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ABSTRACT It has been demonstrated that quorum sensing (QS) is widely employed
by bacterial cells to coordinately regulate various group behaviors. Diffusible signal fac-
tor (DSF)-type signals have emerged as a growing family of conserved cell-cell commu-
nication signals. In addition to the DSF signal initially identified in Xanthomonas cam-
pestris pv. campestris, Burkholderia diffusible signal factor (BDSF) (cis-2-dodecenoic acid)
has been recognized as a conserved DSF-type signal with specific characteristics in
both signal perception and transduction from DSF signals. Here, we review the history
and current progress of the research on this type of signal, especially focusing on its
biosynthesis, signaling pathways, and biological functions. We also discuss and explore
the huge potential of targeting this kind of QS system as a new therapeutic strategy to
control bacterial infections and diseases.
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Quorum sensing (QS) is a cell-cell communication process that occurs widely in
both Gram-positive and Gram-negative bacteria. It is used by bacteria to sense

and respond to changes in cell density to regulate group behaviors and many biologi-
cal functions (1, 2). The QS systems in Gram-positive bacteria typically use either an
unmodified or a posttranslationally modified small peptide and a two-component system,
which includes a membrane-bound sensor kinase receptor and a cytoplasmic transcription
factor that directly alters gene expression (3, 4). Many Gram-negative bacterial species utilize
the homologs of the LuxIR proteins first found in Vibrio fischeri to produce acyl-homoserine
lactones (AHLs) as QS signal molecules (5, 6), which are the most studied self-induced signal
molecules and possess a core N-acylated homoserine lactone (HSL) ring and a 4- to 18-carbon
acyl chain (1, 7).

In addition to AHL signals, there are many other QS signaling molecules that have
been identified in Gram-negative bacteria, including autoinducer-2 (AI-2) (8), Pseudomonas
aeruginosa quinolone signal (PQS) (9), autoinducer in Escherichia coli (AI-3) (10), 2-heptyl-
4-quinolone (HHQ) (11), diketopiperazines (12), bradyoxetin (13), diffusible signal factor
(DSF) family signals that were first identified in the plant pathogen Xanthomonas campest-
ris pv. campestris (14–16), 3-hydroxypalmitic acid methyl ester (3-OH PAME) (17), and a
new signal, anthranilic acid, which was recently identified in Ralstonia solanacearum (18).

Studies have demonstrated that RpfF, RpfC, and RpfG are the key elements of the
DSF QS system in X. campestris pv. campestris. RpfF is responsible for the synthesis of
DSF, which is characterized as cis-11-methyl-2-dodecenoic acid, and RpfC-RpfG consti-
tutes a two-component system for signal perception and transduction (19, 20). In more
detail, RpfC senses and binds to DSF by a membrane-spanning sensor domain, leading
to its autophosphorylation within the histidine kinase domain and then phosphotrans-
fer to RpfG (19). The activated HD-GYP domain of RpfG has phosphodiesterase (PDE)
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activity and is able to degrade cyclic dimeric GMP (c-di-GMP), which is an intracellular
second messenger (21, 22). Comparative genomic studies found that the rpfFCG gene
cluster is highly conserved, which indicates that the DSF-dependent QS system is
widely distributed throughout xanthomonads (23, 24).

In addition to the DSF family signals identified in xanthomonads, Burkholderia diffusi-
ble signal factor (BDSF) (cis-2-dodecenoic acid) has been recognized as a novel DSF family
signal, which was first found in Burkholderia cenocepacia (25) (Fig. 1). Subsequent studies
have elucidated the signaling pathway and regulatory mechanism of this signal, which is
definitely specific and different from what we have known. Here, we review the research
history and current progress on BDSF signals in recent years. In addition to its role as an
intracellular signal, the functions of BDSF in interspecies and interkingdom communica-
tions are also described here.

BDSF IS A NOVEL DSF FAMILY SIGNAL

The Burkholderia cepacia complex (BCC) is a group of Gram-negative bacteria that
comprises more than 20 closely related species (26, 27). B. cenocepacia is an opportun-
istic pathogen that constitutes the majority of transmissible and epidemic strains and
is highly virulent (28, 29); it can cause a decline in lung function and life-threatening
infections in cystic fibrosis patients and immunocompromised individuals (30, 31). It
has been shown that the formation of biofilms and the expression of virulence factors
are modulated by the QS systems of B. cenocepacia (32, 33). Evidence indicates that
the CepIR system is an AHL-based LuxIR QS system and is highly conserved in BCC spe-
cies (34, 35). It controls the production of extracellular proteases, biofilm maturation,
and swarming motility in B. cenocepacia. Increasing evidence suggests that once AHL
signals accumulate to the threshold in the environment, they can bind to the CepR
protein to form a complex, which causes conformational changes in the CepR protein
and then activates or inhibits the expression of the target genes by binding to the pro-
moters (34–37). Moreover, one more AHL-based QS system, CciIR, has also been found
in B. cenocepacia (37). Intriguingly, there is an orphan LuxR homolog, CepR2, which is
not genetically linked to a cognate AHL synthase-encoding gene, that was also found
in B. cenocepacia (38–40).

In 2008, Boon et al. first characterized BDSF as a DSF family QS signal (Fig. 1), which
was biosynthesized by B. cenocepacia RpfF (RpfFBc). The structure of BDSF is similar but
not identical to that of the DSF (cis-11-methyl-2-decenoic acid) signal produced by X.
campestris pv. campestris, where BDSF lacks a methyl group at the C-11 position (25). It
was further identified that BDSF is a conserved signaling molecule produced by the
BCC, with at least nine species producing it as the major DSF family signaling molecule

FIG 1 The mechanism of RpfFBc to synthesize BDSF. The synthesis of BDSF by RpfFBc (BCAM0581) is divided
into two steps: RpfFBc first dehydrates 3-hydroxydodecanoyl-ACP to form cis-2-dodecenoyl-ACP and then
further cleaves cis-2-dodecenoyl-ACP to obtain BDSF and holo-ACP. RpfR (BCAM0580) interacts with RpfFBc,
blocks the substrate from entering the channel, and finally inhibits the synthesis of BDSF.
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(41). Intriguingly, BDSF not only controls biofilm formation and other AHL-regulated
phenotypes (42) but also regulates the synthesis of AHL signals in B. cenocepacia (43),
suggesting that the BDSF QS system is the central regulatory system in B. cenocepacia.

THE BIOSYNTHESIS OF THE BDSF SIGNAL IN B. CENOCEPACIA
BCAM0581 catalyzes the production of the BDSF signal in B. cenocepacia. Protein

sequence alignment analysis showed that BCAM0581 (also known as RpfFBc) shares
37.2% identity with RpfF, and the two proteins are functionally interchangeable (25). It
was revealed that the deletion of BCAM0581 abolished BDSF production in B. cenoce-
pacia, and the phenotypic defect of the rpfF mutant of X. campestris pv. campestris
could be restored to the wild-type strain level by the in trans expression of BCAM0581
(25, 41). It was demonstrated that BCAM0581 is a bifunctional crotonase with both
dehydratase and thioesterase activities, which enables the direct conversion of the acyl
carrier protein (ACP) thioester of 3-hydroxydodecanoic acid into cis-2-dodecenoic acid
in B. cenocepacia (23, 44) (Fig. 1). BCAM0581 is the first member of the crotonase super-
family that has been identified to exert desaturase and thioesterase activities to cleave
the acyl-ACP thioester bond to release free fatty acids (44).

The RqpSR two-component system controls BDSF production in B. cenocepacia.
As RpfFBc (BCAM0581) is the enzyme that catalyzes the production of BDSF signals, our
group continued to study the regulatory mechanism of rpfFBc expression. We found a
novel two-component system, RqpSR, in which RqpS is a signal transduction histidine
kinase and RqpR is a response regulator with a DNA-binding domain. It not only con-
trols the QS-regulated phenotypes in B. cenocepacia but also positively controls the
production of BDSF and AHL signals by modulating the transcriptional expression lev-
els of cepI and rpfFBc (45). The response regulator of this system, RqpR, controls the QS
system by directly binding to the promoters of BDSF and AHL signal synthase-encod-
ing genes (45). These findings suggest that the RqpSR system modulates B. cenocepa-
cia physiology and pathogenicity by forming a complicated hierarchy with QS systems.
Intriguingly, the RqpSR system appears to be widely distributed and coexists with the
BDSF QS system in various bacterial species (45) (Table 1).

BIOLOGICAL FUNCTIONS OF BDSF SIGNALS
The biological functions of BDSF signals in B. cenocepacia. It was demonstrated

that BDSF controls various biological functions of B. cenocepacia (42, 46, 47). The rpfFBc
mutant of B. cenocepacia showed reduced virulence and defective functions, including
motility and biofilm formation, while all of these phenotypes could be restored to
wild-type levels by the addition of BDSF or complementation with RpfFBc (42, 48). It
was revealed that the BDSF-null mutant was compromised in the expression of viru-
lence factors such as the metalloproteases ZmpA and ZmpB (42, 47, 49, 50). The tran-
scription of the zinc metalloprotease zmpB was downregulated in the rpfFBc mutant
(47), and the downregulated expression of zmpA in the rpfFBc mutant of B. cenocepacia
J2315 could be restored when the medium was supplemented with BDSF (42). The
identification of BDSF as another QS signal in B. cenocepacia provides more evidence
that the bacterial pathogens recruit multiple signaling systems to coregulate virulence
gene expression. Intriguingly, the inactivation of rpfFBc in B. cenocepacia H111 also
resulted in decreased cepI expression and diminished AHL production, suggesting that
BDSF is involved in the AHL-dependent QS system by reducing the transcription of
cepI, while mutation of the cepIR system did not impair the production of BDSF (43,
47). The integrated analysis of transcriptome sequencing (RNA-seq) and phenotypes
showed that the two QS systems not only have specific signal pathways but also form
a complex intraspecies signaling network in B. cenocepacia.

The role of BDSF in interspecies and interkingdom communication. In nature,
bacteria are more likely to grow in polymicrobial communities than in monocultures.
The development and maintenance of such communities depend on interactions
among the members, including interspecies signal transmission (22). Many pathogenic
bacteria use cell-cell signaling to regulate the expression of factors contributing to
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virulence. This may be related to the fine control of intraspecies or interspecies signal-
ing by a range of bacteria. Recently, signaling molecules of the DSF family have been
found to be involved in the regulation of pathogenesis and biofilm formation in
diverse bacteria—not only in their cognate bacteria but also in unrelated bacteria (25).
BDSF isolated from B. cenocepacia was found to be involved in the modulation of viru-
lence, antibiotic resistance, and persistence of P. aeruginosa in the cystic fibrosis airway
(51, 52). The exogenous addition of BDSF reduced the transcriptional expression of QS
system-related genes and the production of QS signals, including 3-oxo-C12-HSL, PQS,
and C4-HSL, consequently resulting in the downregulation of biofilm formation and vir-
ulence factor production of P. aeruginosa (53). Furthermore, BDSF and some of its
derivatives inhibit the type III secretion system (T3SS) of P. aeruginosa with stronger ac-
tivity than that for the inhibition of the QS systems, suggesting that BDSF may interfere

TABLE 1 Homologs of RpfFBc, RpfR, RqpS, RqpR, and GtrR in various bacterial speciesa

Bacterium Strain
RpfFBc homolog
identity (%)

RpfR homolog
identity (%)

RqpS homolog
identity (%)

RqpR homolog
identity (%)

GtrR homolog
identity (%)

Burkholderia
B. cenocepacia H111 100.0 100.0 100.0 100.0 100.0
B. cenocepacia J2315 100.0 100.0 99.6 100.0 99.8
B. cepacia JBK9 96.5 99.9 91.1 99.1 100.0
B. contaminans FFH2055 95.1 96.3 91.1 99.1 97.6
B. anthina MSMB0848 99.7 97.3 96.7 98.2 99.1
B. lata 383 94.8 96.3 90.8 NA 97.6
B. seminalis FL-5-5-10-S1-D0 99.0 96.9 91.1 97.7 98.1
B. pyrrocinia Lyc2 95.8 96.1 89.7 97.2 97.6
B. dolosa AU0158 96.9 92.4 84.5 96.3 95.3
B. pseudomultivorans MSMB0607 94.8 93.3 83.4 95.0 96.1
B. vietnamiensis G4 94.8 91.2 79.7 93.6 96.3
B. multivorans ATCC 17616 94.4 93.2 75.6 93.6 97.0
B. ubonensis MSMB0011 90.2 86.5 77.5 93.6 95.7
B. diffusa MSMB0010 95.5 96.0 81.2 93.1 95.5
B. latens RF32-BP12 96.2 91.6 83.0 93.1 95.0
B. stagnalis MSMB1135 87.8 86.7 76.0 93.1 95.0
B. territorii A63 95.5 92.5 81.2 92.7 93.0
B. ambifaria AMMD 94.4 92.1 83.4 92.7 95.5
B. pseudomallei 1026b NA 33.0 65.7 87.6 99.0
B. oklahomensis C6786 NA 37.5 58.7 87.2 89.2
B. plantarii ATCC 43733 NA 43.3 53.1 86.2 89.4
B. gladioli ATCC 10248 NA 42.9 55.4 85.7 89.9
B. kururiensis M130 71.4 65.8 49.1 83.5 82.4
B. glumae BGR1 NA 38.4 53.9 82.9 88.4
B. graminis C4D1M 71.1 65.9 51.3 82.1 82.5
B. bryophila 376MFSha3.1 70.7 64.9 50.2 82.1 82.1
B. fungorum ATCC BAA-463 70.7 65.5 52.0 82.1 81.9
B. phymatum STM815 73.9 66.1 50.6 81.7 37.4
B. caribensis MBA4 72.5 65.2 52.4 81.2 84.3
B. ginsengisoli NBRC 100965 71.1 65.3 50.2 80.7 81.0
B. xenovorans LB400 70.7 66.3 55.0 80.3 82.1
B. acidipaludis NBRC 101816 NA 39.9 49.8 79.8 75.2
B. sprentiae WSM5005 NA 61.9 45.8 79.8 38.5
B. phytofirmans PsJN 71.1 41.2 52.8 79.4 49.3
B. ferrariae NBRC 106233 NA 41.9 48.7 79.4 75.9

Caballeronia
C. choica NA NA 40.5 46.5 76.1 39.8
C. telluris NA NA 38.9 44.3 76.1 38.0
C. glathei NA NA 36.9 42.4 75.7 38.6
C. jiangsuensis MP-1 NA 37.8 38.0 75.6 74.2
C. grimmiae R27 NA 38.5 35.1 70.6 38.9

Other
Mumia flava MUSC 201 95.1 35.1 91.1 99.1 NA

aNA, not applicable.
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with the QS systems and T3SS of P. aeruginosa through two independent signaling
pathways. However, the specific mechanism by which BDSF interferes with the QS sys-
tems and T3SS of P. aeruginosa still needs further investigation.

Moreover, BDSF was reported to inhibit the dimorphic transition of Candida albi-
cans at physiologically relevant concentrations and thereby to block the biofilm forma-
tion of fungi (25, 54). Real-time reverse transcription-quantitative PCR (qRT-PCR) analy-
sis showed that BDSF could downregulate the expression of ALS1 and EAP1, which are
involved in C. albicans adhesion, and upregulate the expression of YWP1, which exerts
an inverse effect on adherence (55). In addition, BDSF exerted a protective effect in an
experimental mouse model of Candida vaginitis by inhibiting virulence factors (56).
Further analyses showed that either B. cenocepacia cocultured with C. albicans or the
exogenous addition of physiologically relevant levels of BDSF strongly inhibited the
formation of C. albicans germ tubes, which suggests that the signal might play a role
in cross-kingdom microbial competition in ecosystems (25).

THE SIGNALING PATHWAY OF BDSF IN B. CENOCEPACIA
The signal perception mechanism of BDSF. Previous studies have shown that

RpfF and the two-component system RpfCG are responsible for DSF signal molecule
synthesis and signal transduction in X. campestris pv. campestris, respectively (57, 58).
RpfFBc is the key enzyme that produces BDSF; it possesses homology with RpfF and is
highly conserved in all BCC family species (41) (Table 1), but the homologous proteins
RpfCG and the rpf gene cluster could not be found in B. cenocepacia, suggesting that
there is a different mechanism that is in charge of BDSF signal perception and trans-
duction. Deng et al. identified that BCAM0580 (designated rpfR), which is located next
to the BDSF biosynthase gene rpfFBc, was responsible for encoding a protein containing
a PAS domain, a GGDEF domain, and an EAL domain (59). Their study showed that the
deletion of rpfR shared similar phenotypic changes with the rpfFBc mutant with an
increased intracellular c-di-GMP level. Furthermore, the deletion of rpfFBc did not affect
the transcription level of rpfR, suggesting that BDSF may influence the activity of RpfR
through ligand-protein interactions. This hypothesis was confirmed by isothermal titration
calorimetry and circular dichroism (CD) analyses, which showed that BDSF binds to RpfR in
vitro with strong affinity and causes a conformational change, and the PAS domain is required
for BDSF binding (59) (Fig. 2).

In 2019, Waldron et al. reported the X-ray crystal structure of the RpfR homolog of
Cronobacter turicensis (RpfRCt) in complex with BDSF, which determined in detail the
molecular basis of the RpfR receptor to sense, perceive, and specifically bind to its ligands
(60). It was found that RpfRCt shares 56% identity with RpfR of B. cenocepacia. Compared
with C12:0 and trans-2-dodecenoic acid, the cis-2 double bond of BDSF may contribute to
the specificity and affinity for binding with RpfR. Analysis of the crystal structure showed
that arginine 187 (Arg187) of RpfRCt forms two hydrogen bonds with BDSF, while there
was no hydrogen bond formed between RpfRCt and C12:0 (Fig. 2). This conformational dif-
ference is the result of the additional H bond mediated by Arg187 with a different rota-
meric configuration that caused much of the Arg187 side chain to be solvent exposed.
This conformational change may play a critical role in regulating phosphodiesterase activ-
ity (60), which is described in the next section. In addition, the hydroxyl of Tyr183 inter-
acts with the conserved Asn202 side chain amide N-H and strengthens the interaction
between BDSF and Asn202 of RpfRCt. Furthermore, BDSF showed a rigid architecture that
would reduce entropy loss compared with saturated fatty acids (60). These findings sug-
gest that the cis-2 double bond of BDSF plays a key role in signal perception.

The transduction process of BDSF signals. c-di-GMP is a ubiquitous second-mes-
senger molecule in bacteria that regulates a variety of physiological functions, includ-
ing biofilm formation, cell differentiation, the production of pathogenic factors, and so
on (61–64). The intracellular c-di-GMP concentration is modulated by the opposing
activities of diguanylate cyclase (DGC) and cyclic nucleotide phosphodiesterase (PDE),
which in turn are regulated by extra- or intracellular factors (61, 64). DGCs produce c-
di-GMP from two molecules of GTP, and PDEs hydrolyze c-di-GMP to linear pGpG or
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two GMP molecules. The GGDEF motif is essential for the enzymatic activity of DGCs,
while PDE activity is associated with the EAL and HD-GYP domains (64–68). Many
Gram-negative bacteria sense the population density of the community and control
multiple phenotypes in response to changes in the environment through QS and intra-
cellular c-di-GMP systems. For example, RpfC activates the phosphodiesterase activity
of RpfG to degrade c-di-GMP after sensing DSF signal molecules in X. campestris pv.
campestris (57, 58, 65, 69). By comparing the intracellular c-di-GMP levels between the
RpfFBc mutant and the wild type, the results showed that the level of intracellular c-di-
GMP of the rpfFBc mutant was significantly higher than that of the wild-type strain and
returned to the level of the wild-type strain when exogenous BDSF was added, indicat-
ing that BDSF may be involved in the metabolism of c-di-GMP in some way (59).

The GGDEF and EAL domains usually refer to features of diguanylate cyclase and
phosphodiesterase, which are involved in c-di-GMP biosynthesis and degradation,
respectively (64). In B. cenocepacia, the phenotypes of the rpfR mutant could not be
rescued by complementation with the GGDEF (DGC) domain alone, whereas the EAL
(PDE) domain in fact complements the impaired phenotypes, comparably to the full-
length protein RpfR, suggesting that BDSF activates the phosphodiesterase activity of
RpfR, which causes a decrease in the level of intracellular c-di-GMP (59). Similar results
were observed in other BCC species, such as the rpfR mutant strain of Burkholderia lata,
which was found to show decreases in the growth rate, swimming motility, AHL pro-
duction, and pathogenicity in Caenorhabditis elegans but with an increase in biofilm

FIG 2 Molecular models of the sensing mechanisms of DSF and BDSF signals. (A) The chemical structures of DSF, BDSF, and C12:0. (B) Molecular model of
RpfC to sense DSF. RpfC possesses five transmembrane domains, and five central residues (Arg15, Asp17, Ser18, Glu19, and Gln22) are essential for the
sensing of DSF. (C and D) Cartoon representation of RpfRCt (cyan) in complex with BDSF. RpfR-BDSF hydrophobic interactions are depicted as a smooth
cyan contour line. (Panels C and D are reproduced from reference 60.)
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formation, suggesting that rpfR plays a vital role in various phenotypes of BCC species by
regulating the level of intracellular c-di-GMP (70). Furthermore, the BDSF-induced alloste-
ric conformational change through its interaction with the PAS domain was the factor
that stimulated the c-di-GMP phosphodiesterase activity of RpfR (59), which was consist-
ent with the BDSF-RpfRCt complex crystal structure in which the binding of BDSF to RpfRCt
led to RpfRCt-R187 having a different rotameric configuration (60). These results suggest
that the BDSF-dependent RpfFR QS system and c-di-GMP are intricately intertwined, and
BDSF activates RpfR to degrade intracellular c-di-GMP; subsequently, the signal is trans-
mitted to downstream components to change phenotypes.

RpfR not only acts as a QS signal receptor and a c-di-GMP phosphodiesterase but
also inhibits BDSF synthesis by interacting directly with RpfFBc. At the PAS-like domain of
the RpfR N terminus, there is a highly conserved and undescribed region of RpfR, which
refers to the RpfFCt interaction domain (FI) (60). The RpfR FI deletion mutant strain pro-
duced a lower level of c-di-GMP than the wild-type strain, while the RpfR deletion mutant
strain promoted its concentration, which could be explained by the regulation of BDSF on
RpfR PDE activity or might be the direct effect of the deletion of FI on the PDE activity of
RpfR. The X-ray crystal structure of the RpfFBc-RpfRCt complex showed a heterohexamer con-
sisting of three RpfRCt and RpfFBc protomers. Two RpfFBc protomers interact with one RpfRCt
protomer near their homodimerization interfaces and lead to the RpfFBc acyl-ACP substrate
tunnel being blocked by the proximity of RpfRCt and the formation of an interaction inter-
face, consistent with the inhibition of RpfFBc thioesterase activity in the presence of RpfRCt
(60). As the receptor of the BDSF QS signal, RpfR, in turn, can inhibit its synthesis, suggesting
that it plays a critical role in the feedback regulation loop. However, the mechanism by
which the extracellular level of BDSF significantly decreases after reaching the accumulation
peak is still unclear (42).

Intriguingly, Yang et al. showed that RpfR not only possesses c-di-GMP phosphodies-
terase activity but also acts as a c-di-GMP sensor (71). Their study identified a global regu-
lator (named GtrR) that was a key downstream component that could interact with RpfR
and regulate the expression of genes in B. cenocepacia. An electrophoretic mobility shift
assay (EMSA) suggested that RpfR enhanced the binding of GtrR to the target gene pro-
moter; however, the ability of the RpfR-GtrR complex to bind to promoter DNA was
reduced by the addition of exogenous c-di-GMP. This is caused by the binding of c-di-
GMP to RpfR with an estimated dissociation constant (Kd) of 2.92 6 0.26 mM (Fig. 3).
Given that RpfR exhibited low PDE activity in the absence of BDSF, and c-di-GMP binds
with GtrR-RpfR to form a ternary complex to inhibit the regulatory activity of GtrR on tar-
get gene expression, we concluded that both BDSF and c-di-GMP are the signal ligands
of RpfR, which bind with RpfR to exert different functions. Moreover, both RpfR and GtrR
homologs are present in diverse Gram-negative bacteria, suggesting that the BDSF-type
QS system is widespread (71) (Table 1). In addition, the GtrR-RpfR complex can regulate
the transcription of cepI (71), and the cep system regulator, CepR, can bind to the pro-
moter of Bcal3178, which is a LysR family transcriptional regulator, and enhance the
expression of Bcal3178. Bcal3178 controls some QS-regulated functions, but one study
revealed that there was no binding between GtrR and the Bcal3178 promoter (72) (Fig. 3).

CONCLUDING REMARKS

Previous studies have shown that many bacterial pathogens coordinate the expres-
sion of virulence-related genes through QS (2). The QS signaling molecule cis-2-dodece-
noic acid, which was also named BDSF, was first identified in B. cenocepacia. It was dem-
onstrated that BDSF is a novel DSF family QS signaling molecule that regulates a variety
of phenotypes, including biofilm formation, motility, and virulence factor production, in B.
cenocepacia and some other bacterial species (25, 59). Studies have shown that BDSF can
be detected in all tested BCC species; additionally, homologs of the BDSF synthase RpfFBc,
the receptor RpfR, and the key downstream component of the BDSF QS system GtrR exist
in many species (Table 1), suggesting that BDSF is an important QS signaling molecule
with widespread conservation.
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In recent years, due to the abuse of antibiotics, the major challenge for us is to develop
novel therapeutic strategies to treat antibiotic-resistant pathogens (73). The DSF-type QS
system exists widely in bacteria and plays a vital role in the regulation of pathogenicity,
showing great potential for the development of antivirulence therapy by interfering with
this kind of QS system to attenuate the virulence of pathogens rather than kill them (73).
The development of QS inhibitors as new drugs for the treatment of bacterial infections
has attracted great attention (74). Cui et al. reported a QS signal inhibitor (cis-14-methyl-
pentadec-2-enoic acid, also known as 14-Me-C16:D2) that is derived from unsaturated fatty
acids and showed great activities to interfere with BDSF signaling and the production of
virulence factors but did not inhibit the growth rate of the pathogen (75). Their data
showed that 14-Me-C16:D2 targeted the QS signal synthase RpfFBc to inhibit the production
of BDSF and AHL signals, leading to defects in the pathogenic phenotypes. Remarkably,
14-Me-C16:D2 displayed a similar effect on various Burkholderia species. Likewise, some QS
inhibitors have also been applied to other pathogens and showed a marked effect on
attenuating QS-regulated virulence (73). In addition, it was previously reported that hosts
can monitor QS signals to regulate their own immune response (76). As a QS signal widely
distributed in various microorganisms, BDSF is likely to interact with the host, which might
be used for the development of new vaccines to enhance the host immune response to
control infection in the future.
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