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Abstract 

Background:  Prior studies on the role of gut-microbiome in Amyotrophic Lateral Sclerosis (ALS) pathogenesis have 
yielded conflicting results. We hypothesized that gut- and oral-microbiome may differentially impact two clinically-
distinct ALS subtypes (spinal-onset ALS (sALS) vs. bulbar-onset ALS (bALS), driving disagreement in the field.

Methods:  ALS patients diagnosed within 12 months and their spouses as healthy controls (n = 150 couples) were 
screened. For eligible sALS and bALS patients (n = 36) and healthy controls (n = 20), 16S rRNA next-generation 
sequencing was done in fecal and saliva samples after DNA extractions to examine gut- and oral-microbiome differ-
ences. Microbial translocation to blood was measured by blood lipopolysaccharide-binding protein (LBP) and 16S 
rDNA levels. ALS severity was assessed by Revised ALS Functional Rating Scale (ALSFRS-R).

Results:  sALS patients manifested significant gut-dysbiosis, primarily driven by increased fecal Firmicutes/
Bacteroidetes-ratio (F/B-ratio). In contrast, bALS patients displayed significant oral-dysbiosis, primarily driven by 
decreased oral F/B-ratio. For sALS patients, gut-dysbiosis (a shift in fecal F/B-ratio), but not oral-dysbiosis, was 
strongly associated with greater microbial translocation to blood (r = 0.8006, P < 0.0001) and more severe symptoms 
(r = 0.9470, P < 0.0001). In contrast, for bALS patients, oral-dysbiosis (a shift in oral F/B-ratio), but not gut-dysbiosis, was 
strongly associated with greater microbial translocation to blood (r = 0.9860, P < 0.0001) and greater disease severity 
(r = 0.9842, P < 0.0001). For both ALS subtypes, greater microbial translocation was associated with more severe symp-
toms (sALS: r = 0.7924, P < 0.0001; bALS: r = 0.7496, P = 0.0067). Importantly, both sALS and bALS patients displayed 
comparable oral-motor deficits with associations between oral-dysbiosis and severity of oral-motor deficits in bALS 
but not sALS. This suggests that oral-dysbiosis is not simply caused by oral/bulbar/respiratory symptoms but repre-
sents a pathological driver of bALS.

Conclusions:  We found increasing gut-dysbiosis with worsening symptoms in sALS patients and increasing oral-
dysbiosis with worsening symptoms in bALS patients. Our findings support distinct microbial mechanisms underlying 
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Introduction
Amyotrophic lateral sclerosis (ALS) is a phenotypically 
heterogeneous neurodegenerative disorder with survival 
ranging from a few months to over 20 years [1]. This sub-
stantial heterogeneity has contributed to poor clinical 
trial outcomes and a lack of effective treatments [1]. A 
reliable predictor of ALS progression is where paralysis 
first starts before spreading to other body regions [1–4] 
(Fig.  1A). Bulbar-onset ALS (bALS) patients (20 ~ 25% 
of cases), whose muscle weakness initiates in the head 
and neck, have the worst prognosis (10-year survival 
rate: 3.4%), whereas spinal-onset ALS (sALS) patients 
(75 ~ 80% of cases), whose symptoms initiate in the limbs, 
show a much better prognosis (10-year survival rate: 
13.0%) [1–4]. Additionally, bALS patients have nearly 
twice as fast disease progression, much shorter survival, 
and 4.5-fold higher mortality risk compared to sALS 
patients [1–4]. Consistent with distinct clinical features, 
these two ALS subtypes manifest different pathological 

signatures [5], impact different brain regions [6], and are 
associated with different sets of genetic risk factors [1].

Despite clear clinico-pathological differences, sALS 
and bALS are considered the same disease. This repre-
sents a critical problem since sALS and bALS patients 
often respond differently to treatments [8, 9]. Many drugs 
are effective in only one subtype [8, 9]. For example, rilu-
zole, the first FDA-approved drug available to treat ALS, 
improved median survival by 2.8-fold in bALS patients 
(7.5-months vs. 18-months) but conferred no survival 
advantage in sALS patients (18-months vs. 18-months) 
[9]. The molecular mechanisms that differentiate 
between sALS and bALS are unknown, and there are no 
established animal models for bALS [10]. Thus, clinical 
research to identify the factors that determine the loca-
tion of disease onset in ALS is crucial. This will enable 
researchers and clinicians to develop therapy targeting 
specific ALS subtypes and thereby more effectively treat 
ALS.

two ALS subtypes, which have been previously grouped together as a single disease. Our study suggests correcting 
gut-dysbiosis as a therapeutic strategy for sALS patients and correcting oral-dysbiosis as a therapeutic strategy for 
bALS patients.

Keywords:  Amyotrophic lateral sclerosis, Microbiome, Lou Gehrig’s disease

Fig. 1  Demographic and Clinical Characteristics of the Cohort. A Pattern of motor involvement in two clinically-distinct ALS subtypes. In 
spinal-onset ALS, the muscle weakness starts in limbs but radiates to other body regions including head and neck. In bulbar-onset ALS, the muscle 
weakness starts in head and neck but radiates to other body regions including limbs. B Demographic and clinical characteristics of healthy controls, 
spinal-onset ALS patients, and bulbar-onset ALS patients. aBulbar/Respiratory involvement was defined as a score ≤ 20 on bulbar and respiratory 
items of the ALSFRS-R [7]. Abbreviation: ALSFRS-R; Revised ALS Functional Rating Scale, BMI; Body Mass Index. Statistics: For comparisons of age, 
BMI, months from diagnosis to first collection, and ALSFRS-R score, Kruskal–Wallis test with Dunn’s post-hoc multiple comparisons test was utilized 
to compute P values. For comparisons of sex and bulbar/respiratory involvement, Fisher’s exact test was utilized to compute P values
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Microbial-dysbiosis (imbalance in microbial compo-
sition) has begun to emerge as an important disease 
modifying factor in neurodegenerative disorders such as 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). 
Dysbiosis is reported to weaken mucosal barriers, ena-
bling microbes to translocate to the blood [11] and alter 
multiple endocrine, immune, metabolic, and neural path-
ways, all of which may contribute to the pathogenesis of 
neurodegenerative disorders [12, 13]. Gut-dysbiosis, evi-
dent in AD and PD, can trigger Aβ-plaque depositions 
and α-synuclein aggregation and cause neurodegen-
eration [14–18]. Restoring normal gut microbiota and 
correcting gut-dysbiosis via fecal transplantation, anti-
biotics, or probiotics ameliorated AD/PD pathologies in 
animal models [16, 19–21]. Additionally, preventing gut-
dysbiosis in AD/PD animal models by housing them in a 
germ-free environment drastically reduced Aβ-plaques 
and α-synuclein inclusions [14, 18].

Not only gut-dysbiosis but also oral-dysbiosis has 
recently been suggested to play central roles in AD 
and PD pathogenesis. For example, in PD patients, oral 
microbiome changes were highly predictive of their 
impairments in locomotion, balance, and cognition [22]. 
Studies with post-mortem brain tissues from AD patients 
and animal models suggest that several periodontal 
pathogens are translocated to the specific brain regions 
[23, 24], potentially driving lacunar infarctions [25], the 
commonest vascular cause of dementia. Additionally, 
significantly elevated levels of IgG against specific peri-
odontal bacteria (e.g. Porphyromonas gingivalis) were 
highly predictive of cognitive/memory impairments in 
older adults and patients with AD and dementia [26–30]. 
Further, chronic application of periodontal pathogens 
significantly increased Aβ productions and led to brain 
inflammation and neurodegeneration in wild-type mice 
[31]. Orally bioavailable, brain penetrant inhibitor against 
Kgp, the essential component for pathogenicity of Por-
phyromonas gingivalis, is currently being tested in human 
clinical studies for AD [32].

Based on animal studies, microbial-dysbiosis appears 
to play a significant role in ALS pathogenesis as well. 
Rodent models of ALS displayed gut-dysbiosis before 
the onset of clinical symptoms, which damaged intes-
tinal tight-junctions and increased gut permeability 
[33–35]. Drastic changes in specific gut-microbial spe-
cies and subsequent gut-dysbiosis were highly correlated 
with ALS disease severity [33]. Correcting gut-dysbiosis 
slowed down ALS progression, whereas exacerbating 
gut-dysbiosis accelerated disease progression in animal 
models [33, 35].

However, microbiome studies with ALS patients have 
yielded conflicting results. Some studies report a corre-
lation between gut-microbiota and ALS susceptibility/

severity [33, 36], while others report no association [37]. 
Interestingly, most microbiome studies with ALS patients 
have not distinguished between ALS subtypes, and many 
of these studies vary in relation to inclusion of sALS and 
bALS patients [33, 36, 37]. Though, a recent study with 
2 bALS and 17 sALS patients has reported distinct fecal 
cytokine profiles in two ALS subtypes [38]. Additionally, 
all the animal studies that yielded positive correlations 
between gut-dysbiosis and ALS severity exclusively used 
sALS animal models [10, 33–35]. We thus hypothesized 
that microbial differences between the two ALS subtypes 
may represent a confounding factor driving disagreement 
in the field. Further, we postulated that unique microbi-
ome signatures in different organs (gut vs. oral cavity) 
can differentiate between sALS and bALS and determine 
the location of disease onset. To test these hypotheses, 
we examined gut- and oral-microbiome changes in ALS 
patients stratified by locations of disease onset.

Methods
Study enrollment and patient assessment
All participants provided written informed consent, and 
all the methods were conducted according to the IRB-
approved protocol 20170646HU. Patients diagnosed 
with probable/definite ALS within 12 months according 
to the revised El-Escorial criteria were recruited from 
the South Texas ALS Clinic. Patients using non-invasive 
ventilation and/or feeding tubes (PEG) or diagnosed with 
other psychiatric/neurological disorders were excluded. 
Patients were classified based on location of disease 
onset (spinal-/bulbar-onset). Spouses of ALS patients 
were recruited as healthy controls if they did not show 
any early signs of ALS/other neurological disorders and 
if they did not have a 1st-degree relative or more than one 
relative with ALS. Exclusion criteria for patients and con-
trols included exposure to antibiotics/probiotics, immu-
nocompromising illness/therapy, previous abdominal/
anorectal surgery, GI-/respiratory-/gynecological-tract 
infection, food poisoning, or major epistaxis requiring 
treatment, active/persistent primary disease of GI-/res-
piratory-/gynecological-tract, endocrinal disease, heart 
failure, severe renal-insufficiency, current pregnancy, 
drug/alcohol abuse, and active smoking within 6-months. 
At the time of sample collections, ALS severity was 
assessed by Revised ALS Functional Rating Scale (ALS-
FRS-R) that evaluates the functional status of patients 
ranging from 0 (worst function) to 48 (best function) [7].

ALSFRS‑R functional assessment
ALS symptom severity is assessed by the ALSFRS-
R score (12 item assessment); the assessment can be 
divided into 4 domains (Bulbar, Fine Motor, Gross Motor, 
and Respiratory). The Bulbar domain includes (1) speech, 
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(2) salivation, and (3) swallowing. The Fine Motor sub-
score includes (1) handwriting, (2) cutting food and han-
dling utensils, and (3) dressing and hygiene. The Gross 
Motor score includes (1) turning in bad and adjusting 
bed clothes, (2) walking, and (3) climbing stairs. The 
Respiratory subscore includes (1) dyspnea, (2) ortho-
pnea, and (3) respiratory insufficiency. In each category, 
patients are scored between 4-no deficits to 0-signifcant 
deficits or unable to perform task. Individual item scores 
are summed to produce a reported score ranging from 
0 (worst function) to 48 (best function). The ALSFRS-
R score has been heavily validated and is the primary 
instrument used to assess ALS severity in the clinic [39].

Sample collection and DNA extraction
During the clinic visit, the subjects spit approximately 
5  mL of saliva into tubes pre-filled with saliva DNA 
stabilizer (Norgen Saliva DNA Collection and Preser-
vation Devices). Additionally, approximately 10  mL of 
venous blood was drawn and collected with QIAamp 
DNA Blood Mini Kit. Then, each subject took home 
a stool sample collection kit (Fisherbrand Commode 
Specimen Collection System) along with instructions 
for collecting/mailing the specimen, exam gloves, alco-
hol wipes, and a postage-paid return mailing box filled 
with dry ice. Subjects fast overnight, collected their stool 
samples at home in the next morning, and immediately 
placed them on dry ice. Immediately after collection, 
participants mailed the samples directly to the lab so 
that samples could be received the next day. Upon the 
receipt of samples, they were stored at -80 °C after being 
checked for sample adequacy. Fecal samples were lysed 
by bead beating, and DNA was extracted using QIAamp 
DNA Stool Mini Kit, following manufacturer’s instruc-
tions. DNA from saliva samples was extracted with Nor-
gen Saliva DNA Isolation Kit, following manufacturer’s 
instructions.

16S rRNA next‑generation sequencing (NGS) and qPCR
Gut- and oral-microbial diversity was assessed by 
deep sequencing the V4 hypervariable region of bac-
terial 16S rRNA. Library preparation was performed 
by SeqMatic facility (Fremont, CA) per Illumina 16S 
metagenomics-sequencing library preparation proto-
col [40]. Sequencing was performed by SeqMatic via 
Illumina MiSeq and sequences were aligned to refer-
ence genomes. Illumina BaseSpace software was used 
for data analysis. For the major bacteria that were 
identified to be altered in 16S rRNA NGS (Firmicutes, 
Bacteroidetes, and Fusobacteria), SYBR qPCR (Roche 
LightCycler480 Real Time PCR) was performed using 
the primer sets described in previous studies [41, 42]. 
All reads were assessed by read quality score. Any read 

with a score below Q20 was filtered out. The proportion 
of reads which met our minimum quality requirements 
is shown in Supplemental Fig. 19. The percent of reads 
which could be linked to a known taxon is also shown 
in Supplemental Fig. 19.

Quantifying microbial translocation to blood
Plasma lipopolysaccharide-binding protein (LBP) levels 
were determined by the Human LBP ELISA kit (R&D 
Systems), following manufacturer’s instructions. DNA 
was extracted from blood plasma via Qiagen DNeasy 
Blood & Tissue Kits, following the manufacturer’s proto-
col. Then, total bacterial 16S rDNA in plasma was quan-
tified via SYBR qPCR (Roche LightCycler480 Real Time 
PCR) using the primer sets and protocol described in the 
previous study [43].

Oral health assessment
Salivary pH was digitally measured through a digital pH 
sensor (Fisher Scientific Accumet AE150). We initially 
calibrated the device using buffered solutions with pH 
4.0, pH 7.0, and pH 10.0. After calibration, the sensor 
probe was dipped in saliva filled tube, where it remained 
for 30  s, thus yielding automatic pH reading. High sen-
sitivity enzyme-linked immunosorbent sandwich assay 
kit (ELISA kit; Lifespan Biosciences LS-F27082) was 
used to determine the MUC7 levels in the saliva sam-
ples, following the protocol described by the manufac-
turer. Values of absorbance were read at the wavelength 
of A = 450  nm using the SpectraMax iD3 Multi-Mode 
Microplate Reader. Salivary MUC7 levels were estimated 
from standard curves, derived from the recombinant 
MUC7 standards. DNA copies of Streptococcus Mutans, 
Lactobacillus spp, and Candida Albcians were quantified 
via SYBR qPCR (Roche LightCycler480 Real Time PCR), 
using the primer sets and protocol described in previous 
studies [44, 45].

Statistics
Analyses were performed with GraphPad Prism 8.0. 
Principal Component Analysis was conducted using 
the prcomp command from the stats package in RStu-
dio. Microbiome cluster analysis at the phylum level 
was done using the Bray dissimilarity measure. Based 
on D’Agostino & Pearson test and Shapiro–Wilk test, 
some of our data showed non-normal distribution. We 
thus decided to use non-parametric tests for our data 
analysis. To be specific, in experiments comparing con-
trols and ALS patients (combined), Mann–Whitney test 
was used. For analyses comparing controls, spinal-onset 
ALS patients, and bulbar-onset ALS patients, Kruskal–
Wallis test with Dunn’s post-hoc test was used. For cat-
egorical variables, Fisher’s exact test was performed. 
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For determining statistical significance of correlations, 
Spearman’s correlation coefficient (r) test was conducted. 
OTU richness measures the count of different species 
represented in a community. Shannon index measures 
the number of OTUs in the sample (richness) but scales 
them based on the evenness of the community. OTU 
richness and Shannon index were calculated using the 
vegan package in R [46]. OTU richness was calculated as 
the sum of the present OTUs. Shannon diversity was cal-
culated as the exponential function of Shannon entropy. 
For all statistical analyses, a 2-sided P < 0.05 was accepted 
as statistically significant. All analyses were adjusted for 
multiple comparisons. We have included post-hoc power 
analyses demonstrating our study to be sufficiently pow-
ered (Supplemental Fig. 20).

Results
Demographic and clinical characteristics of the cohort
ALS is a rare and rapidly progressive disease, posing 
substantial challenges for patient recruitment. Total 
of 150 ALS patients diagnosed within 12-months were 
screened. To minimize the influence of lifestyle/socio-
economic factors (including diets) on microbiota [47], 
patient spouses were used as healthy controls. After 
screening, 36 ALS patients met the rigorous eligibil-
ity criteria (see Methods). To examine if gut- and oral-
microbiome can differentiate between spinal-onset ALS 
(sALS) and bulbar-onset ALS (bALS), fecal and saliva 
samples were collected from 24 sALS patients and 
12 bALS patients. Demographic and clinical features 
are summarized in Fig.  1B. ≈60–67% of participants 
were females. Controls were 58.1 ± 6.8  years-old, sALS 
patients were 60.5 ± 6.8  years-old, and bALS patients 
were 64.3 ± 8.5  years-old (no significant differences in 
sex/age distribution). Additionally, no significant differ-
ences between groups were observed in distributions of 
body mass index (BMI) and disease duration. Revised 
ALS Functional Rating Scale (ALSFRS-R) scores (see 
Methods) were 34.6 ± 7.6 for sALS patients and 35.7 ± 6.6 
for bALS patients (no significant differences). At the time 
of sample collections, 87.5% of sALS patients showed 
clear oral/bulbar/respiratory symptoms (bulbar/respira-
tory ALSFRS-R subscore: 17.9 ± 2.9). This is consistent 
with previous reports that 85% of sALS patients display 
bulbar symptoms as the disease progresses and the paral-
ysis spreads [5]. Since both sALS and bALS patients man-
ifested oral/bulbar/respiratory symptoms (87.5% of sALS 
vs. 100% of bALS, P = 0.5361), oral/bulbar/respiratory 
symptoms should not be a confounder for oral-microbi-
ome measures.

Spinal‑onset ALS patients manifest gut‑dysbiosis, whereas 
bulbar‑onset ALS patients display oral‑dysbiosis
To compare the diversity and distribution of bacterial 
taxa between groups, the 5’ variable region (V4) of the 
bacterial 16S ribosomal RNA region was PCR ampli-
fied and subjected to next-generation sequencing. 
Next, Principle Component Analysis (PCA) and clus-
ter analysis using the Bray dissimilarity measure were 
performed at the phylum level, with the latter summa-
rized graphically using heatmaps. We found stool sam-
ples from sALS patients forming a distinct cluster from 
controls and bALS patients (Fig.  2A, Supplemental 
Fig.  1). Surprisingly, we observed completely opposite 
results in saliva samples, where bALS patients clustered 
separately from controls and sALS patients (Fig.  2B, 
Supplemental Fig.  2). These results suggest that gut-
microbiome is altered in sALS, whereas oral-microbi-
ome is altered in bALS.

To characterize how gut- and oral-microbiome are 
differentially affected in the two ALS subtypes, we cal-
culated Operational Taxonomic Unit (OTU) richness, 
which quantifies the total number of observed bacterial 
species [48]. In stool samples, sALS patients had a signifi-
cantly higher bacterial species count with no significant 
difference for bALS patients (Fig.  2C). Previous stud-
ies reported ALS patients overall to have significantly 
increased gut bacterial species number [36, 37]. Our 
results confirmed this, but the significance surprisingly 
arose solely from sALS patients (Fig. 2C). In contrast, for 
saliva samples, bALS patients had significantly greater 
bacterial species numbers with no significant difference 
for sALS patients (Fig. 2D).

We next measured Shannon-index, which reflects how 
evenly bacteria are distributed [48]. A decline in Shan-
non-index may indicate loss of bacterial diversity and 
dysbiosis [48]. In stool samples, sALS patients displayed 
a significantly lower Shannon-index (suggesting gut-
dysbiosis) with no significant change in bALS patients 
(Fig.  2E). In contrast, in saliva, bALS patients exhibited 
a significantly lower Shannon-index (suggesting oral-
dysbiosis) with no significant change in sALS patients 
(Fig. 2F). Since OTU richness informs on the richness of 
taxons while Shannon index conveys how evenly taxons 
are distributed within a population, our data suggest the 
increased numbers of total taxons with a small number of 
particular taxons unevenly dominating the stool (but not 
saliva) samples of sALS patients and the saliva (but not 
stool) samples of bALS patients. Thus, these results sug-
gest that gut microbial-imbalance is prominent in sALS, 
while oral microbial-imbalance is prominent in bALS.
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These analyses were each independently re-run 
directly comparing patients to matched household 
controls via matched-pair analysis as a means of 
accounting for environmental factors including diets. 
Household controls were the patient’s spouse or partner. 

The number of household controls is reduced in this 
analysis as some spouses or partners did not consent to 
participate in the study. However, the above conclusions 
were preserved in the matched-pair analysis (Supple-
mental Fig. 3A-D).

Fig. 2  Spinal-Onset ALS Patients Manifest Gut-Dysbiosis, whereas Bulbar-Onset ALS Patients Display Oral-Dysbiosis. A Left panel represents 
principle component analysis of gut-microbiome species taxa at the phylum level. Right panel represents the heatmap for gut-microbiome 
distribution at the phylum level. Data derived from 20 healthy controls (black), 24 spinal-onset ALS patients (red), and 12 bulbar-onset ALS patients 
(blue). Spinal-onset ALS patients formed a distinct cluster from controls and bulbar-onset ALS patients. B Left panel represents principle component 
analysis of oral-microbiome species taxa at the phylum level. Right panel represents the heatmap for oral-microbiome distribution at the phylum 
level. Bulbar-onset ALS patients formed a distinct cluster from controls and spinal-onset ALS patients. C Gut-microbiome bacterial species number 
measured by Operational Taxonomic Unit (OTU) Richness. Results represent both ALS (spinal- and bulbar-onset ALS combined) or spinal- and 
bulbar-onset ALS quantified separately. Spinal-onset ALS patients displayed a significant increase in gut bacterial species count. No significant 
change in bulbar-onset ALS patients. D Oral-microbiome bacterial species number measured by OTU Richness. Bulbar-onset ALS patients 
displayed a significant increase in oral bacterial species count. No significant change in spinal-onset ALS patients. E Gut-microbiome species 
evenness measured through Shannon index. Spinal-onset ALS patients displayed a significant decrease in Shannon index, suggesting reduced 
gut-microbiome uniformity. No significant change in bulbar-onset ALS patients. F Oral-microbiome species evenness measured through Shannon 
index. Bulbar-onset ALS patients displayed a significant decrease in Shannon index, suggesting reduced oral-microbiome uniformity. No significant 
change in spinal-onset ALS patients. Statistics: For comparisons between controls and ALS patients (combined), Mann–Whitney test was utilized. 
For contrasts between control, spinal-onset ALS, and bulbar-onset ALS, Kruskal–Wallis test with Dunn’s post-hoc multiple comparisons test was 
utilized. Values represent sample median with interquartile range. Clustering was performed based on Bray Similarity matrix. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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Increased fecal Firmicutes/Bacteroidetes ratio drives 
gut‑dysbiosis in spinal‑onset ALS, whereas decreased 
oral Firmicutes/Bacteroidetes ratio drives oral‑dysbiosis 
in bulbar‑onset ALS
To identify the source of dysbiosis, we performed 
phylogenetic composition analysis (Fig.  3A, D). Fir-
micutes and Bacteroidetes comprise the majority of 
the gut- and oral-microbiome [49], and imbalance in 
the Firmicutes/Bacteroidetes-ratio (F/B-ratio) is asso-
ciated with poor health outcomes [50]. In stool from 
controls, ≈30% of the microbiome was Firmicutes and 
≈60% Bacteroidetes (≈0.5 F/B, Fig.  3A-C), consistent 
with other studies [49]. However, sALS patients, but 

not bALS patients, showed a significant enrichment of 
Firmicutes along with a depletion of Bacteroidetes in 
stool samples, resulting in a significant increase in fecal 
F/B-ratio (F/B > 1, Fig.  3A-C, Supplemental Figs.  3, 4). 
When both ALS subtypes were combined, patients still 
showed a significant increase in fecal F/B-ratio, but this 
was completely driven by changes in sALS patients with 
no significant changes in bALS patients (Fig.  3C). As 
with our other results, we observed a complete rever-
sal in saliva samples. Healthy controls displayed ≈1/1 
distribution of Firmicutes and Bacteroidetes (≈1 F/B, 
Fig.  3D-F). However, bALS patients, but not sALS 
patients, showed a significant depletion of Firmicutes 

Fig. 3  Increased Fecal Firmicutes/Bacteroidetes Ratio Drives Gut-Dysbiosis in Spinal-Onset ALS, whereas Decreased Oral Firmicutes/Bacteroidetes 
Ratio Drives Oral-Dysbiosis in Bulbar-Onset ALS. A Relative abundance of microbial phyla in gut microbiome comparing control, spinal-onset ALS 
patients alone, bulbar-onset ALS patients alone, and ALS patients (both spinal-and bulbar-onset ALS patients combined). Left panel represents 
taxonomic distribution for all the individuals; Right panel represents average taxonomic distribution for each group. B Percent abundance 
of Firmicutes and Bacteroidetes phyla in gut microbiome. Results represent both ALS (spinal- and bulbar-onset ALS combined) or spinal- and 
bulbar-onset ALS quantified separately. Spinal-onset ALS patients displayed a significant enrichment of Firmicutes and a significant depletion 
of Bacteroidetes in the gut. No significant change in bulbar-onset ALS. C Fecal ratio of Firmicutes to Bacteroidetes (F/B). Spinal-onset ALS patients 
displayed a significant increase in fecal F/B ratio. No significant change in bulbar-onset ALS. D Relative abundance of microbial phyla in oral 
microbiome. Left panel represents taxonomic distribution for all the individuals; Right panel represents average taxonomic distribution for each 
group. E Percent abundance of Firmicutes and Bacteroidetes phyla in oral microbiome. Bulbar-onset ALS patients displayed a significant depletion 
of Firmicutes and a significant enrichment of Bacteroidetes in the oral cavity. No significant change in spinal-onset ALS. F Oral F/B ratio. Bulbar-onset 
ALS patients displayed a significant decrease in oral F/B ratio. No significant change in spinal-onset ALS. Statistics: For comparisons between 
controls and ALS patients (combined), Mann–Whitney test was utilized. For contrasts between control, spinal-onset ALS, and bulbar-onset ALS, 
Kruskal–Wallis test with Dunn’s post-hoc multiple comparison test was utilized. Values represent sample median with interquartile range. *P < 0.05, 
**P < 0.01, ***P < 0.001, ****P < 0.0001
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and enrichment of Bacteroidetes (Fig.  3D, E, Supple-
mental Figs. 3, 4). This caused a significant decrease in 
oral F/B-ratio (F/B < 1) in bALS patients but not sALS 
patients (Fig. 3F). Together, these results suggest a shift 
in fecal F/B-ratio as the source for gut-dysbiosis in 
sALS and a shift in oral F/B-ratio as the source for oral-
dysbiosis in bALS. As previously, these trends were pre-
served in matched-pair analyses (Supplemental Fig. 3E, 
F) and independently validated by qPCR (Supplemental 
Fig. 4).

Because F/B-ratio represents a somewhat broad meas-
ure of dysbiosis, we performed a deeper investigation at 
the family level. Here, we found the shift in fecal F/B-
ratio in sALS to be mainly driven by a significant enrich-
ment of the Ruminococcaceae family (Firmicutes phyla) 
and depletion of the Bacteroidaceae family (Bacteroidetes 
phyla) (Fig.  4A). Similar to our results, AD/PD animal 
models and patients showed a twofold enrichment of 
Ruminococcaceae along with a 50% decrease in Bacteroi-
daceae in stool samples [51–53] and drastically increased 
fecal F/B-ratio [54]. The shift in oral F/B-ratio in bALS 

Fig. 4  Major Bacterial Families Causing Increased Fecal Firmicutes/Bacteroidetes Ratio in Spinal-Onset ALS and Decreased Oral 
Firmicutes/Bacteroidetes Ratio in Bulbar-Onset ALS. A Percent abundance of Ruminococcaceae family (a member of the Firmicutes phyla) and 
Bacteroidaceae family (a member of the Bacteroidetes phyla) in the gut microbiome. Results represent both ALS (spinal- and bulbar-onset ALS 
combined) or spinal- and bulbar-onset ALS quantified separately. B Percent abundance of Veilonellaceae family (a member of the Firmicutes 
phyla) and Prevotellaceae family (a member of the Bacteroidetes phyla) in the oral microbiome. Statistics: For comparisons between controls and 
ALS patients (combined), Mann–Whitney test was utilized. For contrasts between control, spinal-onset ALS, and bulbar-onset ALS, Kruskal–Wallis 
test with Dunn’s post-hoc multiple comparisons test was utilized. Values represent sample median with interquartile range. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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was mainly driven by a significant depletion of Veillonel-
laceae family (Firmicutes phyla) along with increased 
abundance of Prevotellaceae family (Bacteroidetes phyla) 
(Fig.  4B). Interestingly, PD patients also showed enrich-
ment of Prevotellaceae in the oral cavity [55]. In addition, 
although the dysbiosis we observed was mainly driven 
by a shift in F/B-ratio, we also observed changes in other 
bacterial families/phyla (Supplemental Figs.  5–8). Some 
microbiota were affected in sALS or bALS only (Supple-
mental Figs.  5, 7) or both ALS subtypes (Supplemental 
Figs.  6, 8). Alterations in Prevotellaceae and Proteobac-
teria we observed in ALS (Supplemental Figs. 5–8) were 
previously reported in AD/PD as well and linked with 
disease severity [53, 56, 57].

Gut‑dysbiosis predicts disease severity of spinal‑onset 
ALS, whereas oral‑dysbiosis predicts disease severity 
of bulbar‑onset ALS
We next investigated if the degree of dysbiosis can pre-
dict ALS severity. Overall, ALS patients showed a signifi-
cant linear trend between gut-dysbiosis (a shift to higher 
fecal F/B-ratio) and disease severity (ALSFRS-R score) 
(r = 0.5722. P = 0.0003; Fig.  5A). However, we observed 
highly distinct patterns between sALS patients and 
bALS patients (Fig.  5A). While sALS patients showed a 
strong correlation between gut-dysbiosis and ALS sever-
ity (r = 0.9470, P < 0.0001; Fig. 5B), bALS patients did not 
(r = 0.0052, P = 0.9881; Fig. 5C). sALS patients with ALS-
FRS-R scores of 40–48 (minimal symptoms) displayed 
a comparable fecal F/B-ratio to healthy control ≈0.5. 
sALS patients with ALSFRS-R scores of 30–40 (moder-
ate symptoms) consistently displayed a fecal F/B-ratio of 
1–2. sALS patients with ALSFRS-R scores < 30 (severe 
symptoms) consistently showed a fecal F/B-ratio of 2–4 
(Fig.  5B). For bALS patients, fecal F/B-ratio remained 
at ≈0.5 for all ALSFRS-R scores (Fig.  5C). Unlike gut-
dysbiosis, oral-dysbiosis (a shift to lower oral F/B-ratio) 
was not significantly correlated with disease severity for 
ALS patients overall (r = 0.2046, P = 0.2313; Fig.  5D). 
However, surprisingly, when the data were divided 
based on ALS subtypes, lower oral F/B-ratio (greater 
oral-dysbiosis) was strongly associated with greater dis-
ease severity in bALS patients (r = 0.9842, P < 0.0001; 
Fig. 5F) but not in sALS patients (r = 0.0481, P = 0.8236; 
Fig. 5E). Together, our data suggest that gut-dysbiosis (a 
shift in fecal F/B-ratio) predicts disease severity of sALS, 
whereas oral-dysbiosis (a shift in oral F/B-ratio) predicts 
disease severity of bALS.

There are many confounders which can influence 
microbiome studies, such as clinical risk factors and 
genetic background. This issue is particularly prevalent 
in ALS microbiome studies as ALS is a rare and rapidly 
progressive disease (5.2 cases per 100,000; mean survival 

from onset: 20–48 months) [58]. Our study encompasses 
36 ALS patients (24 sALS patients and 12 bALS patients) 
and 20 controls. This is consistent in size with other ALS 
microbiome studies: 37 ALS patients and 29 controls 
were examined in [33], 6 ALS patients and 5 controls 
were examined in [36], and 25 ALS patients and 32 con-
trols were examined in [37]. The largest ALS microbiome 
study to date examined just 50 ALS patients and 50 con-
trols [59]. We have attempted to minimize confounding 
effects from a relatively small sample size through rigor-
ous exclusion criteria and the use of spouses as controls 
to account for environmental factors, but we cannot 
completely discount this possibility. We perform a num-
ber of analyses below to attempt to account for many 
potential confounding effects.

Evaluation of potential confounding factors
A concern for this study is that oral-microbiome changes 
we found in bALS might represent a symptom of the 
disease rather than a pathological driver. Patients with 
bulbar symptoms experience difficulty swallowing 
and pooling of saliva [60], which may cause symptom-
induced changes in oral-microbiome. While this is a 
potential confounder, both sALS and bALS patients in 
our study displayed bulbar symptoms due to the progres-
sion of disease and the spread of paralysis (P = 0.5361; 
Fig.  1B). Additionally, despite clear bulbar/respiratory 
symptoms in both groups, we observed a strong asso-
ciation between oral F/B-ratio and bulbar/respiratory 
symptom severity in only bALS patients (r = 0.8873, 
P = 0.0003; Fig.  5H) with no significant association in 
sALS patients (r = 0.1200, P = 0.5766; Fig.  5G). Several 
sALS patients in our study presented comparably severe 
bulbar/respiratory symptoms as bALS patients, but these 
patients still did not show oral-dysbiosis and maintained 
oral F/B-ratio of ≈1 as in healthy controls (Fig. 5G, H). 
Thus, our finding of oral-dysbiosis in bALS patients but 
not sALS patients is unlikely a symptom artifact and sug-
gests that oral-dysbiosis may be a pathological driver of 
bALS.

We also considered the possibility that the oral dysbio-
sis we observed in bALS patients may be driven by differ-
ences in oral health between our groups. To investigate 
this, we examined a number of markers of caries and per-
iodontal disease. We first examined salivary pH; low pH 
(fast rates of acid production) has previously been linked 
with the presence of caries and periodontal disease [61]. 
We did not see significant differences in salivary pH in 
our patients (Supplemental Fig.  9A). We next examined 
MUC7 levels. MUC7 is a predominant mucin in saliva. 
Low levels of MUC7 are found to be associated with ele-
vated  Streptococcus mutans  titers [62]. For this reason, 
MUC7 is thought to potentially serve as a predictor of 
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Fig. 5  Gut-Dysbiosis Predicts Disease Severity of Spinal-Onset ALS, whereas Oral-Dysbiosis Predicts Disease Severity of Bulbar-Onset ALS. A 
Linear regression analysis comparing fecal F/B ratio and ALS severity score (ALSFRS-R) for all ALS patients combined. The ALSFRS-R gives a total of 
48 points, and a lower ALSFRS-R score indicates greater motor impairment (0 = worst function; 48 = best function)[7]. Spinal-onset ALS patients 
shown in red, bulbar-onset ALS patients in blue. Higher fecal F/B ratio was strongly associated with lower ALSFRS-R score (greater ALS severity) 
with distinct patterns between the two ALS subtypes. B Linear regression analysis comparing fecal F/B ratio and ALSFRS-R score for spinal-onset 
ALS patients alone. In spinal-onset ALS patients, higher fecal F/B ratio was strongly associated with lower ALSFRS-R score (greater ALS severity). C 
Linear regression analysis comparing fecal F/B ratio and ALSFRS-R score for bulbar-onset ALS patients alone. Bulbar-onset ALS patients displayed no 
significant association between fecal F/B ratio and ALSFRS-R score/ALS severity. D Linear regression analysis comparing oral F/B ratio and ALSFRS-R 
score for all ALS patients combined. Spinal-onset ALS patients shown in red, bulbar-onset ALS patients in blue. We observed no overall trend for 
association between oral F/B ratio and ALSFRS-R score with distinct patterns between the two ALS subtypes. E Linear regression analysis comparing 
oral F/B ratio and ALSFRS-R score for spinal-onset ALS patients alone. Spinal-onset ALS patients displayed no significant association between oral 
F/B ratio and ALSFRS-R score/ALS severity. F Linear regression analysis comparing oral F/B ratio and ALSFRS-R score for bulbar-onset ALS patients 
alone. In bulbar-onset ALS patients, lower oral F/B ratio was strongly associated with lower ALSFRS-R score (greater ALS severity). G Linear regression 
analysis comparing oral F/B ratio and bulbar/respiratory ALSFRS-R subscore for spinal-onset ALS patients alone. Bulbar/respiratory ALSFRS-R 
subscore (maximum score of 24) measures the severity of bulbar/respiratory symptoms. Lower subscore indicates more severe bulbar/respiratory 
symptoms[7]. Spinal-onset ALS patients displayed no significant association between oral F/B ratio and bulbar/respiratory ALSFRS-R subscore. H 
Linear regression analysis comparing oral F/B ratio and bulbar/respiratory ALSFRS-R subscore for bulbar-onset ALS patients alone. In bulbar-onset 
ALS patients, lower oral F/B ratio was strongly associated with lower bulbar/respiratory ALSFRS-R subscore. Statistics: Statistical significance was 
established using linear regression analysis and Spearman’s correlation coefficient (r) test
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caries risk assessment for older adults [62]. We saw no 
significant differences in levels of MUC7 in our patient 
pools (Supplemental Fig.  9B). Finally, we examined lev-
els of Streptococcus mutans, Lactobacillus, and Candida 
albicans with qPCR. A number of studies have reported 
increases in these to be correlated with increases in 
caries initiation and progression [63–66]. We did not 
observe any significant differences in proportional levels 
of S. mutans, Lactobacillus, or C. albicans (Supplemental 
Fig. 9C, D, E). Based on these findings, we do not observe 
evidence for differences in the prevalence of caries or 
periodontal diseases between controls, sALS or bALS 
patients that could confound our conclusions.

We also considered the possibility that the differences 
we observed might be impacted by confounding effects 
from gender, age, BMI, or disease duration. To evalu-
ate potential effects from gender, we repeated our key 
analyses, evaluating males and females separately. We 
observed our key conclusions to be recapitulated both in 
the males only and female only data sets (Supplemental 
Figs.  10, 11). To evaluate potential confounding effects 
from age, BMI, or disease duration, we repeated our 
regression analyses examining covariance between ALS-
FRS-R in sALS patients adjusted for age, BMI, or disease 
duration against fecal F/B ratio adjusted for age, BMI, or 
disease duration (Supplemental Figs. 12). We also evalu-
ated covariance between ALSFRS-R in bALS patients 
adjusted for age, BMI, or disease duration against oral 
F/B ratio adjusted for age, BMI, or disease duration (Sup-
plemental Fig.  13). In all cases, our conclusions were 
maintained after corrections for these covariates.

For spinal‑onset ALS, gut‑dysbiosis may drive microbial 
translocation to blood, leading to increased disease 
severity, whereas for bulbar‑onset ALS, oral‑dysbiosis may 
drive microbial translocation to blood, leading to increased 
disease severity
Microbial-dysbiosis can weaken organ barriers, causing 
microbes to translocate to the blood and affect nearby 
tissues [11, 67]. We hypothesized that oral-dysbiosis may 
cause microbial translocation to blood vessels/nerves 
supplying head and neck muscles first, driving bALS 
pathologies. On the other hand, gut-dysbiosis may cause 
microbial translocation to blood vessels/nerves supplying 
limb muscles first, driving sALS pathologies. To test this 
possibility, we measured blood lipopolysaccharide-bind-
ing protein (LBP) levels, a marker for microbial translo-
cation to the blood [68]. To more directly evaluate blood 
microbial translocation, we also measured the abundance 
of microbial species in the blood through qPCR of plasma 
16S rDNA [69]. Plasma LBP and 16S rDNA levels were 
significantly increased in both sALS and bALS patients 
(Fig.  6A, Supplemental Fig.  14A), indicating greater 

microbial translocation to blood. We show increases 
in these markers of microbial translocation to blood 
to be correlated with more severe symptoms in both 
sALS patients (r = 0.7924, P < 0.0001) and bALS patients 
(r = 0.7496, P = 0.0067; Fig.  6B, Supplemental Fig.  14B). 
Interestingly, in sALS patients, gut-dysbiosis (a shift in 
fecal F/B-ratio) was strongly associated with increases in 
markers of microbial translocation to blood (r = 0.8006, 
P < 0.0001), but oral-dysbiosis (a shift in oral F/B-ratio) 
was not (r = 0.0192, P = 0.9292; Fig. 6C-D, Supplemental 
Fig. 14C). However, in bALS patients, oral-dysbiosis was 
strongly associated with greater microbial translocation 
to blood (r = 0.9860, P < 0.0001), whereas gut-dysbiosis 
was not (r = 0.1926, P = 0.5462; Fig. 6C-D, Supplemental 
Fig.  14D). These results suggest that gut-dysbiosis may 
facilitate local microbial translocation to cause patholo-
gies in sALS patients, while oral-dysbiosis may facilitate 
local microbial translocation to cause pathologies in 
bALS patients. These trends were preserved in matched-
pair analyses comparing patients to matched household 
controls (Supplemental Fig. 3I). Additionally, our conclu-
sions were maintained after corrections for age, BMI, or 
disease duration (Supplemental Figs. 15–16).

Although we demonstrated increased blood micro-
bial translocation in ALS patients through measures of 
plasma LBP and qPCR confirmation of increased 16S 
rDNA, we were unable to provide an accurate report 
on the taxons which are translocating to blood because 
the 16S/18S rDNA ratio in blood was dramatically lower 
than that in saliva and stool samples. For this reason, the 
accuracy of next generation sequencing is expected to be 
too low to provide reliable data.

High fecal Fusobacteria abundance is positively correlated 
with microbial translocation in spinal‑onset ALS, whereas 
high oral Fusobacteria abundance is positively correlated 
with microbial translocation in bulbar‑onset ALS
Fusobacteria is described as an “enabler” for other 
microbes to translocate to the blood because it can dis-
rupt endothelial cell junctions and increase blood vessel 
permeability to microbes [70]. Consistent with strong 
associations between gut-dysbiosis and microbial trans-
location in sALS (Fig.  6), fecal Fusobacteria abundance 
was significantly increased in sALS but not in bALS 
(Fig. 7A, Supplemental Fig. 3, 4). Further, fecal Fusobac-
teria abundance was strongly associated with microbial 
translocation in sALS (r = 0.7807, P < 0.0001; Fig.  7B) 
but not in bALS (r = 0.0209, P = 0.9560; Fig. 7B). In con-
trast, oral Fusobacteria abundance was significantly 
increased in bALS but not in sALS (Fig. 7C, Supplemen-
tal Fig.  3, 4). Additionally, oral Fusobacteria abundance 
was strongly associated with microbial translocation in 
bALS (r = 0.7692, P = 0.0049; Fig.  7D) but not in sALS 
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(r = 0.1573, P = 0.4629; Fig.  7D). These data are consist-
ent with strong associations between oral-dysbiosis and 
microbial translocation in bALS (Fig.  6). Our findings 
suggest that a fecal enrichment of Fusobacteria may facil-
itate gut-dysbiosis-induced microbial translocation in 
sALS, whereas an oral enrichment of Fusobacteria may 
facilitate oral-dysbiosis-induced microbial translocation 

in bALS. These trends were preserved in matched-pair 
analyses comparing patients to household controls (Sup-
plemental Fig. 3G, H). Additionally, our conclusions were 
maintained after adjusting for age, BMI, or disease dura-
tion (Supplemental Figs. 17–18). These results were also 
independently validated by qPCR (Supplemental Fig. 4).

Fig. 6  For Spinal-Onset ALS, Gut-Dysbiosis May Drive Microbial Translocation to Blood, Leading to Increased Disease Severity, whereas 
for Bulbar-Onset ALS, Oral-Dysbiosis May Drive Microbial Translocation to Blood, Leading to Increased Disease Severity. A Blood 
lipopolysaccharide-binding protein (LBP) levels in mg/L as a marker for microbial translocation to the blood. Results represent both ALS patients 
(spinal- and bulbar-onset ALS patients combined) or spinal- and bulbar-onset ALS patients quantified separately. Both spinal- and bulbar-onset ALS 
patients displayed significant increases in blood LBP levels, with bulbar-onset ALS patients showing significantly higher levels than spinal-onset ALS 
patients. B Linear regression analysis comparing blood LBP levels and ALSFRS-R score for all ALS patients combined (left), spinal-onset ALS patients 
only (middle), and bulbar-onset ALS patients only (right). Spinal-onset ALS patients shown in red, bulbar-onset ALS patients shown in blue. In both 
spinal- and bulbar-onset ALS patients, higher blood LBP levels (greater microbial translocation to the blood) were strongly associated with lower 
ALSFRS-R score (greater ALS severity). C Linear regression analyses comparing fecal F/B ratio and blood LBP levels (left) and oral F/B ratio and blood 
LBP levels (right) in spinal-onset ALS patients. In spinal-onset ALS patients, fecal F/B ratio showed strong correlations with blood LBP levels, but oral 
F/B ratio showed poor correlations with blood LBP levels. In spinal-onset ALS patients, higher fecal F/B ratio (greater gut-dysbiosis) was strongly 
associated with greater blood LBP levels (greater microbial translocation to the blood). D Linear regression analyses comparing fecal F/B ratio and 
blood LBP levels (left) and oral F/B ratio and blood LBP levels (right) in bulbar-onset ALS patients. In bulbar-onset ALS patients, oral F/B ratio showed 
strong correlations with blood LBP levels, but fecal F/B ratio showed poor correlations with blood LBP levels. In bulbar-onset ALS patients, lower 
oral F/B ratio (greater oral-dysbiosis) was strongly associated with greater blood LBP levels (greater microbial translocation to the blood). Statistics: 
In panel A, contrasts between control and ALS patients (combined) utilized Mann–Whitney test, while contrasts between control, spinal-onset 
ALS, and bulbar-onset ALS utilized Kruskal–Wallis test with Dunn’s post-hoc test. Values represent sample median with interquartile range. For 
panels B-D, statistical significance was established using linear regression analysis and Spearman’s correlation coefficient (r) test. *P < 0.05, **P < 0.01, 
***P < 0.001, ****P < 0.0001
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Fig. 7  High Fecal Fusobacteria Abundance is Positively Correlated with Microbial Translocation in Spinal-Onset ALS, whereas High Oral Fusobacteria 
Abundance is Positively Correlated with Microbial Translocation in Bulbar-Onset ALS. A Percent abundance of Fusobacteria in gut microbiome. 
Results represent both ALS (spinal- and bulbar-onset ALS combined) or spinal- and bulbar-onset ALS quantified separately. Spinal-onset ALS 
patients displayed a significant enrichment of Fusobacteria in the gut. No significant change in bulbar-onset ALS. B Linear regression analysis 
comparing fecal Fusobacteria abundance and blood LBP levels in spinal-onset ALS patients (left) and bulbar-onset ALS patients (right). We observed 
a strong correlation between fecal Fusobacteria abundance and LBP levels in spinal-onset ALS patients but not in bulbar-onset ALS patients. C 
Percent abundance of Fusobacteria in oral microbiome. Bulbar-onset ALS patients displayed a significant enrichment of Fusobacteria in saliva. No 
significant change in spinal-onset ALS. D Linear regression analysis comparing oral Fusobacteria abundance and blood LBP levels in spinal-onset 
ALS patients (left) and bulbar-onset ALS patients (right). We observed a strong correlation between oral Fusobacteria abundance and LBP levels in 
bulbar-onset ALS patients but not in spinal-onset ALS patients. Statistics: In panel A and C, contrasts between control and ALS patients (combined) 
utilized Mann–Whitney test, while contrasts between control, spinal-onset ALS, and bulbar-onset ALS utilized Kruskal–Wallis test with Dunn’s 
post-hoc multiple comparisons test. Values represent sample median with interquartile range. For panels B and D, statistical significance was 
established using linear regression analysis and Spearman’s correlation coefficient (r) test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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Discussion
Our results show clear microbiome differences between 
sALS and bALS patients. We saw significant gut-micro-
biome changes (gut-dysbiosis) in sALS patients but not in 
bALS patients. Conversely, we observed significant oral-
microbiome changes (oral-dysbiosis) in bALS patients 
but not in sALS patients. When we pooled all ALS 
patients, we found gut-microbiome changes to be driven 
entirely by the abundance of sALS patients in the group 
while oral-microbiome differences to be driven entirely 
by the abundance of bALS patients in the group. Most 
microbiome studies have not stratified ALS patients by 
subtypes [33, 36, 37] and thus will have a variable makeup 
of the proportion of sALS compared to bALS. This may 
explain the inconsistencies of prior ALS studies, where 
gut-microbiome changes have been reported in some 
studies [33, 36] but not others [37].

We saw a strong correlation between microbial-dysbi-
osis and ALS severity with distinct differences between 
sALS and bALS. We found increasing gut-dysbiosis with 
worsening symptoms in sALS and increasing oral-dysbi-
osis with worsening symptoms in bALS. In both cases, 
the associations were very strong (sALS: r = 0.9470, 
P < 0.0001; bALS: r = 0.9842, P < 0.0001). However, oral-
dysbiosis failed to predict disease severity of sALS, and 
gut-dysbiosis failed to predict disease severity of bALS. 
Additionally, oral-dysbiosis in bALS is unlikely a symp-
tom artifact because sALS patients with compara-
bly severe oral/bulbar/respiratory symptoms as bALS 
patients showed no oral-dysbiosis. These results suggest 
different microbial pathological processes to be driving 
two ALS subtypes.

Our study demonstrates the shift in fecal Firmicutes to 
Bacteroidetes (F/B) to be a major driver of gut-dysbiosis 
in sALS patients and the shift in oral F/B to be a main 
driver of oral-dysbiosis in bALS patients. In both cases, 
we show the magnitude of this shift to be strongly corre-
lated with increased microbial translocation and greater 
disease severity. This is consistent with two prior small 
studies reporting altered F/B ratio in ALS patients. [36, 
71]. Consistent with the findings of our study, a recent 
study also showed that higher fecal F/B ratio was asso-
ciated with increased risk of death in ALS patients [72]. 
Additionally, we saw enrichment of Fusobacteria in stool 
and saliva samples of sALS and bALS patients, respec-
tively. Fusobacteria is known to increase local endothe-
lial permeability, facilitate other microbes to translocate 
to nearby tissues, and cause pathologies [70]. Thus, fecal/
oral enrichment of Fusobacteria may exacerbate local 
microbial translocation triggered by the shift in fecal/
oral F/B and contribute to sALS and bALS pathologies, 
respectively.

Gut-dysbiosis and oral-dysbiosis may represent a path-
ological driver of sALS and bALS, respectively. High fecal 
F/B-ratio and gut-dysbiosis have been shown to decrease 
limb muscle fiber size and cause limb muscles to become 
insulin-resistant and favor lipid metabolism [73–75], all 
of which are evident features of sALS [76, 77]. Addition-
ally, patients manifesting gut-dysbiosis often experience 
limb weakness due to pathologies in blood vessels sup-
plying limb muscles, potentially triggered by gut dysbi-
osis-induced microbial translocation to the vasculature 
[78–82]. Thus, our findings of gut-dysbiosis in sALS 
and its strong association with microbial translocation 
to blood and disease severity suggest the following as 
the potential mechanism for sALS pathogenesis: a shift 
to higher fecal F/B-ratio causes gut-dysbiosis, enabling 
microbes to cross gut-barriers, translocate to blood ves-
sels/nerves supplying limb muscles first, and trigger limb 
paralysis (Fig.  8A). Additionally, once high levels of gut 
Fusobacteria cross weakened gut-barriers thanks to gut-
dysbiosis, they can increase endothelial permeability to 
microbes, exacerbate local microbial translocation to 
the blood, and worsen sALS pathologies (Fig.  8A). This 
hypothesis is further supported by a somewhat direct/
close anatomic connection between gut and lower limbs. 
Common iliac arteries, which provide the primary blood 
supply to the lower limbs, are overlaid by the small intes-
tine and covered by the peritoneum in front and medi-
ally. It is thus possible that leaked gut microbes may 
translocate to vessels/nerves supplying lower limbs and 
initiate pathologies. The connection is little more dis-
tant for upper limbs, but several lines of evidence suggest 
that pathologies from the gut may lead to pathologies in 
upper limbs as well. For example, patients with inflam-
matory bowel disease often exhibit lower and upper limb 
numbness/weakness/pain due to pathologies in distal 
branches of iliac arteries supplying lower limbs and sub-
clavian arteries supplying upper limbs [78, 79, 81].

While in bALS, oral-dysbiosis driven by decreased oral 
F/B-ratio may enable microbial translocation to blood 
vessels/nerves supplying head/neck muscles first, lead-
ing to their paralysis (Fig.  8B). Once high levels of oral 
Fusobacteria cross weakened oral cavity barriers thanks 
to oral-dysbiosis, they can exacerbate local microbial 
translocation and worsen bALS pathologies (Fig. 8B). In 
support of this, for bALS patients, we found that oral-
dysbiosis, but not gut-dysbiosis, is associated with greater 
microbial translocation to blood and more severe symp-
toms. Additionally, oral-dysbiosis-induced microbial 
translocation (which we observed in bALS patients) is 
reported to cause head/neck pathologies [83]. Moreover, 
the major oral-microbiome altered in bALS were Veil-
lonellaceae and Prevotellaceae (Fig.  4B), which regulate 
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contractile functions of nearby skeletal muscles by con-
trolling salivary nitrate/nitric oxide synthesis [84, 85].

ALS is a motor neuron disease that impacts not only 
skeletal muscles but also lower and upper motor neu-
rons. Several studies suggest that skeletal muscles can 
be pathologically affected in ALS first, which then drive 
degeneration of lower and upper motor neurons that 
innervate the affected muscles [86, 87]. For example, in 
ALS mice, skeletal muscles showed pathological changes 

long before lower and upper motor neurons were patho-
logically affected and neurodegeneration took place [87]. 
Additionally, skeletal muscle-specific overexpression of 
mutant superoxide mutase-1 (SOD1), the gene associ-
ated with familial ALS, was sufficient to cause not only 
muscle weakness but also loss of lower/upper motor 
neurons, brain pathologies, and axonopathy [86]. Thus, 
gut- and oral-dysbiosis, although impacting peripheral 
skeletal muscles first, may also drive pathologies in brain/

Fig. 8  Schematic Diagram of Proposed Mechanisms for Spinal- and Bulbar-Onset ALS Pathogenesis. A Proposed mechanism for the pathogenesis 
of spinal-onset ALS. A shift to higher gut Firmicutes/Bacteroidetes (F/B) ratio causes gut-dysbiosis. Gut-dysbiosis then weakens gut-barriers via 
local inflammation, enabling microbes to cross the mucosal barriers, translocate to local blood vessels/nerves supplying limb muscles first, and 
cause limb paralysis. Once high levels of Fusobacteria cross weakened gut-barriers thanks to gut-dysbiosis, they increase endothelial permeability 
to microbes, exacerbate local microbial translocation to the blood, and worsen spinal-onset ALS pathologies. B Proposed mechanism for the 
pathogenesis of bulbar-onset ALS. A shift to lower oral F/B ratio causes oral-dysbiosis. Oral-dysbiosis then weakens oral cavity barriers via local 
inflammation, enabling microbes to cross the mucosal barriers, translocate to local blood vessels/nerves supplying head and neck muscles first, 
and trigger their paralysis. Once high levels of Fusobacteria cross weakened oral cavity barriers thanks to oral-dysbiosis, they increase endothelial 
permeability to microbes, exacerbate local microbial translocation to the blood, and worsen bulbar-onset ALS pathologies
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nervous system innervating these muscles to cause sALS 
and bALS.

Gut- and oral-dysbiosis may first impact limbs and 
head/neck muscles via local microbial translocation, 
respectively, but translocated microbes can spread sys-
temically in the end to cause pathologies in other body 
regions. Indeed, regardless of where the muscle weakness 
first appears in ALS, muscle atrophy/paralysis spreads 
to other parts of the body as the disease progresses [1, 
5]. In other words, sALS patients, although present-
ing symptoms in limb muscles initially, may eventually 
develop symptoms in head and neck muscles. Similarly, 
bALS patients, although presenting symptoms first in 
head/neck muscles, may eventually experience weakness 
in limb muscles. Longitudinal microbiome studies with 
sALS and bALS patients to uncover mechanisms how 
translocated microbes spread to other body regions and 
how subsequent muscle pathologies spread to various 
brain regions may help us identify therapeutic targets to 
slow down the spread of paralysis.

Our study suggests correcting gut-dysbiosis as a thera-
peutic strategy for sALS patients and correcting oral-
dysbiosis as a therapeutic strategy for bALS patients. In 
sALS patients, higher fecal F/B-ratio was able to predict 
greater microbial translocation to blood and greater dis-
ease severity. In contrast, in bALS patients, lower oral 
F/B-ratio was able to predict greater microbial transloca-
tion to blood and greater disease severity. Thus, targeting 
F/B-ratio in opposite directions in different organs (gut 
vs. oral cavity) based on locations of disease onset might 
be a viable therapeutic strategy for sALS and bALS. Sev-
eral therapeutic interventions have been developed to 
alter microbiota composition in the gut and the oral cav-
ity. For example, fecal transplantation, antibiotics, and 
probiotics were able to correct gut-dysbiosis and allevi-
ate pathologies in AD and PD animal models [16, 19–21]. 
On the other hand, probiotics that rapidly dissolve in the 
oral cavity were able to successfully correct oral-dysbiosis 
without affecting gut-microbiome [88, 89]. Examining 
the effects of these interventions on disease severity in 
sALS and bALS patients may enable us to develop ther-
apy targeting specific ALS subtypes.

Conclusions
This study shows clear microbiome differences between 
ALS subtypes with gut-microbiome changes in sALS 
and oral-microbiome changes in bALS. In sALS, gut-
dysbiosis, but not oral-dysbiosis, was strongly associ-
ated with microbial translocation to blood and more 
severe symptom presentations. In contrast, in bALS, 
oral-dysbiosis, but not gut-dysbiosis, was strongly 
associated with microbial translocation to blood and 
greater disease severity. In both sALS and bALS, 

greater microbial translocation was associated with 
more severe symptoms. Gut- and oral-dysbiosis-
induced microbial translocation may damage different 
local tissues and underlie clinico-pathological differ-
ences observed between the two ALS subtypes. Our 
findings support that these ALS subtypes should be 
considered distinct diseases and treated separately. Our 
study raises microbiome manipulation as a potential 
therapy targeting specific ALS subtypes.
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