Table 3.
Aggregated median statistics of variant caller performance on WES and WGS data
Caller (filtering)a | Type | SNP F1 | SNP Precision | SNP Recall | indel F1 |
indel Precision |
indel Recall |
---|---|---|---|---|---|---|---|
DeepVariant | WGS | 0.995794 | 0.995365 | 0.996218 | 0.988316 | 0.986772 | 0.992126 |
Octopus (standard) | WGS | 0.987666 | 0.991172 | 0.984631 | 0.979687 | 0.985000 | 0.981771 |
Octopus (forest) | WGS | 0.993052 | 0.990870 | 0.995244 | 0.987600 | 0.977995 | 0.994595 |
Strelka2 | WGS | 0.992320 | 0.991075 | 0.9929913 | 0.983985 | 0.984252 | 0.984375 |
Clair3 | WGS | 0.991248 | 0.987123 | 0.995530 | 0.984759 | 0.979798 | 0.989770 |
GATK (1D) | WGS | 0.991736 | 0.988720 | 0.994891 | 0.977392 | 0.966921 | 0.992327 |
GATK (HF) | WGS | 0.983078 | 0.983781 | 0.983338 | 0.969068 | 0.952618 | 0.984655 |
GATK (2D) | WGS | 0.991804 | 0.988431 | 0.995803 | 0.981741 | 0.972010 | 0.991892 |
FreeBayes | WGS | 0.976158 | 0.992710 | 0.960205 | 0.933873 | 0.987988 | 0.884910 |
DeepVariant | WES | 0.995837 | 0.9972385 | 0.994441 | 0.990379 | 0.989218 | 0.986523 |
Octopus (standard) | WES | 0.992911 | 0.992147 | 0.993656 | 0.983605 | 0.981818 | 0.980392 |
Octopus (forest) | WES | 0.954045 | 0.997630 | 0.915830 | 0.959206 | 0.988796 | 0.931507 |
Strelka2 | WES | 0.992490 | 0.992002 | 0.992391 | 0.978279 | 0.975741 | 0.977961 |
Clair3 | WES | 0.991704 | 0.990249 | 0.991938 | 0.975506 | 0.970350 | 0.980716 |
GATK (1D) | WES | 0.986426 | 0.984869 | 0.987764 | 0.942208 | 0.956044 | 0.922865 |
GATK (HF) | WES | 0.985205 | 0.987470 | 0.983273 | 0.970658 | 0.958656 | 0.983193 |
GATK (2D) | WES | 0.747232 | 0.991695 | 0.641138 | 0.914491 | 0.960000 | 0.900826 |
FreeBayes | WES | 0.987447 | 0.991496 | 0.983301 | 0.952451 | 0.976667 | 0.931507 |
All values are given with respect to the Novoalign v.4.02.01 read alignment. Bold font corresponds to the best values for WGS and WES data. a1D - 1D CNN model in GATK, 2D - 2D CNN model in GATK, HF - hard filtering with recommended parameters