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Abstract

It is well known that cardiovascular disease (CVD) manifests differently in women and men. 

The underlying causes of these differences over the aging lifespan is less well understood. Sex 

differences in cardiac and vascular phenotypes are seen in childhood and tend to track along 

distinct trajectories related to dimorphism in genetic factors as well as response to risk exposures 

and hormonal changes over the life course. These differences underlie sex- specific variation in 

cardiovascular events later in life, including myocardial infarction, heart failure, ischemic stroke, 

and peripheral vascular disease. With respect to cardiac phenotypes, females have intrinsically 

smaller body-size-adjusted cardiac volumes and then tend to experience greater age-related wall 

thickening and myocardial stiffening with aging. With respect to vascular phenotypes, sexual 

dimorphism in both physiology and pathophysiology are also seen, including overt differences in 

blood pressure trajectories. The majority of sex differences in myocardial and vascular alterations 

that manifest with aging appear to follow relatively consistent trajectories from the very early to 

the very later stages of life. This review aims to synthesize recent cardiovascular aging-related 

research to highlight clinically relevant studies in diverse female and male populations that can 

inform approaches to improving the diagnosis, management, and prognosis of CVD risks in the 

aging population at large.
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INTRODUCTION

Sex differences in cardiovascular phenotypes are frequently recognized from cross-sectional 

studies as well as studies that have examined differences in the incidence and longer-

term outcomes for a variety of cardiovascular disease (CVD) conditions. Whereas many 

differences in CVD outcomes arise from factors related to gender, which is based on socially 

constructed features, we will focus predominantly on differences in both outcomes and pre-

clinical characteristics that arise from factors related to sex, which is based on biologically 

defined traits.1 There is now a large and compelling body of data indicating that biological 

sex is directly and significantly related to differences in cardiovascular traits. From emerging 

evidence, we are now beginning to understand that these differences likely emanate 

from intrinsically distinct phenotypic “starting points” that precede age-related changes, 

combined with divergent trajectories that appear mediated by female-male differences in the 

response to various risk exposures. These elements represent the complexity of interactions 

between sex, risk exposures, and time-dependent pathophysiology, which contribute in 

aggregate to consistently observed patterns in how women and men tend to manifest 

subclinical as well as clinical forms of CVD differently.2 Herein, we review several features 

of the accumulating research on cardiovascular aging, including information relevant to 

our understanding of age-related cardiac phenotypes, vascular phenotypes, and the role of 

hormones. The goal of this review is to highlight key aspects of our current understanding of 

sex differences in myocardial and vascular aging and identify potential future directions.

Sex and the Mechanisms of Cardiovascular Aging

At the outset, it is important to recognize that most insights pertaining to cardiovascular 

aging arise from what is now a robust foundation of geroscience. Accordingly, the 

complexity of molecular mechanisms underlying common chronic diseases of aging has 

been extensively discussed, with multiple conceptual as well as analytical models proposed.3 

One seminal and often referenced scheme, known as “The Seven Pillars of Aging”, 

highlights key interconnected processes that include epigenetics, macromolecular damage, 

proteostasis, metabolism, stem cells and regeneration, inflammation, and adaptation to 

stress.4 This framework has been expanded and translated through prior efforts aimed at 

clarifying the mechanisms that are relevant to aging of the cardiovascular system and the 

development of common age-related CVD phenotypes.5-7 The same framework can be 

further adapted for understanding sex-based variation in the mechanisms of cardiovascular 

aging that contribute sex differences in manifest cardiovascular aging phenotypes (Figure 

1). Notwithstanding the relative paucity of data in this nascent field, there are some 

general themes that have emerged from across experimental, translational, and clinical 

investigations. The first theme is centered on how intrinsic genetic factors influence sex 

variation in life course trajectories of cardiovascular phenotypes, based on an abundance of 

data and that sex differences in traits such as lipid profiles and intima-medial thickness are 

seen as early as childhood and prepuberty.8-10 The second general theme is a relative excess 
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versus relative deficiency of molecular processes with potential to preserve myocardial 

integrity in females versus males, respectively (Table 1). In turn, the correlative myocardial 

phenotypes that tend to dominate with advancing age are concentric versus eccentric left 

ventricular (LV) phenotypes in women compared to men. The third general theme is a 

heightened vascular sensitivity to a variety of mechanistic stressors in females that likely 

contributes to accelerated vascular aging phenotypes seen in women; notably, propensity for 

severe forms of certain vascular diseases exists earlier in life for males – in whom vascular 

aging trajectories are present but less pronounced. In the next sections, we will review the 

reported evidence regarding myocardial and vascular aging phenotypes that tend to exhibit 

sexual dimorphism in the context of these two themes, while also providing special attention 

to the aging phenotypes that predominate in women (Figure 2). For additional reference, 

we provide a summary of the human observational and trial studies that have offered data 

relevant to all the findings discussed (Table 2).

Sex-Related Differences in Myocardial Aging

Mechanisms.—Myocardial aging encompasses multiple changes occurring over the 

human lifespan. Extending predominantly from sex-biased in gene expression in addition to 

sex chromosomal differences and potentially epigenetic factors,11-13 sex-based differences 

in myocardial aging trajectories include molecular, cellular, and interstitial changes that 

eventually result in macroscopic differences in size, shape, and function of the heart. 

Cellular longevity, in general, tends to exhibit intrinsic sex differences with males compared 

to females having consistently shorter telomeres, less robust mitochondrial function, and 

higher likelihood of deleterious somatic mutation.14-16 Accordingly, relative differences 

specific to myocyte aging trajectories are also seen. Relative to the female phenotype, the 

male myocytes undergo both more cellular loss and reactive hypertrophy due to increased 

necrosis and apoptosis.17,18 Some of these sex differences may well be mediated in early- 

to mid-life by estrogen and its derivatives, which have been shown to attenuate injury 

from ischemia and reperfusion,19-21 mitigate reactive oxygen species damage by modulating 

mitochondrial activity,22 and reduce cardiac fibroblast activation in part by downregulating 

collagen and matrix metalloprotease production and modifying the micro-RNA regulated 

fibrotic response to inflammation.23-26 The direct effects of relative estrogen loss in later life 

are uncertain. However, in murine models, extracellular matrix composition shifts distinctly 

between young and old female hearts in comparison to male hearts in terms of collagen 

composition.23,25 In particular, the ratio of collagen to elastin is significantly increased in 

females with the shift towards higher collagen production in the myocardial extracellular 

matrix.24,25

Myocardial Phenotypes.—Consistent with the recognition that sex-biased gene 

expression is relevant to multi-organ system phenotypes,13 there is clear evidence that 

females and males exhibit differences in cardiac morphology from early in life. Accordingly, 

normal values for cardiac chamber dimensions have long been reported in the setting of 

sex-specific reference limits by cardiac imaging and radiology specialists according to 

evidence-based guidelines.27 In turn, the patterns of cardiac aging (i.e., age-related cardiac 

remodeling) also differ by sex. When cross-sectionally compared to men, healthy appearing 

middle-aged to older-aged adult women have smaller left ventricular (LV) dimensions and 
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lower stroke volumes, even after accounting for body size.28 Longitudinal differences are 

also seen, with women exhibiting higher age-related relative wall thickening10,27,29,30 and 

greater age-related systolic stiffening, greater systolic torsion, and greater circumferential 

shortening of the LV.31-33 Extending from the sex differences in cardiac remodeling seen 

in apparently healthy aging, females compared to males demonstrate greater concentric 

remodeling and diastolic dysfunction in response to stressors such as the afterload stress 

of aortic stenosis.34 These trends are observed in the context of more pronounced local 

inflammation and greater accumulation of predominantly interstitial myocardial fibrosis in 

females compared to males.35-37

Myocardial Outcomes.—Sex-specific changes in myocardial aging at least partly 

account for the frequently observed sex differences observed in phenotypes of heart failure. 

Older women are more likely than men of any age to develop heart failure with preserved 

ejection fraction (HFpEF), even after adjusting for differences in age and the potential 

effects of survival bias in older aged men compared to older aged women. Consistent 

data from observational studies and clinical trials have demonstrated that the cardiac aging 

phenotypes that are more common among women include more pronounced concentric 

remodeling and greater diastolic dysfunction that can predispose elderly women to HFpEF 

compared to men.38,39 The long-term burden of cardiometabolic risk factors have also been 

hypothesized to contribute to the progressive myocardial remodeling that eventually leads 

to cardiac dysfunction.39,40 Women appear more affected by the so-called cardiometabolic 

type of pre-clinical or clinical heart failure that tends to manifest with advancing age in 

the setting of hypertension, obesity, type 2 diabetes mellitus, or metabolic syndrome, all 

of which can also serve to increase risk for HFpEF in particular.40-44 Notably, women 

are also less likely to exhibit beneficial remodeling and reversal of LV hypertrophy after 

treatment for hypertension compared to men.45 Further reinforcing evidence of sex-specific 

susceptibility to cardiac disease phenotypes are emerging clinical trials data on sex-specific 

responsiveness to cardiac disease targeted therapies such as sacubitril/valsartan among many 

others.46-48

Sex-Related Differences in Vascular Aging

Mechanisms.—Vascular aging trajectories manifest in parallel with myocardial aging 

phenotypes, and also arise from sexual dimorphism in genetic factors.49 Amidst the 

multiple mechanisms implicated in overall vascular aging, several features are noted to 

be more sex specific.50 At the outset, the vasculature in females compare to males has 

been found to exhibit greater mineralocorticoid receptor expression51 and lesser baroreflex 

sensitivity,52,53 which set the stage for what appears to be greater salt sensitivity54 and 

differential neural-hemodynamic regulation of blood pressure55 with aging. In addition, in 

the setting of hormone receptor expression throughout the vasculature,56-58 studies have 

found that younger and premenopausal arteries exhibit limited amounts of endothelial 

inflammation as well as a robust vasodilatory capacity that is mediated by nitric oxide 

and serves to limit oxidative damage.59,60 In models and studies of the mid-to-later life 

vasculature, estrogen decline is associated with endothelial dysfunction dysfunction59 in 

the setting of increased reactive oxygen species production,22,61,62 oxidative stress22 and 

nitric oxide suppression.59 In particular, experimental and physiology data suggest that 
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reductions in nitric oxide resulting from elevations in oxidative stress contribute not only 

to endothelial dysfunction but also to arterial stiffening in this setting.63 Concurrently, there 

is evidence of a more prominent trajectory in females not only in systemic inflammatory 

profiles but also inflammation at the cellular level, including reduced anti-inflammatory 

macrophage activity.64 These age-related changes, combined with baseline sex differences in 

vascular diameter even when accounting for body size, appear to promote a greater vascular 

sensitivity to CVD risk exposures and accelerated atherosclerosis in older women compared 

to age matched men.60,65,66 54,59,67-70

Coronary Vascular Phenotypes.—Patterns of vascular aging differ by sex across 

the range of vascular beds including the coronary and peripheral vasculature. With 

respect to coronary disease, women are more vulnerable to endothelial dysfunction and 

microvascular remodeling and these differences appear to start at a younger age in 

females than in males. Extensive literature on sex disparities in cardiac disease highlight 

the increased prevalence of coronary microvascular dysfunction contributing frequently 

to anginal symptoms in women, who can often present in younger and middle age.71-73 

Extending from abnormalities in vascular function, structural vascular alterations including 

those derived from the coronary atherosclerotic process also differ by sex across the age 

spectrum. Younger-aged women have lower calcium scores than younger-aged men but 

women experience a faster increase in calcification score and progression of calcified plaque 

with advancing age.74,75 In the setting of clinical coronary disease, non-culprit coronary 

artery plaques in women compared to those in men tend to demonstrate greater plaque 

stability with smaller lipid arcs, fewer cholesterol crystals, and less lesion calcification. 

These plaques, however, are also more likely to exhibit plaque erosion, which also results 

in atherothrombotic events.76,77 Notably, whereas the incidence of thin cap fibroatheroma 

in women is lower than men before the age of 70, it becomes greater than men after the 

age of 70.78 Accordingly, coronary events in women shift from being more erosion-based in 

younger age to being more rupture-based in older age.79,80

Coronary Vascular Outcomes.—Beyond subclinical vascular alterations, which may 

or may not ultimately present with directly attributable symptoms in many aging adults, 

the clinically manifest presentations of vascular disease tend to also differ by sex and in 

ways that are more evident with aging. With respect to coronary disease in particular, 

women present clinically more often than men with non-obstructive CAD. Non-obstructive 

CAD, especially when it develops early in life, is much more likely than obstructive 

CAD to go unrecognized and thus untreated. Thus, after the passage of time, a case of 

non-obstructive CAD when finally manifest clinically can be found as more diffuse and 

extensive than a case of obstructive CAD that presents with a similar burden of clinical 

symptoms. This phenomenon may at least partly contribute to the observed tendency of 

non-obstructive CAD to promote epicardial and microvascular spasm and conduit vessel 

stiffening leading to myocardial ischemia. Potentially related to anatomical as well as 

physiological and pathophysiological sex-specific traits (e.g. females having smaller caliber 

coronary arteries than men even after accounting for differences in body size), women 

across the age spectrum are more likely than men to experience angina, ischemia, and 

acute coronary syndrome in the presence of non-obstructive CAD.81 Treatment advances 
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for non-obstructive CAD lag behind those for obstructive CAD. This may be one reason 

why management of CAD in men has benefitted more from extensive advances in medical 

and interventional therapies, with accumulating evidence suggesting that CAD incidence and 

mortality rates have been plateauing and may even be increasing in young and middle-aged 

women.82-84

Systemic Vascular Phenotypes.—Similar to findings for the coronary vasculature, 

systemic vascular sex differences are also observed. Hemodynamic and neurohormonal 

factors contribute to age-related alterations in systemic vascular function in both sexes. 

While maintaining cardiac output and tissue perfusion at levels similar to males, females 

tend to manifest higher resting heart rates and augmented pulsatile load, particularly 

with aging. These trends reflect sex differences in age-related changes of dependence 

on sympathetic versus parasympathetic activation responses to hemodynamic stress and a 

potentially greater relative hemodynamic load experienced by females compared to males 

with advancing age.85-87 Accordingly, several studies have observed accelerated increase 

in measures of arterial stiffness in females compared to males, beginning in mid-life and 

most evident during the postmenopausal period.63,88 With respect to vascular structural 

changes, males have overall thicker femoral intima-media thickness (IMT) but females 

demonstrate more pronounced increases in femoral IMT with an increasing number of risk 

factors, even in the absence of symptoms.89 Differences in blood pressure trajectories are 

also noted. Studies also indicate that young and middle aged women have lower baseline 

blood pressure but more rapid blood pressure elevation over the life course, especially in the 

setting of cardiometabolic disease states such as hypercholesterolemia and diabetes.90-93 A 

similar pattern has been observed for central arterial stiffness. Although the average arterial 

stiffness is lower in women, it also increases more rapidly in women even after adjusting 

for body size and aortic diameter.88,94-96 These vascular differences are clinically reflected 

in patterns of hypertension prevalence over the life course—prior to age 45, hypertension 

is more prevalent among men; after age 65, hypertension is more prevalent among women. 

Collectively, these studies show that although premenopausal women have better overall 

vascular function than men of similar age, age-related vascular dysfunction progresses at a 

faster rate in women after controlling for sex-specific basal vascular function.97,98

Systemic Vascular Outcomes.—Sex differences in vascular aging patterns, beginning 

early in life, offer pathophysiological insights into why women manifest vascular outcomes 

differently – including presenting greater risk for myocardial infarction and stroke risk 

beginning at lower blood pressure thresholds and consistently experiencing worse stroke 

outcomes than men.99,100 Despite these differences seen in observational cohorts, it is 

worth noting that most published randomized control trials suggest that both sexes derive 

cardiovascular benefits with intensive control of modifiable risk factors such as blood 

pressure (Table 2).101,102 Although these trials were not pre-specified to evaluate for sex 

differences, and further work is needed to investigate potential sex-specific effects, the 

results to date are reassuring regarding the derivable benefit of treating hypertension across 

the lifespan. Perhaps more concerning are the sex differences seen in vascular outcomes 

for which there exist fewer options for early intervention. For instance, although aortic 

dissection is more prevalent in males than females, associated mortality is significantly 
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higher in females.103 Similarly, although abdominal aortic aneurysm is more common 

in males than females, females have a significantly greater risk of rupture.104 For lower 

extremity peripheral arterial disease (PAD), the prevalence is reported to be similar or 

greater in women compared to men, although women with PAD have a greater extent of 

multi-vessel atherosclerotic disease identified at revascularization.105,106 Late presentation 

or under-recognition could account for some proportion of each of these disease disparities. 

However, the consistent theme of a more vulnerable and less stable clinical vascular 

phenotype in aging women points to the likelihood of common underlying factors – 

potentially accumulating and augmenting their effects with advancing age.

Hormonal Effects on Life Course Trajectories

A comprehensive examination of sex differences in cardiovascular aging phenotypes 

involves not only discerning how females and males differ but also a careful consideration 

of the sex-specific factors that impact aging trajectories – particularly sex hormones. There 

remains limited data on how age-related decrease in male sex hormones (e.g. testosterone 

and its metabolite dihydrotestosterone) may be contributors versus biomarkers of age-related 

CVD risk in men.107,108 On the other hand, a large body of evidence has emerged regarding 

the role of ovarian aging – reflected by life course changes in female sex hormones – on 

age-related CVD risk in women.109,110 Considered a metric biological aging in females, 

reproductive longevity can be estimated using a variety of measures (e.g. age at first or 

last reproduction and age of menarche and menopause). Accelerated ovarian aging (i.e. 

shortened reproductive longevity) has been linked to epigenetic, metabolic, and oxidative 

stressors and the development of age-related risk factors as well as both subclinical and 

clinical CVD phenotypes.111-116 Accompanying variations in sex hormones have been 

associated with especially pronounced alterations in glucose metabolism, lipid homeostasis, 

and adipose tissue distribution in females.117,118 These findings are concordant with the 

long-recognized greater risk of cardiovascular outcomes conferred by cardiometabolic risk 

factors, particularly obesity and diabetes, in women compared to men with or without overt 

clinical cardiac disease.119-121

The Stages of Reproductive Aging Workshop identified ten sequential stages of relatively 

distinct female sex hormone profiles as representing key phases of biological versus 

chronological aging in females, with each stage organized as either before or after the 

final menstrual period – considered the cardinal ovarian aging event.122 Importantly, across 

each of these life stages, the age-related decreases in estradiol and increases in follicle-

stimulating hormone are known to be progressive, rather than sudden, with variations in 

longitudinal trajectories that can be used to identify females as having accelerated versus 

delayed ovarian aging profiles.123 Concordant with the concept that ovarian aging is more a 

continuous rather than precipitous process, 10 to 20 year longitudinal studies have found that 

trajectories of anti-mullerian hormone levels – a measure of ovarian reserve – are associated 

with worsening lipid profiles as well as excess risk for CVD and particularly coronary 

heart disease.124,125 Therefore, the more pronounced age-related cardiovascular risks seen 

in postmenopausal compared to premenopausal women and similarly aged men appear less 

likely due to an abrupt withdrawal of endogenous sex steroids during the ‘menopausal 

transition’, and more likely related to a progressive accumulation of hormone mediated 

Ji et al. Page 7

Circ Res. Author manuscript; available in PMC 2023 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



effects that begin in early adulthood, accelerate in midlife, and culminate in late life. This 

framework for considering ovarian aging effects of the cardiovascular system is aligned 

with the observed steadily progressing subclinical myocardial and vascular changes in aging 

women that begin their course decades prior to the menopausal transition and then, later on, 

further increase in rate of development.

The longitudinal perspective of ovarian aging is also potentially helpful for considering why 

most trials of exogenous hormone replacement therapy after menopause have shown no 

reduction in either subclinical or overt CVD outcomes.126-129 Notwithstanding the effects 

of cumulative estrogen deficiency, conventional approaches to hormone replacement therapy 

may represent a mismatch of dosage and timing that may or may not be resolved by 

future studies.130-132 Therefore, at present, there remains clinical equipoise around hormone 

therapies.133 Relatedly, there remains a lack of clarity regarding the complex inter-related 

influences of general somatic aging, ovarian aging, and cardiovascular risk.110,134 While 

ovarian aging can promote the development of subclinical and then clinical myocardial 

and vascular disease, cardiovascular risk may also predispose to ovarian aging (e.g. 

atherosclerosis involving microvasculature of the ovaries),135 and age-related somatic 

mutations can affect both.136,137

Notably, additional approaches to clarifying hormone-related cardiovascular risk can 

involve examining the relative effects of sex-determining hormones in gender-affirming 

hormone therapy within transgender populations. Early data suggest that transgender 

females experience increased thromboembolic disease, whereas transgender males develop 

lipid profiles reflecting their gender rather than natal sex potentially without adverse 

cardiovascular risk.138,139 Further longitudinal and outcomes studies are needed to improve 

our understanding of the interaction between sex-determining hormones and the aging 

trajectory.140,141

Conclusion

Over the past two decades, tremendous progress has been made in unveiling and clarifying 

age-based sex variation in cardiovascular phenotypes and outcomes. Evidence to date 

indicates that female-male differences in the development and progression of CVD 

arise from a combination of intrinsic, stochastic, and environmental factors influencing 

myocardial and vascular aging trajectories. In particular, intrinsic biological between-sex 

differences manifest as measurable relative dimorphism in cardiac and vascular structure 

and function, and this dimorphism sets the stage for the frequently observed sex 

divergent trajectories of response to cardiovascular risk exposures over the life course. 

The accumulating body of data suggests that sex differences in cardiovascular risk should 

be accounted for in all clinical trials and in a manner that also accounts for the differing 

trajectories of risk in women. It is possible that trials that deliberately include younger 

female populations and address risk factor modifications at an earlier age may reveal 

previously unforeseen benefits in the management of CVD in women. Together with 

ongoing work to investigate sex-based variation in cardiovascular risks across the lifespan, 

these broadened approaches promise to further our understanding of how to better mitigate 

potentially adverse sequelae of cardiovascular aging in both sexes.
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Figure 1. 
Conceptual Overview of Sex-Based Variation in Mechanisms and Manifestations of 

Cardiovascular Aging
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Figure 2. 
Overview of Female-Predominant Cardiovascular Aging Phenotypes
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