Skip to main content
. 2022 Feb 22;11:21. doi: 10.1186/s40249-022-00943-7

Table 2.

Classical regression model, considering as dependent variable the average detection rate by census tract

Variable Test GL Coefficient Probability
Classical regression
 Constant 13.0747 0.0000
 Poverty 3.3368 0.0109
 Water and garbage 2.0661 0.1069
Regression diagnostics
 Multicollinearity Conditional number 1.0152
 Normality of residuals Jarque–Bera 2 5.9743 0.0504
 Heteroscedasticity Breuch-Pagan 2 0.1901 0.9093
Koenter-Basset 2 0.1633 0.9216
White’s Robust 5 6.2055 0.2867
Spatial dependence diagnostics
ML (lag) 1 0.0679 0.7945
ML robust (lag) 1 0.0005 0.9822
ML (error) 1 0.0708 0.7902
ML robust (error) 1 0.0034 0.9535

GL: Degrees of freedom, ML (lag): Lagrange Multipliers (Spatial Lag Model), ML robust (lag): Lagrange Multipliers robust (Spatial Lag Model), ML (error): Lagrange Multipliers (Spatial Error Model), ML robust (error): Lagrange Multipliers robust (Spatial Error Model)