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Abstract

The ovary is the first organ to age in humans with functional decline evident already in women in their early 30s. Reproductive aging is
characterized by a decrease in oocyte quantity and quality, which is associated with an increase in infertility, spontaneous abortions, and birth
defects. Reproductive aging also has implications for overall health due to decreased endocrinological output. Understanding the mechanisms
underlying reproductive aging has significant societal implications as women globally are delaying childbearing and medical interventions have
greatly increased the interval between menopause and total lifespan. Age-related changes inherent to the female gamete are well-characterized
and include defects in chromosome and mitochondria structure, function, and regulation. More recently, it has been appreciated that the extra-
follicular ovarian environment may have important direct or indirect impacts on the developing gamete, and age-dependent changes include
increased fibrosis, inflammation, stiffness, and oxidative damage. The cumulus cells and follicular fluid that directly surround the oocyte during
its final growth phase within the antral follicle represent additional critical local microenvironments. Here we systematically review the literature
and evaluate the studies that investigated the age-related changes in cumulus cells and follicular fluid. Our findings demonstrate unique genetic,
epigenetic, transcriptomic, and proteomic changes with associated metabolomic alterations, redox status imbalance, and increased apoptosis in
the local oocyte microenvironment. We propose a model of how these changes interact, which may explain the rapid decline in gamete quality
with age. We also review the limitations of published studies and highlight future research frontiers.

Summary Sentence Aging is associated with genetic, epigenetic, transcriptomic, proteomic, metabolomic, and redox status changes in the
local oocyte microenvironment: cumulus cells and follicular fluid.

Keywords: telomere, epigenome, mitochondrial DNA, transcriptome, proteome, metabolism, reactive oxygen species, apoptosis, angiogenesis, extracellular
matrix

Introduction

Tissue function declines with age, and this also holds true
for the reproductive system. However, there are major sex
differences in the onset of reproductive aging; it occurs much
earlier in females than males. In fact, the female reproductive
system is the first to age, beginning when women reach their
mid-30s. In female mammals, the dogma is that a finite
number of oocytes are formed during early development,
which dictate the ovarian reserve or reproductive lifespan.
A main hallmark of reproductive aging is a decline in
both gamete quantity and quality. Reproductive aging also
has adverse general health outcomes because the gonadal
hormone estrogen regulates numerous organs, such as the
brain, heart, and bone [1–5]. The gap between menopause
and lifespan is ever-widening, resulting in more women living
longer in an altered endocrine milieu.

There are also tangible clinical ramifications of reproduc-
tive aging, including an increased incidence of infertility which
necessitates high usage of Assisted Reproductive Technologies
(ART) and an increased risk of spontaneous abortions and
miscarriages [6, 7]. For those women of advanced reproduc-
tive age who are able to conceive, they have a higher chance
of having dizygotic twins even independent of ART [8]. They
also have an increased risk of obstetrical complications with
increased risk of maternal and fetal mortality and severe

maternal morbidity, including high rates of cesarean delivery,
preeclampsia, postpartum hemorrhage, gestational diabetes,
and deep vein thrombosis [7, 9–11]. Advanced reproductive
age is also associated with a greater risk of having offspring
with birth defects that are chromosomal in origin, such as
Trisomies 13, 18, and 21, or non-chromosomal in origin such
as heart defects, hypospadias, craniosynostosis, club foot, and
diaphragmatic hernia [12–16]. These clinical ramifications are
becoming more pronounced as women globally are delaying
childbearing [6, 17].

Data from ART cycles clearly demonstrate that decreased
egg quality underlies the reproductive age-associated decline
in fertility. For example, the percentage of fresh embryo
transfers that result in live births decreases with age such that
the likelihood of a woman having a child with autologous
eggs after her mid-40s drops to nearly zero [18]. However,
this maternal age effect is essentially abrogated if a woman
of advanced reproductive age uses eggs from reproductively
young, healthy donors to conceive [19]. Thus, the biological
age of the egg is critical in dictating reproductive outcomes.
As a result, the majority of research in reproductive aging
has focused on changes intrinsic to the gamete and include
primary defects in both meiotic and cytoplasmic compe-
tence. For example, advanced reproductive age is associated
with chromosome defects in terms of recombination, DNA
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repair pathways, micromechanical properties, cohesion, and
kinetochore function, which may all contribute to increased
incidences of age-dependent aneuploidy [20–22]. At the same
time, age-associated alterations in mitochondria numbers,
morphology, distribution, and function as well as mtDNA
copy number and mutations result in an overall state of
reduced energy production and increased reactive oxygen
species and oxidative stress [23, 24].

The gamete, however, does not develop in isolation but
rather as part of a broader and heterogeneous ovarian
microenvironment of cells and extracellular matrix compo-
nents that influence gamete quantity and quality [25]. In fact,
it has recently been appreciated that robust changes occur in
the ovarian microenvironment with age. For example, there
is a difference in immune cell populations and a shift to a
pro-inflammatory aging milieu consistent with the concept
of inflammaging [26–28]. This inflammation often correlates
with increased tissue fibrosis, which results in a quantifiably
stiffer ovary with age [29–33]. The biophysical properties of
the ovary are mediated by a combination of increased collagen
and decreased hyaluronan levels [30]. Moreover, there are age-
dependent changes in interstitial fiber thickness and orienta-
tion as well as the size and the number of pores between extra-
cellular matrix fibers [31]. Importantly, many of these age-
dependent changes both in the gamete and ovarian microen-
vironment have been documented in both mouse and human
suggesting conserved mechanisms of aging [20, 30, 34].

The immediate local follicular environment also influences
gamete development and quality in addition to the broader
ovarian microenvironment. Oocytes within primordial
follicles are enclosed by squamous granulosa cells. Follow-
ing primordial follicle activation which is gonadotropin-
independent, granulosa cells transform into a cuboidal
shape and proliferate while the oocyte undergoes significant
volumetric expansion during its active growth phase [35, 36].
Following the secondary follicle stage, subsequent follicle
growth becomes gonadotropin dependent, and fluid then
accumulates in between granulosa cells and eventually a
single antral cavity is formed. Follicular fluid is formed
from blood flowing through the thecal capillaries. Granulosa
cell synthesis of large molecules, including hyaluronic acid
(HA) is believed to create the osmotic gradient which
facilitates fluid accumulation in the antral follicles [37, 38].
Antrum formation separates the preantral granulosa cells
into mural granulosa cells that line the wall of the follicle and
cumulus cells that surround the oocyte. Physical separation,
influence of FSH from the pituitary, and oocyte secreted
factors (GDF9, BMP15) promote the formation of these two
physiologically distinct cell populations; mural granulosa cells
are endocrinologically active and secrete estrogen whereas
cumulus cells become intimately linked to the oocyte through
specialized physical connections called transzonal projections
[39, 40]. Cumulus cells are essential for supporting the
metabolic needs of the oocyte during its final growth phase to
ultimately generate a developmentally competent gamete and
also play an important role in the regulation of meiotic arrest
and resumption [40–43]. In addition, cumulus cells undergo
expansion following the luteinizing hormone (LH) surge, and
this is necessary for ovulation and fertilization [44–46].

Cumulus cells and follicular fluid represent the local
microenvironment during the final maturation stages of
the oocyte and likely influence gamete quality (Figure 1).
Understanding the age-related changes in these compartments
can provide new insight into the mechanisms of reproductive

aging. Furthermore, their study across reproductive lifespan
can provide us with invaluable information regarding the
associated gamete and may lead to the discovery of new
non-invasive biomarkers of oocyte quality. Our goal was to
systematically evaluate the literature on the age-dependent
changes in the immediate oocyte microenvironment: cumulus
cells and follicular fluid. We searched MEDLINE (through
August 2021) using various combination of terms: age, aging,
follicular fluid, cumulus cell, oocyte environment, and oocyte
microenvironment. A web application, Rayyan, was used to
screen 1475 abstracts for studies that addressed the changes in
the oocyte local environment with aging [47]. Of these, 286
relevant articles were identified and then evaluated at full-
text level. Studies that did not directly address the changes in
the oocyte microenvironment with advancing chronological
age were excluded. Examples of excluded studies were those
that focused on the mechanisms of “post-ovulatory aging”
or ones that primarily investigated in vitro fertilization (IVF)
outcomes. Only a handful of included studies were performed
in animal models (3 in mice and 1 in bovine species), with
a significant majority focusing on human subjects likely due
to the accessibility of these materials at the time of oocyte
retrieval during IVF. Therefore, the age-related cumulus
cell, mural granulosa cell, and follicular fluid parameters
reported in this review were primarily based on material
obtained at the time of follicular puncture and aspiration
and oocyte retrieval following ovarian stimulation during
IVF unless otherwise specified. It is also important to note
that oocyte retrieval during IVF is typically performed after
human chorionic gonadotropin (hCG) injection to induce
oocyte maturation and therefore, the majority of described age
associated changes are after the exposure to the ovulatory cue.
Therefore, earlier stages of follicle and oocyte development are
not addressed in these studies, and this should be considered
when interpreting the findings.

The local oocyte microenvironment undergoes
unique nuclear and mitochondrial genomic
alterations with advancing age

Age-related changes in the cumulus cell genomic DNA
integrity, mitochondria copy number and mutation status,
and the levels of cell-free mtDNA (cf-mtDNA) in follicular
fluid were evaluated in several studies. Older (≥37 yo)
patients show higher rates of DNA double-strand breaks in
cumulus cells compared to younger (≤29 yo) counterparts
[48]. Although not directly addressed, it would be interesting
to determine the mechanism by which genomic instability
impacts cumulus cell function and whether it contributes
to the age associated decrease in gamete quality. The
research on telomere length of follicle somatic cells also
shows interesting findings. Telomeres are highly preserved
nucleoprotein structures of (TTAGGG)n repeats located at the
ends of chromosomes, which maintain genomic stability and
prevent chromosome degradation [49]. Telomere shortening
is associated with aging. The proposed mechanism is that
short telomeres fail to protect the chromosomal ends from
being recognized as DNA double strand breaks, cause
genomic instability, and activate DNA repair pathways, which
eventually lead to cellular senescence or apoptosis [50].
Reproductive aging is associated with shortened telomeres
in human oocytes [51–53]. The degree of telomerase activity
that regulates telomere length is believed to regulate ovarian
aging [54]. Telomerase deficient mice demonstrate early
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Figure 1. The local oocyte microenvironment. (A) Mouse antral follicle. Asterisk shows antral cavity filled with follicular fluid. Arrow points to the
expanding cumulus cells 11 h after human chorionic gonadotropin injection, and arrowheads show mural granulosa cells. (B) The appearance of human
antral follicles on ultrasound at the time of oocyte retrieval. Asterisks show fluid filled antral cavity of 18–20 mm follicles.

meiotic arrest, compromised chromosome synapsis, and
recombination [55]. Several studies focused on the evaluation
of cumulus cell telomere length as a function of age [56–
58]. Interestingly, telomeres of cumulus cells are significantly
longer compared to the telomere length of white blood cells
(WBCs) in the same woman. However, telomere length did
not correlate with age in CCs or WBCs in this study [58].
The finding of longer telomere length in CCs compared
to WBC was independently replicated in a separate study
of 35 oocyte donors with a mean age of 25 [57]. Another
recent study analyzed cumulus and white blood cell telomere
length in relation to IVF outcomes in 175 patients [56].
In this study, WBC relative telomere length was inversely
associated with the patient age and embryo aneuploidy
rate; however, the relative telomere length in cumulus cells
was not associated with age or aneuploidy. These data show
that the regulation of telomere length in cumulus cells is
different from somatic tissues, and it appears that telomere
shortening is not one of the hallmarks of aging in these cells.
Selective experimental manipulation of telomere length in
follicle somatic cells may help us understand the physiological
importance of this differential regulation. The local oocyte
microenvironment may have evolved to maintain longer
telomeres with age to ensure the development of a competent
gamete.

The mitochondrion is the only animal organelle containing
DNA outside of the nucleus, and all proteins encoded by
the mitochondrial genome are part of the electron transport
chain. The number of mitochondria and mitochondrial DNA
copy number is determined by tissue metabolic activity. Mito-
chondrial DNA is prone to mutations due to the lack of
protective histones and its exposure to high levels of reactive
oxygen species (ROS) because of the close proximity to the
electron transport chain. [23]. mtDNA copy number and
mitochondria function affect the developmental competence
of the oocyte, with lower mtDNA numbers and/or reduced
mitochondria function in the oocyte associated with age,
decreased fertilization, and impaired embryo development
[23, 59]. Accumulation of mtDNA mutations and deletions
over time may reduce oocyte quality [23, 60, 61]. Similar
to what occurs in the gamete, increasing age is associated
with lower relative mtDNA copy number in cumulus cells
[62]. Cumulus cell mtDNA from older women is also more
likely to have large deletions [63]. The relative cf-mtDNA
content in FF, measured as mitochondrial gene/nuclear gene

transcript ratio using real-time quantitative PCR, appears to
positively correlate with age and diminished ovarian reserve
[64]. These studies demonstrate that aging is associated with
abnormalities in nuclear and mitochondrial genomic integrity,
a decrease in CC mtDNA numbers, an increase in mtDNA
mutations, and an increase in FF cf-mtDNA levels. Future
studies are needed to determine whether the cf-mtDNA levels
in FF are due to active expulsion of defective mitochondria
from the cumulus cells. Overall, the number of studies on this
subject are limited, and more research is needed to corroborate
these observations.

The “epigenetic clock” moves slower in
cumulus cells compared to somatic tissues

The epigenome is a sum of chemical changes in DNA and
histones which can be inherited [65]. Aging is associated with
a predictable change in the epigenome including increased or
decreased DNA methylation at specific loci. The analysis of
large datasets across thousands of tissue specimens from mul-
tiple longitudinal studies demonstrated that age-associated
DNA methylation changes are consistent and predictable
between individuals and have led to the development of
“DNA methylation or epigenetic clocks” that can accurately
predict and measure the chronological age of humans [66, 67].
The risk for all-cause mortality increases when the age of an
individual’s “epigenetic clock” is more advanced than his or
her chronologic age [68, 69].

There is considerable variation in the pace of ovarian
aging across individuals as manifested in ovarian reserve
parameters and response to gonadotropin stimulation, and
this triggered investigations into the methylation profile of
cumulus and mural granulosa cells in the follicles [58, 70,
71]. Interestingly, the epigenetic algorithm fails to accurately
predict chronological age when applied to cumulus and mural
granulosa cells [58, 71]. These cells consistently demonstrate
“younger” methylation profiles when compared to the indi-
vidual’s chronological age or the “epigenetic age” of WBCs
[58, 71]. Furthermore, the “epigenetic clock” of cumulus cells
is not different across the spectrum of ovarian response to
gonadotropin stimulation during IVF. However, the methyla-
tion profiles in WBCs of younger patients with poor ovarian
response (i.e., ≤5 oocytes retrieved) are consistent with accel-
erated aging [70]. Mural granulosa cells also show overall
younger DNA methylation with age compared to leukocytes
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[71]. These data demonstrate that there is a distinct age-
related regulatory mechanism of the epigenetic profile in
somatic cells within antral follicles. These cells seem to main-
tain a younger epigenetic profile compared to other cell types,
and it is tempting to speculate that this has likely evolved to
support the development of a competent oocyte. Dissection of
the molecular mechanisms of this differential regulation may
elucidate signaling pathways important for the understanding
of ovarian aging.

The transcriptomic landscape of the local
oocyte microenvironment and how it changes
with advancing age

Cumulus cells are transcriptionally active, and their tran-
scriptome has been the target of myriad of investigations
to identify non-invasive biomarkers of oocyte and embryo
quality [72]. Transcriptomic analysis of the oocyte microenvi-
ronment may shed light on the mechanisms of the age-related
decrease in gamete quality. High-throughput transcriptomic
analysis of young (2 months), middle age (9 months), and
old (14 months) BDF1 mice oocytes and surrounding cumu-
lus cells after superovulation demonstrates that the cumulus
cell transcriptome undergoes age-related changes before any
alterations in the oocyte transcriptome can be detected. In this
study, genes involved in transcription regulation were down-
regulated and genes involved in DNA damage/repair and cell
cycle regulation were up-regulated with aging in cumulus cells
[73]. Although there are numerous investigations evaluating
differential messenger RNA (mRNA) expression in human
cumulus cells with advancing age, the majority of these studies
performed either targeted microarrays or RT-PCR of a priori
determined genes [74–81]. Only one study used unbiased
RNA sequencing (RNASeq) and analyzed differential gene
expression in cumulus cells from reproductively young (<35
yo) and older (>40 yo) women [82]. In this study, 45 out of
11 572 genes were differentially expressed between these age
groups in cumulus cells. The analysis demonstrated that genes
involved in hypoxia stress response (Nos2, Rora, and Nr4a3),
vasculature development (Nr2f2, Pthlh), glycolysis (Ralgapa2
and Tbc1d4), and cAMP turnover (Pde4d) are significantly
overexpressed in cumulus cells of older women.

Targeted investigations of select genes revealed that creatine
kinase B and peroxiredoxin 2 expression are upregulated in
cumulus cells of women older than 38 years old compared
to women less than 28 years old [74]. In a different study,
CC from women older than 37 years old showed increased
expression of angiogenic genes (Angptl4, Lepr, Tgfbr3, and
Fgf2) and down-regulation of genes implicated in TGF-β
signaling pathway (Amh, Tgfb1, inhibin, and activin receptor)
compared to women 31–34 yo and < 30 yo [76]. Similarly,
three TGF beta family receptor genes (Bmpr2, Alk4, and Alk6)
were downregulated in CC of women ≥35 years old, whereas
Alk5 was upregulated when compared to women <35yo
[79]. Lastly, the expression of genes encoding integral com-
ponents of cumulus cell extracellular matrix and molecules
important for cell-ECM interaction were up-regulated (Vcan,
Tnfaip6, Ptx3, Sdc4) in cumulus cells of women ≥35 yo
compared to <35 yo [80]. Although limited, collectively, this
evidence shows that there are significant age-related changes
in the cumulus cell transcriptome and that the transcript
levels of hypoxia, angiogenesis, DNA damage/repair, gly-
colysis, and ECM-related genes are increased, whereas the
expression of TGF-β related genes are down-regulated. These

transcriptomic signatures may indicate a potential compen-
satory upregulation in response to follicular stress due to a
potential suboptimal environment (e.g., hypoxia).

In addition to mRNA, several studies have investigated
the differential expression of non-coding RNAs in the oocyte
microenvironment with age. Targeted analysis of 752 human
miRNAs in cumulus cells revealed miRNome profiles with
enrichment of biological functions of oocyte growth and
maturation, embryo development, steroidogenesis, ovarian
hyperstimulation, apoptosis, cell survival, glucose and lipid
metabolism, and cell trafficking [83]. Differential miRNA
expression of 32 or 36 miRNAs, depending on the type of
hormonal stimulation, was observed between women ≥36 yo
and ≤35 yo [83]. In addition, overall higher concentrations
and increased numbers of miRNAs were reported in younger
than in older women [83]. The analysis of publicly available
RNASeq databases identified 147 long non-coding RNAs
(lncRNAs) that are differentially downregulated in CCs from
older (>40 yo) compared to younger women (<35 yo) [84].
Interestingly, lncRNAs (IL10RB-AS1, APOA1-AS, IGF2BP2-
AS1, LINC00548, PSMB8-AS1, and LAMTOR5-AS1) with
a possible role in CC–oocyte communication because of their
association with transcript networks involved in this process,
are down-regulated in CCs of older women, which may point
to the impaired CC–oocyte communication in women with
advanced reproductive age. Collectively, these differentially
expressed lncRNAs are enriched in carbohydrate and lipid
metabolism, molecular transport, and cell cycle pathways.
One small study with 20 women undergoing IVF, 10 in poor
and 10 in normal ovarian response groups, showed that even
among women of similar age, accelerated follicular loss and
diminished ovarian reserve is associated with altered small
non-coding RNA expression profile [85]. Circular RNAs (cir-
cRNAs), which are single-stranded RNAs with covalently
closed continuous loops and unknown biological functions
in most cases, are also differentially expressed in granulosa
cells of women ≥38 yo compared to ≤30 yo [86]. Two
circRNAs levels (circRNA_103827 and circRNA_104816),
potentially involved in glucose metabolism, mitotic cell cycle,
and ovarian steroidogenesis, were positively associated with
age after adjustment for ovarian stimulation [84].

Besides cumulus and mural granulosa cells, the non-coding
RNA profile in follicular fluid has also been investigated.
miRNAs can localize to extracellular vesicles (EVs), which
protect them from degradation, or can be found free floating
in FF. EVs are membrane-bound nanovesicles, which facilitate
intercellular communication via shuttling proteins, mRNAs,
and miRNAs [87]. The oocytes and somatic cells within
the follicle utilize EVs to communicate, which is important
for follicular development and oocyte maturation [88, 89].
Three studies analyzed the age-related miRNA profile in
follicular fluid [90–92]. Microarray analysis of 866 miR-
NAs revealed hsa-miR-424 as an age associated differen-
tially expressed miRNA [91]. In a different study, the anal-
ysis of the miRNome in EVs in follicular fluid revealed
four differentially expressed miRNAs between younger (<31
yo) and older (>38 yo) women. The predicted targets of
these miRNAs are enriched in genes involved in heparan-
sulfate biosynthesis, extracellular matrix-receptor interaction,
carbohydrate digestion and absorption, p53 signaling, and
cytokine-cytokine-receptor interaction [90]. In another recent
study, authors identified twice as many EVs in follicular
fluid of older women (>38 yo) compared to young (<35
yo) with 46 deregulated miRNAs both in the FF and inside
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the EVs of FF from older women [92]. Protein targets of
these miRNAs are involved in biological processes related
to vesicle-mediated transport, mRNA processing, apoptotic
signaling, nucleocytoplasmic transport, protein targeting, and
chromatin organization.

Overall, the analysis of miRNA profiles in the oocyte
microenvironment reveals overlapping age-related differ-
ences with mRNAs. Transcripts involved in carbohydrate
metabolism, ECM synthesis, ECM-cell interaction, and cell
cycle regulation show altered expression. Importantly, the
available data points to the changes in post-transcriptional
regulation of gene expression with advancing age. Specifically,
many of the predicted targets of age-dependent differentially
expressed miRNAs play important roles in oocyte metabolism
and oocyte-somatic cell communication, highlighting the
importance of these processes in reproductive aging.

Reproductive aging alters cytokine and
protein composition of the oocyte milieu

Similar to transcriptomic studies, the majority of investiga-
tions into the proteome of the oocyte microenvironment
primarily focused on a targeted analysis of a single or
group of proteins. Only two studies used an unbiased
approach to examine the aging associated changes in the
cumulus cell [93] and follicular fluid [94] proteome utilizing
liquid chromatography–tandem mass spectrometry (LC–
MS/MS) and matrix-assisted laser desorption-ionization time-
of-flight/time-of-flight mass spectrometry (MALDI-TOF-
TOF-MS), respectively. Proteomic analysis of cumulus cells
identified 1423 proteins [93]; 110 (7.7%) of these proteins
were differentially expressed between women of advanced
maternal age (40–45 yo) and oocyte donors (20–33 yo).
Proteins involved in cumulus cells fatty acid metabolism
demonstrated increased expression (ACAT2, HSD17B4,
ALDH9A1, MVK, CYP11A1, FDFT1), whereas proteins with
a role in oxidative phosphorylation (NDUFA1, UQCRC1,
MT-ATP6, ATP5I, MT-ATP8) and post-transcriptional RNA
processing (KHSRP, SFPQ, DDX46, SNRPF, ADAR, NHPL1,
U2AF2) showed downregulation [93]. Proteomic analysis of
FF from younger (20–32 yo) and older (38–42 yo) women
via two-dimensional gel electrophoresis followed by MALDI-
TOF-TOF-MS revealed five proteins with decreased expres-
sion in the older cohort [94]. Identified proteins are involved
in innate immunity (complement C3, C4) and may affect
angiogenesis [95]; iron transport (serotransferrin, hemopexin
precursor), which may act as anti-oxidants by chelating iron
[96, 97]; and kininogen which is proangiogenic [98].

Similar to the aforementioned study which highlights the
alteration of angiogenic factor levels in FF with aging [94],
vascular endothelial growth factor (VEGF), a well-established
angiogenic protein, may also have a potential role in repro-
ductive aging [99–104]. VEGF stimulates angiogenesis and
vascular permeability, and its expression is induced under
hypoxic conditions [105, 106]. It plays an important role
in the establishment of ovarian vascularity and is detectable
in ovarian follicular fluid [107, 108]. Studies that measured
VEGF levels in human follicular fluid during IVF [99–101,
103, 104] or in natural cycles [102] consistently demonstrate
increased levels with aging. In two studies, follicular fluid
VEGF levels in young patients (<35 yo and <37 yo) were
positively correlated with the grade of perifollicular vascu-
larity as measured by power Doppler ultrasonography [105,
109]. Importantly, severe reduction of dissolved oxygen in

human follicular fluid in overall young patient populations
(25–37 yo) is associated with an increased rate of chromo-
some abnormalities on meiotic spindles in metaphase II eggs.
However, FF VEGF levels are not significantly different across
groups with different dissolved FF oxygen content [109].
These studies provide potential mechanistic insight into how
a hypoxic follicular environment may control ovarian angio-
genesis and how abnormalities in these processes can lead
to aneuploidy and decreased gamete quality. The age-related
increase in VEGF levels may be compensatory in response to
follicular hypoxia. However, the direct negative effects of its
increased levels on follicle viability and function cannot be
excluded and need to be investigated in future studies.

Reproductive aging is associated with increased levels of
pro-inflammatory cytokines, and this sustained low-grade
inflammation, “inflammaging,” may contribute to fibrosis
[27, 29, 30, 33]. Semiquantitative profiling of follicular fluid
fibroinflammatory cytokines following controlled ovarian
hyperstimulation in women 27–45 years old revealed that
the levels of 6 out of 80 cytokines measured (IL-3, IL-7, IL-
15, TGFβ1, TGFβ3 and MIP-1) positively correlate with
aging and negatively correlate with AMH levels [110]. In
the same study, an additional 16 cytokines, including VEGF,
platelet-derived growth factor-BB (PDGF-BB), Leukemia
inhibitory factor (LIF) levels increased with advancing age
but did not correlate with AMH levels. In a separate study,
researchers investigated FF cytokine profiles using a bead-
based multiplex immunoassay of 23 cytokines in 10–40
yo patients undergoing ovarian tissue cryopreservation for
nongynecological malignancies [111]. The comparison of
cytokine levels between age groups (<35 yo vs. ≥35 yo)
showed decreased levels of IL-1Ra and IL-5 and increased
levels of IP-10 in the older group [111]. Although these ovaries
were not stimulated with gonadotropins and therefore the
potential confounding effect of hyperstimulation on cytokine
expression is eliminated, the effect of a systemic illness, such
as malignancy, on FF cytokine profile cannot be excluded.
In a separate study, the measurement of 27 cytokines and
growth factors in FF in patients with diminished ovarian
reserve revealed decreased levels of PDGF-BB in this group
compared to women with normal ovarian reserve independent
of age [112]. This points to the potential role of PDGF-BB in
reproductive aging and may be the underlying reason of the
initial promising results obtained after IVF following platelet
rich plasma injection to the ovaries with premature ovarian
insufficiency (POI) [113].

Studies looking into FF levels of individual cytokines
demonstrate that IL-6 is higher in FF of older women with
poor response to stimulation compared to older women
with normal response or younger women [114]; Granulocyte
colony-stimulating factor (G-CSF) levels are lower in FF of
older women (>36 yo vs. <30 yo) [115]; IL-8 levels in large
follicles decrease with advancing age [116]; IL-1α levels are
significantly upregulated in FF of patients with POI [117];
FF Nerve growth factor (NGF) levels positively correlate
with age [118]; Transforming growth factor-β1 (TGF-β1)
levels are lower in older patients (≥35yo vs <35yo) [119],
which is consistent with cumulus cell transcriptomic data
reported above [76] but in contrast to what was observed
in FF with cytokine arrays [110]. Similarly, although the
association between BMI and FF leptin levels is relatively
well established [120, 121], the data on its association with
aging demonstrate variable results with one study showing
increasing levels with age [122] and another study showing
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no significant change [110]. The inflammatory molecules in
FF may potentially reflect the cytokine profile of intraovarian
vessels with likely contribution from granulosa, cumulus,
theca, and ovarian immune cells but this needs to be confirmed
in future studies. The comparison of these cytokine levels in
the local oocyte environment to their systemic levels is also
an important area for future investigations. Furthermore, it
needs to be established whether the changing inflammatory
signature is the cause or the consequence of reproductive
aging and whether there is a feedback loop whereby low-
grade inflammation causes cellular damage which in turn
exacerbates this inflammation. Altogether, these studies
highlight that our understanding of the role of the changing
inflammatory milieu in reproductive aging is still limited, and
more studies are needed to investigate inflammaging in the
ovary and elucidate the mechanisms of how these changes can
lead to tissue damage and increased fibrosis.

Advanced maternal age is associated with an
altered metabolomic profile of the local oocyte
microenvironment

Bidirectional communication between the oocyte and sur-
rounding cumulus cells is important for the transfer of signal-
ing molecules and nutrients [42, 123]. There is an extensive
network of carbohydrate, amino acid, and lipid metabolism
transfer within the cumulus oocyte complex (COC), where
the COC functions as a unit to support the development of
a competent gamete [42, 123, 124]. Oocyte secreted factors
regulate the metabolism of the surrounding cumulus cells to
fine tune their metabolic activity to meet the metabolic needs
of the oocyte [125, 126]. Therefore, the study of cumulus cells
and surrounding FF metabolites and their byproducts may
provide insights into the associated oocyte. In addition, this
dynamic relationship between the oocyte and cumulus cell
changes with follicle growth and in response to the various
hormonal stimuli [42, 123, 127], and given significant tran-
scriptomic and proteomic alterations with aging, metabolomic
differences in the oocyte microenvironment are also expected.

In COCs, glycolysis is outsourced to cumulus cells [124,
125]. Cumulus cells metabolize glucose to pyruvate which is
then taken up by the oocytes via gap junctions [128, 129].
Compared to younger women (<35 yo) with normal ovarian
reserve, older women and patients with diminished ovarian
reserve (DOR) show decreased glucose and increased lactate
levels in follicular fluid. This is associated with increased
glucose uptake, lactate production, and increased expression
of phosphofructokinase platelet gene in cumulus and granu-
losa cells [130]. The levels of one of the glycolytic enzymes,
lactate dehydrogenase (LDH), is also increased in FF with
advancing age [131]. These findings are corroborated in a
high-resolution 1H-NMR (nuclear magnetic resonance) spec-
troscopy study of FF of women >40 yo with control group of
women 25–35 yo with normal ovarian reserve. The compari-
son of FF composition between these groups reveals decreased
glucose and increased lactate levels in FF of older women
[132]. These studies indicate increased glycolytic activity in
the cumulus cells of women with advanced reproductive
age perhaps due to compensatory upregulation to counteract
follicular stress (i.e., hypoxia, increased ROS) or to increase
ATP production to meet the changing demand in oocytes from
older individuals. The regulatory role of the oocyte in this
process and whether these metabolic changes in the oocyte
microenvironment can be used as indicators of gamete quality
in the clinical setting remains to be investigated.

Some amino acids, including L-alanine and L-histidine, are
transported from cumulus cells to the oocyte via gap junctions
in mice because the oocytes cannot take these up directly from
the environment [133]. Only one study investigated the age-
related levels of amino acid, D-aspartic acid, in the oocyte
milieu. This amino acid is not incorporated into proteins but
can induce hormone biosynthesis and release (e.g., injection
of this molecule in rats increases the serum levels of LH,
testosterone, progesterone, and prolactin) [134–136]. The
levels of this amino acid in FF decrease with age (35–40 yo
vs. 22–34 yo), and higher levels within FF are associated with
morphologically better appearing MII oocytes as assessed by
the appearance of the cytoplasm and zona pellucida and the
size of perivitelline space as well as increased fertilization rates
[137].

Cholesterol synthesized de novo in cumulus cells is the
primary source of this molecule for oocytes with some
additional possible contribution from lipoproteins taken up
from the follicular fluid by CCs [124]. In addition, free fatty
acids appear to be an important energy source in COCs
during oocyte maturation in mice [42, 138]. Metabolomic
analysis of follicular fluid from younger and older women
(28–34 yo vs. 35–48 yo) using a combination of ultra-high-
performance liquid chromatography and high-resolution
mass spectrometry reveals that lipid metabolites are the
primarily affected class with four downregulated (Arachido-
nate, LysoPC (16:1), LysoPC(20:4), LysoPC(20:3)) and two
upregulated (LysoPC(18:3), LysoPC(18:1)) molecules [139].
In a separate study, mass spectrometric analysis of lipids in the
follicular fluid of women over and under 35yo demonstrated
that 11 out of 15 identified lipids are more abundant in the
older group. Pathway analysis shows enhanced metabolism
of glycosphingolipid, phosphatidylinositol phosphate, and
glycerophospholipid in women >35 yo [140]. The levels
of apolipoproteins are also altered with advancing age.
Specifically, apolipoprotein A1 (Apo A1) and apolipoprotein
CII (Apo CII) levels are decreased, and apolipoprotein E
levels (Apo E) are increased in follicular fluid of older
women. These proteins bind and transport lipids in the
form of heterogenous complexes (i.e., HDL, LDL etc.), and
their distribution within these complexes is also altered
in women with advanced age [141]. Overall, the available
evidence demonstrates age-related alterations in lipid levels,
composition, and interaction with the apolipoproteins in the
follicular fluid. Given that these are important energy sources
and building blocks of cells, this disrupted microenvironment
may affect oocyte quality. Future mechanistic studies may shed
light on if/how altered lipid milieu contributes to changing
gamete developmental competence with aging.

The age-associated changing metabolomic profile in the
local oocyte environment affects the expression of sensor pro-
teins, sirtuins, which modify downstream protein functions in
response to metabolic cues. Sirtuins play a role in DNA repair
and recombination, epigenetic modifications, and the regula-
tion of mitochondrial function [142, 143]. Sirtuin 3 (SIRT3) is
a mitochondrial protein, which alters the function of proteins
in this organelle via deacetylation. SIRT3 transcript levels and
protein activity are decreased in cumulus and granulosa cells
in women with DOR and advanced maternal age (AMA)
(≤35 yo vs. ≥40 yo) [144]. Similarly, another mitochondrial
sirtuin, SIRT5, exhibits reduced transcript and protein levels
and activity in somatic cells of antral follicles in women with
reduced ovarian reserve and advanced age [145]. Consis-
tent with this, mitochondrial metabolism, and the expression
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of enzymes important for Coenzyme Q (CoQ) production
appears to be reduced in cumulus cells of both mice and
humans with age [146]. In contrast to mitochondrial sirtuins,
the expression of nuclear sirtuin, SIRT1, which regulates the
function of transcription factors, is increased in cumulus cells
of older women (>38 yo vs <34 yo) [147]. These data point to
the altered metabolic milieu in the oocyte microenvironment
and provide insights into how these changes affect the reg-
ulation of downstream targets through regulation of sirtuin
activity.

Hormonal composition of the oocyte
microenvironment remains largely unchanged
with advancing age

Follicles are endocrinologically active and the investigation of
hormone composition of FF can help us assess the changes
in this endocrine activity with age. Inhibin α and β levels
are lower in FF of older women undergoing IVF [148–150].
Consistent with this, in vitro synthesis of inhibin molecules
is compromised in granulosa cells of older women [149]. In
contrast, some studies demonstrate that inhibin levels in FF
do not change with age in spontaneous cycles [102, 151].
In another study, although FF inhibin levels did not change
with age, serum inhibin B was lower in older women [152].
Estradiol levels appear to be lower in FF of older women
undergoing IVF compared to their younger counterparts [148,
150], but are of similar value to younger patients in sponta-
neous cycles [102, 152]. The correlation of FF progesterone
levels with age in IVF cycles show conflicting results which is
likely due to differences in IVF stimulation protocols between
studies [148, 153]. Growth hormone binding protein and IGF-
1 levels, which play a role in follicle growth and granulosa
cell proliferation, appear to be lower in FF of women of
advanced reproductive age [102, 151, 154]. Testosterone and
androstenedione levels show a trend towards higher levels
in younger women [102, 151, 153]. In summary, the studies
above show that there are no major hormonal differences
in FF of older women in spontaneous cycles, but hyperstim-
ulation during IVF may unmask the reduced function of
follicle somatic cells in this age group which may point to the
underlying dysfunction of these cells in women of advanced
reproductive age.

Reproductive aging is associated with redox
imbalance and increased apoptosis in the local
oocyte microenvironment

Reactive oxygen species (ROS) are byproducts of oxygen
metabolism. The three major types are: superoxide (O2

−)
hydrogen peroxide (H2O2), and hydroxyl (OH−). They affect
many aspects of physiological reproductive processes from
follicle growth to embryo implantation as key signaling
molecules [155–158]. There is a delicate balance between ROS
and a cell’s scavenging ability to neutralize these molecules
via enzymatic and non-enzymatic antioxidants [158]. The
disruption of this homeostasis can lead to oxidative stress,
where the excess levels of these substances damage nucleic
acids, lipids, proteins, and carbohydrates and can result in cell
death [158, 159]. Age-related increase in oocyte and ovary
ROS levels combined with decreased antioxidant capacity
was proposed as one of the major mechanisms of female
reproductive aging [24, 160–162]. Recent studies demonstrate
that this age associated redox imbalance is not restricted to

the oocytes. There is an increase in ROS levels and a reduction
in the expression of antioxidant genes or antioxidant levels
in follicular fluid and/or cumulus and granulosa cells in mice,
non-human primates, and humans [146, 163]. Single-cell
RNA-Seq analysis of non-human primate granulosa cells from
the whole ovary demonstrated that genes down-regulated
with aging are enriched in oxidoreductase activity [163]. The
same study also showed that ROS levels from FF of women
undergoing IVF correlate with chronological age, and this is
associated with the down-regulated expression of antioxidant
genes (Idh1, Prdx4, and Ndufb10) in granulosa cells.

Several other studies also evaluated the age-related changes
in the redox status of the cumulus cells and follicular fluid.
The comparison of enzymatic antioxidant levels in FF demon-
strates that older women (39–45 yo vs. 27–32 yo) show
increased superoxide dismutase (SOD) and decreased glu-
tathione transferase and catalase activities [164]. In contrast,
two other studies demonstrated reduced SOD activity in
cumulus cells [165] and in FF [166] with advanced repro-
ductive age. However, catalase activity in FF was lower with
age consistent with previous findings [166]. Lipid peroxida-
tion, glutathione levels, and glutathione reductase activity are
significantly higher in FF of women >37 yo compared to
the younger group [166]. Another study shows that although
the levels of non-enzymatic antioxidants are not different in
FF between younger and older women, FF proteins of older
women demonstrate increased levels of ROS related damage
[167]. Glutathione S-transferase theta 1 is upregulated in
granulosa cells with aging [168].

ROS generation can be promoted by advanced glycation
end products (AGEs) [169, 170]. AGEs are formed as the
result of non-enzymatic glycation of nucleic acids, lipids, or
proteins [170]. AGEs damage tissues either directly through
protein cross-linking or indirectly by binding to cell surface
receptors for advanced glycation end products (RAGEs) [171].
AGEs interaction with RAGEs has been implicated in the
pathogenesis of various age-related diseases [172, 173]. AGEs
may also drive reproductive aging by reducing ovarian vascu-
larization and promoting oxidative stress [174]. Significantly
higher concentrations of AGEs are found in FF of aged cows
[175]. Furthermore, exposure of oocytes from reproductively
young and old cows to aged bovine FF or the addition of
AGEs to the oocyte maturation medium leads to increased
ROS levels, accelerated nuclear maturation, and significantly
compromised oocyte developmental competence [175]. In
humans, AGEs and RAGEs are detected on granulosa cells
[176, 177] and RAGE expression on these cells appears to
increase with advanced age [176]. Direct measurement of two
AGEs (pentosidine and carboxymethyl lysin) in FF demon-
strates that the concentrations of these substances are not
significantly different in women ≥35 yo compared to younger
women [104]. Soluble isoforms of RAGE (sRAGE) can bind
to AGEs and may negate their effects by preventing AGE
interaction with the surface receptors [178]. One study that
measured sRAGE levels in FF did not observe a difference
between women ≥35 yo and <35 yo [104]. However, a dif-
ferent study showed reduced sRAGE levels in older women
(≥37 yo vs. <37 yo) [179]. Moreover, sRAGE levels were
predictive of fertility treatment success in women of advanced
reproductive age in this study [179]. The differences in the
findings of these studies may be explained by the various
age cut-offs (35 yo vs. 37 yo) used and different patient
populations (Japan and China, respectively).
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Table 1. Age associated changes in the local oocyte microenvironment. Arrows indicate changes with advanced maternal age compared to young.

Genetic &
epigenetic

CC telomere length does not change with age and is longer than in WBCs

CCs demonstrate “younger” methylation profile than the patient’s chronological age or “epigenetic age” of WBCs

↑ DNA double-strand breaks in CCs

↓ mtDNA in CCs

↑ mtDNA deletions in CCs

↑ cf-mtDNA in FF

Transcriptome

↑ hypoxia stress response (NOS2, RORA, NR4A3), vasculature development (NR2F2, PTHLH), glycolysis
(RALGAPA2, TBC1D4) and cAMP turnover genes (PDE4D) in CCs

↑ creatine kinase B and peroxiredoxin 2 in CCs

↑ angiogenic genes (ANGPTL4, LEPR, TGFBR3, and FGF2) in CCs

↓ TGF-β signaling pathway genes (AMH, TGFB1, inhibin, activin receptor) in CCs

↑ ECM genes (VCAN, TNFAIP6, PTX3, SDC4) in CCs

Altered miRNA profile in CCs

↓ lncRNAs with a possible role in CC-oocyte communication in CCs

Altered miRNA profile in FF

Proteome

↑ fatty acid metabolism proteins (ACAT2, HSD17B4, ALDH9A1, MVK, CYP11A1, FDFT1) in CCs

↓ oxidative phosphorylation (NDUFA1, UQCRC1, MT-ATP6, ATP5I, MT-ATP8), and post-transcriptional RNA
processing proteins (KHSRP, SFPQ, DDX46, SNRPF, ADAR, NHPL1, U2AF2) in CCs

↓ innate immunity (complement C3, C4), iron transport proteins (serotransferrin, hemopexin precursor), and
kininogen in FF

Cytokines

↑ VEGF levels in FF

↑ IL-3, IL-7, IL-15, TGFβ1, TGFβ3 and MIP-1 in FF

↓ IL-1Ra and IL-5, ↑ IP-10 in FF

↓ G-CSF, IL-8, ↑ IL-6, NGF in FF

Metabolome

↓ Glucose, ↑ lactate in FF

↑ LDH in FF

↓ D-aspartic acid in FF

Altered levels of lipid metabolites and apolipoproteins in FF

Altered expression of metabolic sensors (↓ SIRT3, SIRT5, ↑ SIRT1)

Hormones
↓ Inhibin, estradiol in FF during IVF, unaltered levels in spontaneous cycles

↓ IGF-1, GHBP in FF

ROS

↑ ROS levels in FF

↓ Expression of antioxidant genes

↑ AGE, ↓ sRAGE in FF which likely promote ROS generation

Apoptosis ↑ Apoptosis in granulosa and cumulus cells

ROS – Reactive oxygen species; CC – cumulus cell; GC – granulosa cell; WBC – white blood cell; mtDNA – mitochondrial DNA; FF – follicular fluid;
cf-mtDNA – cell free mitochondrial DNA; ECM – extracellular matrix; miRNA – micro-RNA; VEGF - Vascular endothelial growth factor; IL – Interleukin;
TGF - Transforming growth factor; MIP - Macrophage inflammatory protein; IP - interferon-inducible protein; G-CSF - Granulocyte colony-stimulating
factor; NGF - Nerve growth factor; LDH - lactate dehydrogenase; IGF-1 - Insulin-like growth factor-1; GHBP - Growth hormone-binding protein; AGE -
Advanced glycation end products; sRAGE – soluble AGE receptor

Altogether, these studies are all consistent with the impaired
redox balance of the local gamete microenvironment with
advancing age, as evidenced by increased ROS levels, lipid
peroxidation, and structural protein alterations. However,
there is limited data on AGEs as well as significant hetero-
geneity on how the levels of specific antioxidants change with
age. Such differences may be due to interfollicular variabil-
ity or variation in patient characteristics (age, race/ethnic-
ity, geographic region differences) and ovarian stimulation
protocols used across studies. Although there are some data
that oral supplementation of antioxidants may improve fer-
tility outcomes with aging [146, 180–183], this evidence is
also limited, and the majority of the investigations are focused
on patients with diminished ovarian reserve. Therefore, more
studies are needed to understand the role of redox homeostasis
in reproductive aging, to dissect cellular signaling pathways

of their action, and to determine whether antioxidants can
modulate the progression of reproductive aging.

Impaired redox balance can lead to apoptosis. Apopto-
sis is highly regulated, programmed cell death which is the
underlying mechanism of follicular atresia and ovarian aging
[184, 185]. The incidence of granulosa cell apoptosis is one of
the indicators of follicle health and is linked to fertility treat-
ment outcomes [186, 187]. Granulosa cells in antral follicles
of aged non-human primates show increased DNA damage
and apoptosis [163]. Similarly, in humans the incidence of
apoptosis in granulosa cells retrieved during IVF is positively
correlated with age [188]. Cumulus cells also show increased
apoptosis with age, and in patients >40 yo this is also associ-
ated with decreased fertilization [189]. Consistent with this,
two additional studies reported that CCs from older IVF
patients (>37 yo vs. <29 yo and ≥38 yo vs. <38 yo) have
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Figure 2. A schematic diagram of the age-related changes and their potential interactions in the local oocyte microenvironment. ROS, Reactive oxygen
species; mtDNA, mitochondrial DNA; cf-mtDNA, cell-free mitochondrial DNA; ECM, extracellular matrix; AGE, Advanced glycation end products; sRAGE,
soluble AGE receptor.

increased apoptosis rates [48, 190]. These data underscore the
viability status of cumulus cells as a determinant of oocyte
quality. It is not clear if the increased apoptosis in the local
oocyte microenvironment is the cause or consequence of
decreased gamete quality with advanced reproductive age, and
this needs to be addressed in future studies.

Conclusions

Our systematic review of the literature on the age-related
changes in the local oocyte microenvironment of antral
follicles revealed that there are unique genetic, epige-
netic, transcriptomic, proteomic, and metabolomic alterations
in both the cumulus cells and follicular fluid (Table 1). A
strength of this review is that the majority of the data are
based in human and thus translationally relevant for the
understanding of human reproductive aging and the discovery
of new non-invasive markers of oocyte and embryo quality.
However, there are several caveats, including that the findings
are from the investigation of cumulus, mural granulosa cells,
and follicular fluid obtained from ovarian stimulation cycles
during IVF. Therefore, care must be taken in extrapolating
the conclusions of these studies to spontaneous cycles. In
addition, multiple variables (i.e., patient lifestyle, co-existent
medical conditions, dietary intake, medications etc.) may
affect the local oocyte microenvironment and these may
not have been adequately controlled for in some studies.
Furthermore, different age cut-offs were used when defining
younger and older populations and this, combined with the
heterogeneity in patient populations, affects generalizability

of the findings. In the future, investigation of the local oocyte
microenvironment in unstimulated cycles in well-defined
reproductive aging animal models may eliminate some of
these pitfalls.

The study of ovarian extracellular matrix during reproduc-
tive aging is an emerging frontier, and the available evidence
demonstrates significant stromal alterations with advancing
age [30, 31]. The ovarian ECM becomes stiffer with age,
and based on the data reviewed herein, this is occurring
concurrently with increased expression of hypoxia related
genes. Therefore, follicular hypoxia due to ovarian stromal
changes (decreased vascularization, increased fibrosis) and
the associated increase in angiogenic factors may be an
underlying mechanism of ovarian aging. However, it remains
to be investigated whether fibrosis causes hypovascularization
or vice versa. Despite the advances in understanding stromal
changes in the whole ovary with age, the changes in the ECM
of the local oocyte microenvironment have not been well
defined and represent another important frontier. In response
to ovulatory cues, including LH in natural cycles and hCG in
IVF cycles, cumulus cells undergo expansion, synthesize large
amounts of HA and disperse in this HA rich ECM. Cumulus
expansion is required for ovulation and in vivo fertilization
[43–45]. The various components and the spatial organization
of the cumulus cell ECM, which includes pentraxin 3 and
heavy chains of inter-α-trypsin inhibitor are relatively well
described [191]. However, we only identified one study that
addressed age-associated ECM changes in the local oocyte
environment. FF levels of the ECM glycosaminoglycan, HA,
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showed a trend of decreasing levels with advancing age (mean
of 255.9 ng/ml for <30 yo, 197.9 ng/ml for 31–35 yo, and
142.1 ng/ml for 36–40 yo) but these were not significantly
different [192]. However, higher HA levels were observed in
FF of women with successful embryo implantation compared
to the no pregnancy group, but the average age in this study
population was overall young (31–33 yo). Therefore, age-
related changes in molecular and biophysical properties of
the oocyte microenvironment ECM and their effects on
gamete quality and developmental competence remains to be
investigated.

Several themes have emerged during our systematic review
of the literature. In cumulus and mural granulosa cells,
the aging clock moves slower for the telomeres and DNA
methylation profile compared to leukocytes. The molecular
mechanisms and physiological importance of this differential
regulation is an interesting area of future investigation.
Transcriptomic and proteomic data demonstrate the alter-
ations in cytokine profiles, and hypoxia, angiogenesis, ECM,
cellular communication, and cell regulation pathways. These
disturbances are associated with metabolomic alterations
and increased ROS generation, redox status imbalance, and
increased apoptosis. It is not clear whether these changes
are the cause or the consequence of reproductive aging and
this question remains to be answered. It is possible that
cellular dysfunction associated with aging (e.g., abnormalities
in cellular communication, cell–ECM interaction, cell cycle
regulation, mitochondrial dysfunction) leads to increased
metabolism (carbohydrate and lipid), ROS generation, redox
imbalance, change in inflammatory milieu, apoptosis, which
in turn exacerbates age-related abnormalities, and a vicious
cycle ensues, where the impact of these alterations gets
progressively worse with time (Figure 2). This may explain
the rapid decline in gamete quality in women after their
mid-30s. The mechanisms of how these molecular changes
in the local oocyte environment affect gamete quality,
directly or indirectly (e.g., secondary to alterations in follicle
vascularization, ovarian stromal changes), also need to be
elucidated in the future, and these investigations may lead
to the discovery of new therapeutic targets for patients
with infertility, premature ovarian failure, and menopause.
Another important question that remains unanswered is
how these changes in the local oocyte environment affect
the ovary in general, whether the effects of these alterations
extend beyond the follicle and if they could play a role in
the accelerated decline of follicle numbers with reproductive
aging. Future studies also should take into account individual
differences (e.g., genetic factors, obesity, nutrition, medical
history, the impact of the environment) while investigating the
alterations in the oocyte microenvironment with advancing
chronological age.
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