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Abstract

Glycan arrays are indispensable for learning about the specificities of glycan-binding proteins. 

Despite the abundance of available data, the current analysis methods do not have the ability to 

interpret and use the variety of data types and to integrate information across datasets. Here we 

evaluated whether a novel, automated algorithm for glycan-array analysis could meet that need. 

We developed a regression-tree algorithm with simultaneous motif optimization and packaged it 

in software called MotifFinder. We applied the software to data from 8 different glycan-array 

platforms with widely divergent characteristics and observed an accurate analysis of each dataset. 

We then evaluated the feasibility and value of the combined analyses of multiple datasets. In an 

integrated analysis of datasets covering multiple lectin concentrations, the software determined 

approximate binding constants for distinct motifs and identified major differences between the 

motifs that were not apparent from single-concentration analyses. Furthermore, an integrated 

analysis of data sources with complementary sets of glycans produced broader views of lectin 

specificity than produced by the analysis of just one data source. MotifFinder therefore enables the 

optimal use of the expanding resource of glycan-array data and promises to advance the studies of 

protein-glycan interactions.

Introduction

Lectins are powerful tools for the study of glycans. All cells in every organism produce 

proteins that engage oligosaccharide ligands. Such proteins, known as lectins, can initiate, 

modulate, and carry out an array of functions, for example cell-cell communication, anti-

microbial defense, cellular trafficking, or membrane organization1–2. The specificity of a 

lectin for specific arrangements of oligosaccharides is central to its biological function 

and to its value in research. If the specificity of a lectin or glycan-binding antibody is 

well understood, researchers can use the protein to localize and measure the corresponding 

glycans in biological specimens.

Characterizing the binding preferences of a lectin or glycan-binding antibody (collectively 

termed glycan-binding proteins, GBPs) is not simple. In the early studies, lectin binding 
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was described in terms of monosaccharides, such as N-acetyl-galactosamine or galactose3. 

As chemists began to produce higher-order structures that better approximated the various 

features in biology, the studies showed a far higher degree of complexity than previously 

appreciated. It was revealed that most lectins bind not just one glycan substructure, but 

rather a family of substructures, all related in some way4. The strength of binding within 

the family depends on secondary features like the surrounding monosaccharides that are 

not directly in the binding pocket or the particular selection of monosaccharides that 

are tolerated within the pocket5. The ability to view this complexity depends on the 

experimental capabilities of synthesizing the complex structures and testing the binding 

to each one.

Fortunately, new synthesis strategies have resulted in the production of an increasing 

diversity of higher-complexity structures. The new structures include various types 

of sialylated structures6–8, human milk oligosaccharides9, asymmetrically-branched N-

glycans10–11. In addition, microarrays have been developed to cover additional classes of 

glycans, including arrays of microbial glycans12, plant cell-wall glycans13, and fully-defined 

heparan sulfate glycans14. New experimental systems for glycan presentation and detection 

include a glycan bead array15, a Next-Generation Glycan Microarray (NGGM)16, and a 

Competitive Universal Proxy Receptor Assay (CUPRA)17. These new technologies offer 

the potential to identify complex interactions such as multivalent and hetero-multivalent 

interactions (binding to multiple identical or different ligands, respectively)18.

Bioinformatics tools are required to handle this increasing complexity and diversity of data. 

At the introduction of glycan microarrays, structure-alignment methods were developed 

for analyzing patterns in glycans19. Pattern analysis applied specifically to glycan-array 

data appeared with a motif-based approach20, followed by subtree mining methods21, 

a quantitative structure-activity relationship (QSAR) method22, an advanced structure 

alignment method for multiple carbohydrate alignment with weights (MCAW)23, and an 

advanced motif-based method that we introduced24. A recent, promising algorithm is 

carbohydrate classification accounting for restricted linkages (CCARL)25. Software to make 

the methods accessible to non-bioinformaticians include GlycoPattern26, Glycan Miner27, 

the MCAW database28, the Glycan Array Dashboard (GLAD)29, and the Glycan Microarray 

Database (GlyMDB)30.

While the above methods provided valuable advances in glycan-array analysis, they offer 

limited ability to fully explore the expanding depth and variety of data. In particular, the 

current software options are not easily adaptable to diverse glycan-array platforms, and they 

do not allow for the combined analysis of multiple datasets. Thus, we sought to develop the 

ability to use and integrate information from multiple data platforms. Further, we aimed at a 

system that users could directly run without intervention, which is necessary for increasing 

productivity, reducing bias, and broadening the range of researchers who could use the 

method.

Klamer and Haab Page 2

Anal Chem. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experimental Section

Software

The MotifFinder software was developed using Matlab R2017a and R Version 3.5.0. 

The analyses presented here used the latest beta branch of MotifFinder version 

2.2.4. MotifFinder utilizes the DrawGlycan-SNFG tool for rendering glycan and motif 

structures31. Details on the use of MotifFinder, including screenshots and step-by-step 

instructions for all procedures used here, are available in the User’s Manual distributed 

with all release versions of MotifFinder. Slight adaptions were made to CCARL to run 

on a Window’s 10 operating system and to adapt to a continuous-fit model for the cross-

validation analysis.

Data Preparation

Data were retrieved from various sources (Table S2). The input of MotifFinder is comma-

delimited text (Excel/CSV) with columns for the ID, name, intensity, and, optionally, 

standard deviation associated with each glycan. The glycan name is the simplified IUPAC 

format used in CFG data. Data from non-CFG sources required modest reformatting. Data 

from the CUPRA array, which is provide as a depletion index (DI), was inverted (1 – DI) to 

fit MotifFinder’s expectation of a positive correlation between binding and the quantification 

metric. The structural-grafting data were given numerical values of 1 to indicate binders and 

0 to indicate nonbinders. The results from the GlyMDB and MCAW-DB databases were 

retrieved from their respective websites.

Cross-Validation Analysis of Model Accuracy in 22 Datasets

The 22 datasets used for cross-validation analyses matched those in Coff et. al.25, with 

the addition of datasets for ECL and DSA. Each dataset was split into 5 folds (4/5 of the 

glycans for training and 1/5 for testing) using a built-in function in MotifFinder. The default 

parameters were used for the MotifFinder models. The CCARL models were converted from 

classification to continuous prediction by substituting lasso-regularized logistic regression 

with a regression-tree algorithm, using the Sklearn package in python. The regression trees 

used a cross-validation-selected tree depth without the added motif-optimization features of 

MotifFinder. The model from each training set was used to predict binding to each glycan in 

the test set (Supporting Methods), and for each prediction, R2 was calculated by comparing 

predicted to actual binding.

Graphics and Figure Preparation

Plots were made using Matlab R2017a and R 3.5.0 using the ggplot2 package. The figures 

were prepared using Deneba Canvas X and Canvas Draw 5.

Statistics

The accuracy of prediction fit was calculated as the R2 = (1 − predictionerror
total error ), where 

prediction error = Σ(fitted value − observed value)2 and total error = Σ(mean value − 

observed value)2. Differences between groups of test-set fits were tested using a paired t-test 

with unequal variances.
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Results

Identification of Complex Binding Determinants

We developed an algorithm to extract the complex specificities of glycan-binding proteins 

from glycan-array data. We previously reported the algorithm’s theoretical basis32, but 

we had not applied the method to the combined analysis of diverse glycan-array data. 

The algorithm uses a previously developed syntax for motifs24 that allows for variability 

in multiple components of the motif (Figure 1A). A new approach for using the motifs, 

developed for this study, is to represent the specificity of a GBP as two tiers of motifs 

(Figure 1B). The first tier is the primary motifs, which are the main determinants of binding, 

and the second tier is the fine specificities, which are modifications to the primary motifs 

that influence binding. Motif features outside of the glycan proper, such as density, linker 

composition, and polypeptide sequence, also could affect binding but were not covered in 

the current version of the syntax.

The algorithm uses regression-tree modeling to uncover the two-tiered family of motifs 

representing a GBP’s specificity. The algorithm splits the data repeatedly to optimize the 

separation of the data into groups with distinct binding (Figure 1C), and it concurrently 

produces new motifs to further optimize the accuracy of the splits. The optimization of the 

motifs is performed by testing all versions and incrementally growing the ones with the best 

ability to improve the accuracy of the splits. In this way, the initial splits give the primary 

motifs (motifs A and B, Figure 1C), and the secondary splits give the fine specificities (motif 

A1, with the remainder of a primary motif denoted as A*).

In a test set of lectins that covers a wide range of protein folds, source organisms, and 

primary binding determinants, the analyses demonstrated useful insights into the nuances of 

lectin specificities (Figure S1). For example, a comparison between the jacalin lectin and 

PNA, which have similar primary motifs but different fine specificities, correctly found the 

main primary motif of terminal Galβ1–3GalNAc for both lectins as well as fine specificities 

that agree with previous research. For example, jacalin had been found to bind Galβ1–

3GalNAc when attached directly to a polypeptide backbone or as a disaccharide33 and 

PNA was found to permit binding when the reducing end is extended3. For DSA, the 

results exactly replicated previous findings34 by identifying ranked preferences for LacNAc 

attached 6’ to Man, short chains of β1–4 linked GlcNAc (chitin), and poly-LacNAc, and 

they added information by identifying a preference for LacNAc in the context of a tetra-

antennary N-glycan over LacNAc only on the 6’ branch. The unambiguous syntax also 

provided greater clarity than qualitative descriptions. For example, MotifFinder gave precise 

definitions of the canonical specificities of MAL-II as di-sialylated core 1 O-GalNAc and its 

sulfated variants (motif A1 and the fine specificities of motif B), motifs that are frequently 

misinterpreted due to confused definitions of specificity35. Further, the algorithm added 

information by identifying binding to the mono-sialylated forms of core 1 O-GalNAc and 

differences between the variants of the 3’ sulfated epitopes.
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Analysis of Data from Divergent Platforms

A prerequisite for the integration of diverse data was the seamless processing of data from 

any glycan array. To this end, we used a parser for the glycan names that allows the input 

of any data in which the glycan names are in text. We required only an association of 

each glycan with a quantity that is indicative of binding. We tested data from platforms 

with differences between them in types of glycans, methods of data acquisition, and modes 

of quantification. For each dataset, we asked whether the program returned results that 

concorded with the known specificities and manual analyses, and whether it provided 

insights into the fine specificities.

A source with similarities to the CFG in the types of glycans was the glycan bead array15. 

MotifFinder analyzed these data without any modification. In the analysis of PNA (Figure 

2A), the algorithm found Galβ1–3GalNAc (Motif A) as the top determinant, in agreement 

with previous information. Relative to the CFG array (Figure S1), the bead-array analysis 

gave fewer fine specificities, but it identified evidence of weak binding to Lewis A epitopes 

(motif B) and uncommon glycans with a terminal alpha-linkage (Motif C). A source with 

a completely different set of glycans is a microbial-glycan array12. This array includes 

non-mammalian monosaccharides such as xylose, arabinose, or N-acetyl-fucosamine, as 

well as oligosaccharide sequences not seen in mammalian glycans. MotifFinder parsed the 

majority of the glycans (126/141) in a dataset for the bacterial Burkholderia cenocepacia 
lectin (BC2L-A), and it correctly identified binding to glycans containing L-glycero D-

manno-heptose (LDmanHep)36 (Motifs B-B2, Figure 2B). The MotifFinder analysis of this 

lectin on the CFG array identified only high-mannose glycans (Figure S2) owing to the 

absence of LDmanHep-containing glycans on the CFG array.

Finally, we tested the method on semi-quantitative data. The glycan-grafting method 

developed by Grant et al. integrates protein structure into glycan binding consideration37 and 

categorically reports whether a glycan could or could not be grafted. We assigned glycans 

a value of 1 or 0 to indicate success or failure of grafting, respectively. The MotifFinder 

analysis of Ricin B-Chain (PDB 2AAI) indicated tolerance for a wide variety of galactose-

containing glycans, including certain 2’ fucosylated or 3’ and 6’ sialylated structures (motif 

A, Figure 2C). This broad tolerance contrasts with the stricter specificity of RCA-I, which 

has high sequence similarity to Ricin B-Chain. In any case, the result demonstrates a method 

to objectively analyze grafting data and to compare it with results from glycan arrays.

As further testing on diverse platforms, we applied MotifFinder to the CUPRA array, the 

NGGM array, the neoglycoprotein array, a plant cell-wall array, and an asymmetric N-glycan 

array (Figure S3). In each case, the results matched the manually determined specificities 

and were supported by analyses of the same lectins on the CFG array (Figure S2). Thus, 

MotifFinder readily analyzed data from a wide diversity of platforms.

Integrated Analysis of Datasets with Varying Lectin Concentrations

The automated capabilities of this system opened the potential for an integrated analysis 

of lectin binding over multiple concentrations. To explore this possibility, we developed a 

function to analyze logistic regression fits of motif binding across protein concentrations 
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(Supporting Methods and Figure 3A). We evaluated whether the analysis could provide 

information about binding preferences that could not be derived using single-concentration 

analyses.

We used CFG data for PNA across four lectin concentrations (0.1, 1, 10, and 100 μg/

mL). The analysis gave estimates of motif binding at each concentration (Figure 3B) and 

produced logistic curves with a wide range of binding parameters across the motifs (Figure 

3C). These calculations enabled a comparison of the apparent Kd values derived across 

all concentrations with the relative-binding values derived from each single concentration 

(Figure 3D). For some motifs, the rank order was significantly different. For example, motifs 

A2 and A11 had relatively weak binding at all concentrations yet had strong (numerically 

low) apparent Kd values. Other motifs such as A5, A6, and B1 showed strong relative 

binding at higher concentrations but weak apparent Kd values, making them likely to have 

overestimated relative binding in higher-concentration datasets.

The divergence between apparent Kd and relative binding could stem from experimental 

sources, such as differences between the glycans in their densities on the surface or 

their accessibility to lectins when immobilized. Alternatively, the divergence could stem 

from fundamental kinetics, such as differences between the motifs in their association 

and disassociation rates. Motifs A2 and A11, which have lower apparent Kd values, have 

sialic acid near the canonical epitope of Galβ1,3GalNAc, while Motifs A5 and A6, which 

have much higher apparent Kd values, have an extended branch neighboring the shorter 

Galβ1,3GalNAc. The extended branch could potentially weaken the interaction (increasing 

the dissociation rate). The kinetics cannot be directly measured with conventional 

microarray technology, but within the limits of the experiment, this analysis demonstrates 

the importance of an integrated analysis across lectin concentrations. The derivation of 

approximate binding constants could provide more accurate identifications of the strong and 

weak motifs than would be possible at any single concentration.

Integrating Data from Diverse Arrays for a Single Lectin

Another application opened up by this system is the combined analysis of arrays with 

complementary glycans. Because the universe of glycans is so vast, and because each array 

contains only a particular subset of glycans, no single data source could provide a complete 

picture of specificity. We explored the value of joining information across arrays using data 

for the Ricinus communis agglutinin I (RCA-I) collected over 7 different arrays (Table 

S2). To place the datasets in similar ranges and scales, we used post-model mapping and 

motif curve fitting (Supporting Methods and Figure S4). Based on the assumption that 

independent datasets should show basic agreement to build a coherent model, we selected 

datasets that optimized the generalization of a model from a training set (4/5 of the sets) to 

a test set (1/5 of the sets) (Supporting Methods). This process selected the CFG array, the 

NCFG data (the latest CFG array content and an ASN-linked N-glycan array), an array of 

asymmetrically extended N-glycans5, and an array of neoglycoproteins38. Datasets excluded 

from training a combined analysis model were reserved for model validation (Figure S4).

We compared the results obtained using only the CFG data (Figure 4A) to the results 

obtained using multiple data sources (Figure 4B). Both analyses found that terminal LacNAc 
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(Galβ1–4GlcNAc) was required, and that 6’ substitutions on the Gal are tolerated. Whereas 

the single-source model found biantennary LacNAc as the top motif (Motif A3, Figure 

4A), the mixed-source model found terminal poly-LacNAc as the strongest motif (Motifs 

A8 and A9, Figure 4B). The mixed-source model also found that bi-antennary, terminal 

LacNAc binds markedly better than mono-antennary LacNAc (Motifs A and B, Figure 4B). 

The additional information was provided mainly from the monoantennary glycans in the 

asymmetric N-glycan array and the neoglycoprotein array.

As a further evaluation, we compared the abilities of the models to predict the levels of 

lectin binding to independent sets glycans (Supporting Methods and Figure S4). In the 

application of a model trained only on CFG data (single source) and a model trained 

on multiple sources (mixed source) to the glycans in the CFG data, the R2 fits between 

predicted and actual binding were similar. But when applied to glycans from all 5 sources 

used in the mixed-source model or from 5 additional sources used in neither model, the 

R2 fits were significantly higher using the mixed-source model. This result supports the 

conclusion of increased accuracy in defining lectin specificity using integrated information 

from diverse sources.

Comparisons of Output Between Analysis Tools

We next assessed the output of MotifFinder by comparing it to the output from other 

programs. We used CFG-array data for the Erythrina cristagalli lectin (ECL) for this 

purpose. Two databases, GlyMDB and MCAW-DB, had pre-analyzed results for the data, 

and the programs MotifFinder and CCARL provided fresh analyses. These analysis tools 

have appeared in publications in the last 5 years and are still supported by their developers. 

We did not include older tools that are no longer supported by the developers. To enable 

objective comparisons of the methods, we examined the overall fit of the glycans between 

predicted and actual binding (Supporting Methods).

ECL binds type-2 LacNAc (Galβ1–4GlcNAc), especially in multivalent presentations39. It 

lacks tolerance for 6’ galactose substitutions but allows 2’ galactose substitutions such as 

found in H-antigen (blood group O)40–41. The motifs given by the two databases were 

able to correctly identify many high binding glycans but GlyMDB lacked specificity while 

MCAW-DB lacked sensitivity. GlyMDB (Figure 5A) uses subtree motifs that lack the ability 

to specify substitution intolerance (carbons that must be unsubstituted for a glycan to 

contain the motif). MCAW-DB (Figure 5B) uses an alignment-based method to identify the 

structure in common for the highest binding glycans but gives little information regarding 

less strongly bound glycans. CCARL (Fig. 5C) is similar to GlyMDB in the use of subtree 

modeling, but on account of the use of “restricted nodes” that define substitution intolerance, 

it gave a superior R2 of 0.32. MotifFinder, in contrast, identified features associated with 

each degree of binding. Binding was highest to Galβ1–4GlcNAc on two separate branches 

(Motif A), less to the same feature on a single branch (Motif B), and weak to GalNAcβ1–

4GlcNAc (Motif C) or Fucα1–2Galβ1–4GlcNAc (Motif D). Accordingly, the R2 of 0.75 

was over double that of the next highest, MCAW-DB. Thus, all of methods found the 

main motif of Galβ1–4GlcNAc, but only MotifFinder identified all of the canonical binding 

motifs (Figure S5) and their associations with gradations in binding.
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We further evaluated MotifFinder and CCARL by cross-validation. Using datasets from 22 

lectins, we derived a specificity model from 4/5 of the glycans in each dataset and used the 

model to predict binding to the remaining 1/5 of the glycans, with iteration over the five 

splits. The average R2 over all splits and lectins was 0.4 and 0.37 using multiple or single 

lectin concentrations with MotifFinder, respectively, and 0.27 using CCARL (Table S2). The 

values using MotifFinder were higher in 19/22 datasets.

Discussion

The potential value of glycan-array data is increasing. More and more groups produce 

arrays, and the arrays have greater variety in the glycans. In order to make full use of 

this resource, researchers need software that can process information from a wide mix of 

array types and that can integrate information in the combined analysis of multiple datasets. 

In this work, we present a system to address this need. We used a powerful glycan-name 

parser with a versatile syntax for motifs to input data from any source, and we developed 

a decision-tree algorithm with built-in motif optimization to derive the specificities of 

glycan-binding proteins. We demonstrated the ability to 1) seamlessly analyze data from 

any glycan-array platform; and 2) perform integrated analyses of multiple datasets. These 

capabilities are without precedent among methods to analyze glycan-array data.

A useful application of the integrated analysis is to identify concentration-dependent 

changes in apparent lectin binding. Previous analyses were manual and focused on 

individual glycans rather than motifs. Here we demonstrate a software tool that calculates 

apparent binding parameters for individual motifs. By evaluating binding to the motifs that 

are common between the glycans, the approach reflects the way in which lectins actually 

bind. The analysis presented here revealed that certain features in the motifs bound by 

PNA could link to differences between the motifs in apparent Kd. Future research could 

test the hypotheses that neighboring sialic acids reduce dissociation rates and that extended 

branches increase dissociation rates of PNA binding. The limitations to the analysis are that 

the separate concentrations must be run under highly controlled, consistent conditions, and 

that the concentrations should provide enough range and data to enable accurate curves.

The second application of integrated analysis, to combine information from disparate arrays, 

showed the potential for obtaining more complete views of specificity. It is clear that no 

single array can provide enough content to give full information about specificity. Data 

from complementary arrays could help to meet this need, but without software to combine 

the analyses, researchers could gather only limited insights. In the present demonstration, 

the integration of arrays containing motifs not in the CFG array led to useful insights into 

differential binding between branched glycans, extended monoantennary glycans, and short 

monoantennary glycans. A limitation of the approach is that at least a subset of the strong-

to-moderately bound glycans should overlap between the datasets. In the present analysis, 

we excluded the microbial array because of poor overlap with the other arrays. Another 

limitation is that the datasets should have similar lectin concentrations in order to minimize 

concentration-dependent differences. Finally, the platforms should not have many inherent 

differences in the types of glycans that are bound. Such differences are not predictable but 

occasionally occur42. Here, we excluded the glycan bead array and the NGGM datasets from 
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training owing to low agreement with the rest of the datasets. The apparent difference in 

specificity may be due to the novel microarray formats used for those datasets.

An important implication of this work relates to the use of lectins and glycan-binding 

antibodies as probes for their targets in biological samples. In such studies, the interpretation 

is typically based on simplified information about the GBP specificities. But given the 

complexities of the specificities, simple interpretations may not be accurate. To provide 

higher accuracy, an algorithm that makes use of the output from glycan-array analyses could 

prove useful. We previously introduced an algorithm for this purpose43, in which we convert 

the measurements of lectin binding into estimates of the motifs in the sample. Using a 

similar algorithm, one could predict the binding of a lectin to a previously untested glycan, 

which could be useful for the design of synthetic glycans.

The current study also suggested important areas for further development. Going forward, 

analyses could address the fact that other features beyond the motifs used here could 

influence lectin binding. For example, the microbial glycan array contains glycans with 

atypical substitutions that are not monosaccharides or common chemical modifiers, such 

as pyruvates or phosphoamino-pentanol. In other cases, the linker attaching the glycan to 

the substrate could have significant effects on binding38, as in single amino acids resulting 

in weaker binding due to steric hindrance44. Other factors include the sequence of the 

polypeptide backbone and the density of glycosylation, which could be studied using 

polypeptide arrays45 and density-variant arrays46–47. New analyses also could accommodate 

glycans that do not have fully defined sequences. An array with such glycans is the natural 

(shotgun) microarray, derived from cell or tissue sources5, 48. The framework of the motif 

syntax used here would support buildout to accommodate these features.

Conclusions

Among the various tools currently available for analyzing glycan-array data, the ability to 

integrate information across arrays and platforms is unique to MotifFinder. The need for 

such a tool is ever greater, given the expansion and diversification of glycan-array platforms. 

The ability to run the analysis without intervention by the user and the readily interpretable 

output make the method accessible to researchers who are not experts in glycobiology or 

bioinformatics. Thus, an increased number of researchers could analyze data from diverse 

arrays and leverage the unique advantages of each individual array.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

The input data (Table S2) were obtained through publicly accessible sources. The output 

files that were presented in the current study are available in the Supporting Data. 

The CCARL source code was downloaded from its source: https://github.com/andrewguy/

CCARL. The results for GlyMDB and MCAW-DB were accessed from their respective 

websites: http://www.glycanstructure.org/glymdb/ and https://mcawdb.glycoinfo.org/. The 

MotifFinder software is available for download for Windows, MacOS, and Linux at our 

laboratory website: https://haablab.vai.org/tools/. The download package includes a User’s 

Manual and tutorials.

Abbreviations

CFG Consortium for Functional Glycomics

NCFG National Center for Functional Glycomics

NGGM Next Generation Glycan Microarray

CUPRA Competitive Universal Proxy Receptor Assay

KCAM KEGG Carbohydrate Matcher

GlyMDB Glycan Microarray Database

CCARL Carbohydrate Classification Accounting for Restricted Linkages

DI Depletion Index

PNA Peanut Agglutinin

MAL-II Maackia Amurensis Lectin 2

DSA Datura Stramonium Agglutinin

HPA Helix Pomatia Agglutinin

BC2L-A Burkholderia Cenocepacia Lectin 2 A

RCA-I Ricinus Communis Agglutinin

ECL Erythrina Crista-galli Lectin

GSL-I-B4 Griffonia (Bandeiraea) Simplicifolia Lectin 1 Isolectin B4

SNA Sambucus Nigra Agglutinin

ConA Canavalia Ensiformis Agglutinin
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Figure 1. Automated Mining of Complex Specificities.
A. Versatile syntax for individual motifs. The syntax allows for the explicit definition of 

variability in multiple aspects of the structure, which enables the description of motifs of 

almost any complexity. B. Two-layer family of motifs. The specificity of a glycan-binding 

protein is represented as a family of motifs. The first layer is the primary motifs, and the 

second layer is the fine specificities. C. Regression-tree modeling. MotifFinder uses repeated 

splitting of the data to identify the primary motifs (A and B) and the fine specificities (A1 

and A*).
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Figure 2. Analysis of Data from Divergent Platforms.
The graphs show the intensities of binding to the glycans grouped according to their 

motifs, which are presented graphically at right. The units of binding vary between the 

methods. A. The bead array uses mean fluorescence intensity (MFI). B. The microbial 

array uses relative fluorescence units (RFU). C. Structure grafting denotes compatible and 

incompatible glycans respectively with a 1 or 0.
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Figure 3. Combined Analysis of Datasets with Varied Protein Concentrations.
A. The fit of the logistic curve across concentrations provides the asymptote, slope, and 

half-maximum binding for each motif, the latter approximating the Kd. B. The simultaneous 

analysis of data for PNA over multiple concentrations gave the average binding to each 

motif at each concentration. C. The logistic curves fit to the average binding for each 

motif revealed distinct binding profiles across motifs. D. The relative binding (motif binding 

normalized to the highest motif binding) was plotted with respect to the curve-derived Kd 

values.
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Figure 4. Integration of Data from Mixed Datasets for RCA-I.
A. The single-source analysis of datasets from the CFG gave six primary motifs and 15 fine 

specificities. B. The integrated analysis of datasets from five different platforms revealed 

features not found in the single-source analysis, such as terminal poly-LacNAc (motifs A8, 

A9, and A7).
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Figure 5. Comparisons of Analysis Tools.
Each tool was evaluated using a CFG dataset for the lectin ECL. The plots present the ECL 

binding to the glycans organized by the motifs found by each method. A. GlyMDB. B. 

MCAW-DB. C. CCARL. D. MotifFinder. The R2 values were calculated using the observed 

binding compared to predicted binding.
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