8.77 days; and the proportion of patients requiring hospi-
talization or oxygen therapy was 4.0%, 4.9% and 8.7%
(Table 3) [84]. Among the subgroup of patients with moderate
SARS-CoV-2 infection aged =50 years, 7.5%, 10.0% and 23.7%
of those receiving regdanvimab 40 mg/kg, regdanvimab
80 mg/kg and placebo, respectively, required hospitalization
or oxygen therapy due to SARS-CoV-2 infection. Based on the
results of part 1 of this study, the 40 mg/kg dose was selected.
Part 2 of the study involved 1315 patients, of whom 656 were
treated with regdanvimab 40 mg/kg and 659 received placebo
[84]. In line with results from part 1, regdanvimab significantly
reduced the risk of hospitalization, oxygen therapy and
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mortality due to SARS-CoV-2 infection (Table 3). These events
occurred in 3.1% of patients at high risk of progressing to
severe COVID-19 who had received regdanvimab 40 mg/kg,
compared with 11.1% in the placebo group (risk difference
8.0%; 95% Cl 4.5% to 11.7%; p < 0.0001 [primary study end-
point]) [84]. Corresponding results in the overall study cohort
were 2.4% and 8.0% (risk difference 5.9%; 95% Cl 3.3% to 8.5%;
p < 0.0001). The risk reduction was 72% for high-risk patients
and 70% for all patients. The median time to clinical recovery
in high-risk patients was significantly shorter in the regdanvi-
mab 40 mg/kg group than in the placebo group (9.27 vs
>14 days; between-group difference =4.73 days; p < 0.0001).
In the overall cohort, the median clinical recovery times were
8.38 and 13.25 days, respectively (between-group difference
4.87 days; p < 0.0001). Incidence rates for treatment-emergent
adverse events (TEAEs) related to study drug were similar
across the treatment groups in both parts of the study [84].
One patient (a recipient of regdanvimab 40 mg/kg in part 2 of
the study) experienced a serious TEAE, which did not result in
discontinuation.

Regdanvimab received its first full approval on
17 September 2021 in South Korea for the treatment of
COVID-19 in adult patients aged >50 years with at least one
underlying medical condition (obesity, cardiovascular disease,
chronic lung disease, diabetes, chronic kidney disease, chronic
liver disease, and patients on immunosuppressive agents) and
mild symptoms of COVID-19, and in adult patients with mod-
erate symptoms of COVID-19 [85]. Regdanvimab was granted
marketing authorization by the EMA in November 2021 and is
indicated for the treatment of patients with COVID-19 who do
not require supplemental oxygen therapy and who are at
increased risk of progressing to severe COVID-19.

Results from recent in vitro studies show that regdanvimab
has reduced binding affinity and reduced potency in pseudo-
virus neutralization assays against a SARS-CoV-2 RBD triple
mutant containing the three mutations that characterize the
beta VOC (B.1.351). However, the clinically relevant dose
(accounting for differences in human and ferret pharmacoki-
netics) of regdanvimab effectively decreased the viral load of
this variant in the upper and lower respiratory tract in a ferret
challenge model, to an extent similar to that seen when using
the wild-type virus [86]. In vitro studies assessing the activity of
regdanvimab against the delta, epsilon, gamma and kappa
variants of SARS-CoV-2 have also been performed, along
with delta and gamma variant challenge experiments in mice
[87]. Results show that, similar to the beta variant, regdanvi-
mab has neutralizing potency against the delta, epsilon,
gamma and kappa variants despite being less active against
these variants versus the wild-type virus [87]. Moreover, in a
mouse study, regdanvimab reduced mortality, weight loss and
respiratory tract viral load associated with the delta and
gamma variants [87]. An in vitro examination that specifically
focused on the delta variant compared 50% inhibitory con-
centration (ICso) values of clinical-stage NAbs, including
regdanvimab, and demonstrated similar reductions in suscept-
ibility against the delta variant for NAbs, except casirivimab
[88]. Despite these discrepancies in neutralizing activity for
regdanvimab versus casirivimab, differences in posology
(regdanvimab 40 mg/kg [2400 mg for an individual weighing

60 kg] and casirivimab 600 mg for an individual weighing
>40 kg) may result in minimal effective clinical difference.

Regdanvimab is under investigation as part of a cocktail
therapy with the investigational NAb CT-P63. Positive Phase 1
results from CT-P63 included strong neutralizing activity
against the omicron variant based on X-ray crystallography
and pseudo-virus testing (unpublished data) [89].

5.4. Sotrovimab

Sotrovimab (VIR-7831) is an investigational dual-action
SARS-CoV-2 NAb with the potential to both block viral entry
into healthy cells and clear infected cells [74]. VIR-7831 was
derived from a parent antibody isolated from a recovered
patient who had been infected with SARS-CoV in 2003.

The randomized, double-blind, placebo-controlled Phase 3
study (COMET-ICE; NCT04545060), evaluated sotrovimab in
adults with SARS-CoV-2 infection at high risk of hospitalization
[90]. The primary efficacy outcome was hospitalization for
>24 hours for any cause or death within 29 days after rando-
mization. In a prespecified interim analysis of 583 patients,
3 patients (1%) in the sotrovimab group and 21 patients
(7%) in the placebo group had disease progression leading
to hospitalization or death (relative risk reduction 85%,
97.24% Cl: 44 to 96; p = 0.002). All five patients who were
admitted to intensive care were in the placebo group.
Additionally, fewer patients in the sotrovimab group required
emergency department visits without hospitalization (or with
hospitalization for <24 hours) compared with the placebo
group. Adverse events were reported in 17% of sotrovimab-
treated patients and 19% of placebo-treated patients, and
serious adverse events were more common in the placebo
group (6%) than in the sotrovimab group (2%) [90].

The EMA has completed a pre-authorization review of
sotrovimab and recommended that, prior to marketing
authorization, sotrovimab can be used to treat confirmed
COVID-19 in adults and adolescents (aged =12 years and
weighing =40 kg) who do not require supplemental oxygen
therapy and are at risk of progressing to severe COVID-19 [12].

The FDA has issued an EUA for sotrovimab for the treat-
ment of mild-to-moderate COVID-19 in adults and pediatric
patients (aged =12 years and weighing =40 kg) with positive
results of direct SARS-CoV-2 viral testing, and who are at high
risk of progression to severe COVID-19, including hospitaliza-
tion or death [74].

In vitro studies have shown sotrovimab to retain activity
against variants of interest and concern, including the alpha,
beta, delta, gamma and lambda variants [14,90]. Sotrovimab
is the only currently available NAb anticipated to have
activity against the omicron variant [77].

6. Pharmacoeconomics

Pharmacoeconomic studies have begun to evaluate the cost
of treating COVID-19. The cost of treating patients with severe
disease who require admission to the intensive care unit (ICU)
or invasive mechanical ventilation (IMV) is substantially higher
than for patients with mild-to-moderate disease who do not
require ICU admission or IMV [91-93]. Moreover, a recent



analysis showed that therapies reducing the length of hospital
stay, COVID-related mortality and incidence of mechanical
ventilation are likely to be cost-effective [94]. Despite a lack
of pharmacoeconomic data specific for NAbs, clinical trials
have consistently shown a lower risk of hospitalization or
death and a shorter time to symptom resolution and/or clin-
ical recovery in patients treated with NAbs versus controls
[79,83,84]. Thus, NAbs may contribute to reducing healthcare
costs associated with hospitalization and intensive care admis-
sion, as well as the considerable burden on the healthcare
system posed by severe and critical cases of COVID-19.

7. Discussion

Therapeutic intervention during the early stages of the dis-
ease - during which viral replication and infection are the
primary factors driving disease progression — represents an
early opportunity to alter the course of the disease prior to
the onset of post-viral inflammatory and immune responses.
Impacts of the post-acute phase of COVID-19 (commonly
known as long COVID) can also be considerable. Estimates of
the proportion of patients who experience persistent symp-
toms vary; it may range between 33% and 87% in hospitalized
patients, and as many as two-thirds of patients with non-
critical disease may be affected [95]. This significant health
burden might be reduced by effectively treating early disease.
As summarized in the present article, NAbs are well suited to
early therapeutic intervention and will likely play an increas-
ingly important role as the pandemic continues to evolve.

Concerns around the potential for SARS-CoV-2 variants to
have an increased ability to spread and escape from immunity
have prompted researchers to investigate ways to combat the
evolution of viral variants.

RNA viruses such as SARS-CoV-2 tend to acquire mutations
quickly because of the poorer proofreading ability of the RNA
polymerase enzymes in comparison with that seen in DNA
viruses [96,97]. Coronaviruses mutate more slowly than most
other RNA viruses, likely because of the proofreading function
of the exonuclease nsp14 that corrects potentially fatal RNA
copying mistakes [96,98]. Nevertheless, by April 2021, research-
ers had described more than 1 million SARS-CoV-2 genome
sequences, with mutations occurring particularly in the
S protein RBD [99-101]. Although many mutations will not
influence the ability of the virus to spread or cause disease
[96], mutations that affect the RBD of SARS-CoV-2 are of parti-
cular concern, as this RBD is the molecular target for many
vaccines and antibody-based treatments for SARS-CoV-2 infec-
tion [102].

Several of the World Health Organization (WHO)-defined
VOCs have mutations in the RBD, including the alpha variant,
which originated in the UK; the beta variant, which originated
in South Africa; the gamma variant, which originated in Brazil;
the delta variant, which originated in India; and the most
recently identified omicron variant, which originated in multi-
ple countries [100,103]. Similarly, RBD mutations are also seen
in WHO-defined variants of interest (VOIs), lambda (originating
in Peru) and mu (Colombia) [103]. The SARS-CoV-2 D614G
mutation, which affects ST and has now spread globally, is
associated with increased infectivity and transmission, and its
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incidence has increased over time. As of December 2021, the
D614G mutation is present in all WHO VOCs (alpha, beta,
gamma, delta and omicron) and in both VOIs (lambda and
mu) [5,99,104]. The NAbs currently approved or authorized for
emergency use for the treatment of COVID-19 show variability
with respect to their activity against the different VOCs, as
summarized in section 5.

In addition to naturally occurring VOCs, the development of
drug-resistant variants of SARS-CoV-2 may be promoted by
selective pressure from the treatment of COVID-19 with NAbs
[59]. Clinical trials of bamlanivimab monitored SARS-CoV-2
strains for S protein variations potentially associated with
drug resistance (as previously identified in non-clinical serial
resistance and directed evolution studies) [18,59]. In the
BLAZE-1 study, known bamlanivimab-resistant variants were
identified at baseline [59], and an exploratory analysis of
ongoing viral sequencing identified putative bamlanivimab-
resistant variants in all treatment groups, including placebo.
However, the clinical significance of these resistant variants
remains unclear, as several clinical outcomes were comparable
in the combination and monotherapy groups despite a larger
reduction in viral load being observed in the combination
group. Notably, the bamlanivimab monotherapy groups had
a higher proportion of patients with a variant detected at
more than one time point during the viral time course (4.1-
7.2%) than did the placebo or combination bamlanivimab and
etesevimab group (both 0%) [18]. The latter finding supports
the notion that using NAbs in combination (cocktail therapy)
has the potential to thwart the substantial threat posed by
antibody resistance if combinations that bind non-overlapping
epitopes are used, because mutations are unlikely to occur
simultaneously at two distinct genetic sites [64]. A recent
study mapped mutations to the S protein RBD that escape
antibody recognition [105]. Interestingly, the findings implied
that antibody cocktails may not have to target distinct regions
of the RBD to resist viral escape, as several cocktails of anti-
bodies that compete for binding on the S protein but have
different escape mutations remained resistant to viral escape.
Furthermore, the authors postulated that such cocktails may
even be preferable to those targeting distinct regions, because
the acquisition of multiple different escape mutations for the
ACE2-binding interface could impose important loss of recep-
tor binding on the virus [105].

The epitopes for casirivimab and imdevimab are non-
overlapping, providing rationale for their combination, and
the binding affinities of these NAbs to SARS-CoV-2 RBD are
concentration dependent, with 50% effective concentration
(ECsp) values in the sub-nanomolar range [106]. In contrast,
bamlanivimab and etesevimab bind two different
but overlapping epitopes of the SARS-CoV-2 RBD and conse-
quently compete with one another for binding of the S pro-
tein [107]. Binding affinities of bamlanivimab and etesevimab
for the SARS-CoV-2 RBD were in the low nanomolar range,
with reported equilibrium dissociation constants (Kp) of
1.5 nM and 46.5 nM, respectively [107]. Regdanvimab binds
with picomolar affinity (ECso 4.4 ng/mL corresponding to
3.0 x 107" M) to regions of the SARS-CoV-2 RBD that interact
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with the ACE2 receptor [108]. However, the binding orienta-
tion of regdanvimab to the RBD is different from that of other
NAbs, suggesting that the epitopes recognized by regdanvi-
mab and the steric hindrance afforded by binding are distinct
to those of other NAbs [82]. Finally, sotrovimab binds with
high affinity (Kp 0.21 nM) to a highly conserved epitope in the
SARS-CoV-2 RBD that is outside of the RBM [109]. These differ-
ences between NAbs could offer potential alternative treat-
ment options in the event of resistance to any single agent or
combination of agents.

In addition to the potential development of drug-resistant
variants, there has been a theoretical concern that antibody-
based therapies may exacerbate COVID-19 severity via anti-
body-dependent enhancement (ADE) [110], another area of
focus for researchers. ADE in viral infections can occur through
two mechanisms: by increasing viral uptake and replication in
Fcy receptor-expressing immune cells, and through increased
immune activation by Fc-mediated effector function or
immune complex formation [59,110]. ADE can be mediated
by both pathways when antibodies bind to viral antigens
without blocking or clearing infection (e.g. with non-NAbs or
antibodies at subneutralizing levels) [110]. There is no evi-
dence of ADE with SARS-CoV-2 infection and NAb treatment,
but measures to mitigate the theoretical risk are possible (e.g.
modifying the Fc region of the antibody so that it cannot elicit
effector immune responses) [59,110].

While all NAbs currently authorized for the treatment of
COVID-19 can be administered intravenously, several can be
administered via subcutaneous injection [62,63], and others
currently under development are administered intramuscularly
[111]. Early studies are also showing promising results using
nebulized NAb formulations [112]. As we have postulated, NAb
therapy is likely to have the greatest effect early during infec-
tion, when viral replication and infection drive disease progres-
sion [59-61]. Simplifying administration of these therapies raises
the intriguing possibility of earlier treatment availability in less
specialized healthcare facilities, general practitioner offices or
maybe even in the community setting, as self-administration.

Given the constantly changing situation regarding SARS-CoV-2
variants, it is important for physicians to refer to the most up-to-
date information issued by organizations such as the WHO, EMEA,
FDA and US Centers for Disease Control and Prevention when
making prescribing decisions.

8. Conclusion

The magnitude of the global COVID-19 pandemic, coupled
with the expansive disease manifestation of this infection,
mandates broadening the scope of treatment approaches.
Experience has shown that appropriate management in the
early stages of disease is crucial, because in later stages the
inflammatory response predominates and the evolution of
disease becomes unpredictable. An increasing body of evi-
dence suggests that NAbs represent an effective treatment
option that may be used alongside other therapies in the
management of SARS-CoV-2 infection. Further clinical evalua-
tion and real-world evaluation of these agents is needed to

optimize their clinical use, particularly among high-risk
patients, and to help reduce the global burden of COVID-19.

9. Expert opinion

There is an ongoing, pressing need, recognized by regulators,
to bolster the range of treatments available for the prevention
and treatment of SARS-CoV-2 infection, with emerging evi-
dence pointing to the value of NAbs. Indeed, as experience
with treating COVID-19 grows, so does confidence in being
able to predict which patients are most likely to progress to
severe disease and, therefore, are most likely to benefit from
NAbs. In the same way, recognizing and proactively treating
immunocompromised patients will likely be essential to avoid
the development of serious and persistent disease with suc-
cessive acute viral episodes.

As the pandemic continues, the risk of resistant variants
increases; over the coming years, combination therapy with
NAbs is likely to play a role in minimizing this risk. However,
a number of important questions remain to be answered.

Most of the clinical trials on which regulatory submissions
and subsequent EUAs and approvals were based specifically
excluded vaccinated individuals. From a pathophysiological
standpoint, administering anti-S protein-targeted NAbs to pre-
viously vaccinated individuals is not anticipated to pose major
risks. Furthermore, given the increasing number of break-
through infections [113], it will be important to evaluate the
use of NAbs in vaccinated individuals. Therefore, it is impera-
tive that data on the safety and efficacy of NAbs in this patient
population are collected from real-world studies based on
routine clinical practice.

Early indications suggest that several mAb therapies have
reduced effectiveness against the omicron variant [114]. This
has most likely emerged as part of natural evolutionary pres-
sure, and not as drug-induced resistance, since the clinical
trials would have been conducted prior to the circulation of
the omicron variant. As such, the same evolutionary pressure
could allow reversion of at least part of the S protein muta-
tions that now cause reduced binding affinity. Genetic surveil-
lance of the dominant variants circulating locally is becoming
paramount to allow tailored treatment decisions for each set-
ting and, potentially, for each patient. This is particularly rele-
vant when variant replacement is occurring, and when both
the previous and current dominant variants are co-circulating,
especially if the circulating variants display different suscept-
ibilities to the available NAbs (as is the case with the omicron
and delta variants). Prompt serology and sequencing are also
becoming increasingly important when deciding on fast and
effective NAb treatments for unvaccinated or severely immu-
nocompromised patients [115].

Recurrent infection with SARS-CoV-2 has been reported in
a number of patients, although recurrent infection rates were
relatively low (estimated to occur in 0.04% of all patients with
COVID-19 in one US study [116]) prior to the emergence of the
omicron variant. NAbs may play a role in treating patients with
recurrent infections; however, treatment algorithms remain to
be established. NAbs could also provide a therapeutic option
for immunocompromised patients who fail to respond to



vaccination and are at risk of recurrent infections and pro-
longed infections [117].

The potential role of NAbs in preventing post-acute phase
COVID-19 (i.e. long COVID) also remains to be elucidated. The UK
ZOE symptom study estimated that approximately 15% of peo-
ple experiencing symptomatic COVID-19 went on to suffer long
COVID with a duration of >4 weeks, and a smaller proportion
continued to experience symptoms for longer durations (e.g.
2.2% for =12-weeks) [118]. The strongest predictors for long
COVID of duration >4 weeks were increasing age and the num-
ber of symptoms experienced during the first week [118].

Reflecting on the immense scientific gains achieved in the
first 2 years of the COVID era in terms of our knowledge base
and array of available interventions, we anticipate that in the
next 5 years, the range of effective treatment options will
continue to grow, and early treatment of infected patients in
whom disease progression is likely will become commonplace.
Optimal use of NAbs alongside other interventions for COVID-
19 will be informed by future clinical trial data and real-world
evidence as this become available.
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