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abstract

PURPOSE To stratify patients and aid clinical decision making, we developedmachine learning models to predict
treatment failure and radiation-induced toxicities after radiotherapy (RT) in patients with hepatocellular car-
cinoma across institutions.

MATERIALS AND METHODS The models were developed using linear and nonlinear algorithms, predicting survival,
nonlocal failure, radiation-induced liver disease, and lymphopenia from baseline patient and treatment parameters.
The models were trained on 207 patients from Massachusetts General Hospital. Performance was quantified using
Harrell’s c-index, area under the curve (AUC), and accuracy in high-risk populations. Models’ structures were op-
timized in a nested cross-validation approach to prevent overfitting. A study analysis planwas registered before external
validation using 143 patients fromMDAnderson Cancer Center. Clinical utility was assessed using net-benefit analysis.

RESULTS The survival model stratified high-risk versus low-risk patients well in the external validation cohort (c-
index = 0.75), better than existing risk scores. Predictions of 1-year survival and nonlocal failure were excellent
(external AUC = 0.74 and 0.80, respectively), especially in the high-risk group (accuracy . 90%). Cause-of-
death analysis showed differential modes of treatment failure in these cohorts and indicated that these models
could be used to stratify RT patients for liver-sparing treatment regimen or combination approaches with
systemic agents. Predictions of liver disease and lymphopenia were good but less robust (external AUC = 0.68
and 0.7, respectively), suggesting the need for more comprehensive consideration of dosimetry and better
predictive biomarkers. The liver disease model showed excellent accuracy in the high-risk group (92%) and
revealed possible interactions of platelet count with initial liver function.

CONCLUSION Machine learning approaches can provide reliable outcome predictions in patients with hepa-
tocellular carcinoma after RT in diverse cohorts across institutions. The excellent performance, particularly in
high-risk patients, suggests novel strategies for patient stratification and treatment selection.

JCO Clin Cancer Inform 6:e2100169. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Modern conformal radiotherapy (RT) is emerging as a
valuable treatment option in hepatocellular carcinoma
(HCC). It has been investigated as an alternative
treatment option for early-stage, inoperable tumors,1,2

as a bridging therapy to liver transplantation3 and has
shown durable local control (LC) in patients with ad-
vanced HCC.4 A landmark study of stereotactic body RT
at Princess Margaret Cancer Center demonstrated 48%
1-year overall survival and 65% 1-year LC.5,6 Subse-
quent single-arm studies7-9 and meta-analyses10 have
confirmed excellent LC rates. Both changes in RT
fractionation (5 v 15 fractions) and proton beam therapy
are currently explored in a randomized phase III trial
(ClinicalTrials.gov identifier: NCT03186898).

In this investigation, we focus on two toxicities, radiation-
induced liver disease (RILD) and radiation-induced

lymphopenia (RIL). The former has recently become
a focus of attention, given the high local efficacy of RT
and the fact that patients often die from liver failure
without recurrence.11,12 The latter is becoming more
important because of ongoing combinations trials
of RT with immunotherapy (ClinicalTrials.gov identi-
fier: NCT03203304, NCT03482102, NCT03316872,
NCT03817736). These emerging combination regi-
men of RT with immunotherapeutic agents have
sparked interest in minimizing the immunosuppres-
sive effects of radiation that have been shown to
correlate with survival,13,14 also in HCC.15 Predictive
models for RIL have been developed for thoracic
irradiation16 but not for liver-directed RT.

With the role of RT in HCC evolving, patient selection is
becoming critical to maximize the clinical benefit of RT
for this diverse population. Previous work on outcome
prediction often focused on analytical models17,18 and
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was restricted to selected cohorts. The purpose of this study
is to simultaneously investigate predictive models of
patient-specific survival, nonlocal failure, RILD, and lym-
phopenia, and evaluate them in unselected patient cohorts
across institutions. Particularly in HCC, clinical studies have
shown multiple prognostic factors,19,20 although correlation
does not always translate into predictive power, and there
could be interactions between baseline patient charac-
teristics. Therefore, we are exploring linear and nonlinear
machine learning models to study whether predictive
models can reach a robustness and accuracy that makes
them suitable for patient stratification in RT for HCC.

MATERIALS AND METHODS

Study Design

Similar to a clinical trial, we preregistered our methodology
in a Study Analysis Plan21 before obtaining access to the
validation data set to prevent selective reporting and pos-
itive bias.22,23 The predictive model was developed on the
basis of an internal cohort treated at Massachusetts
General Hospital (MGH), locked and only then validated
using an independent cohort treated at MD Anderson
Cancer Center (MDACC), representing a TRIPOD type 3
study.24 We developed a Cox proportional hazards model
and a random survival forest to stratify patients into risk
groups for mortality, and classification models to predict
four binary end points: 1-year survival (SRVy1); 1-year
nonlocal failure (NLFy1); nonclassic RILD, defined as
2+ increase in Child-Pugh (CP) score after 3 months of
treatment (CP2+); and radiation-induced grade 3+ lym-
phopenia (RIL).25

We used four machine learning algorithms: logistic re-
gression, as a linear additive algorithm, and three nonlinear
algorithms that can capture possible feature interactions,
particularly, support vector machine, multilayer perceptron
(MLP), and gradient boosted trees. For the toxicity out-
comes where incidence is low, we used ensemble mod-
eling to treat data imbalance, where 10 submodels of the
same structure were trained on stratified bootstrapped
subsets of the MGH data set. The ensemble model pre-
diction was calculated as the average of the submodel
prediction probabilities.

We conducted a correlation analysis on all dosimetric and
clinical variables to remove redundant features (Data
Supplement). The remaining set used for feature selection
contained the 20 features listed in Table 1. Normal liver
doses were adjusted for fractionation with α/β = 2.5, and
mean liver dose (MLD) and low dose parameters were
chosen on the basis of previous clinical studies.18

We implemented a model development pipeline using a
nested cross-validation approach26,27 on the MGH data set
(Fig 1). In the outer loop, we split the internal data using
stratified 10-fold cross-validation. In each fold, the missing
data were imputed separately in the training and testing
subsets using a multivariate imputer28 to prevent data

TABLE 1. Major Characteristics for the Internal and External Data Sets
Features MGH (n = 207) MDACC (n = 143)

Demographic

Sex, No. (%)

Female 47 (22.7) 32 (22.4)

Male 160 (77.3) 111 (77.6)

Age at diagnosis,
years

68.0 (61.0-78.0) 66.0 (60.0-77.0)

Liver characteristics

Liver condition at
diagnosis, No.
(%)

Not cirrhotic 36 (17.4) 25 (17.5)

Cirrhotic 171 (82.6) 118 (82.5)

Liver size, cc 1,625.8 (1,309.0-2051.1) 1,507.0 (1,176.3-1842.3)

PVT, No. (%)

No 102 (49.3) 64 (44.8)

Yes 105 (50.7) 79 (55.2)

CP0, No. (%)

5 88 (42.5) 80 (55.9)

6 50 (24.2) 34 (23.8)

7 29 (14.0) 18 (12.6)

8 16 (7.7) 10 (7.0)

9+ 14 (6.8) 1 (0.7)

Unknown 10 (4.8) 0 (0.0)

Tumor characteristics,
No. (%)

Disease status at
diagnosis

Locally recurrent 37 (17.9) 54 (37.8)

Newly diagnosed 170 (82.1) 89 (62.2)

Lesion size before
treatment, cm

4.8 (3.3-7.1) 5.7 (3.6-8.5)

Lesion number at
diagnosis, No.
(%)

1 125 (60.4) 83 (58.0)

2 40 (19.3) 25 (17.5)

3 25 (12.1) 20 (14.0)

4+ 11 (5.3) 14 (9.8)

Unknown 6 (2.9) 1 (0.7)

Initial GTV, cc 113.0 (42.9-238.1) 172.7 (67.3-345.6)

Blood counts at
baseline

ALB0, No. (%)

. 3.5 g/dL 133 (64.5) 102 (73.2)

2.8-3.5 g/dL 65 (31.6) 37 (26.1)

, 2.8 g/dL 8 (0.04) 3 (0.02)

BIL0, No. (%)

(Continued on following page)
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leakage. After data preprocessing, the inner loop selected the
optimal subset of features using backward elimination29—with
features ranked by permutation importance30—and tuned
hyperparameters using grid search. Each fold resulted in a
unique model, defined by a set of features. We repeated the
10-fold cross-validation 30 times using different random
seeds to create a pool of candidate optimalmodels fromwhich
the final model was selected.

We followed model selection criteria for controlling bias and
variance of the final model. We grouped the candidate
models that share the same feature set, and we recorded
the number of models and average test area under the
curve (AUC) of each group. A large group means that the
corresponding feature set was optimal for many data splits,
which reflects robustness. If one group was significantly
larger than the others, we selected the feature set of that
group. Otherwise, we considered the largest five groups,
and we chose the feature set with the highest average test
AUC. If the top groups have comparable frequency and

scores, we selected the smallest features set to reduce the
risk of overfitting. Interaction between variables of the final
model was quantified using Friedman’s H-statistic.31

Patient Cohorts

The training cohort contains 207 patients with HCC treated
with RT at MGH between 2008 and 2018. The study was
approved by MGH’s Institutional Review Board Committee.
We excluded patients with missing outcomes, and those
with less than 1-year follow-up for the binary 1-year end
points (survival and nonlocal failure). The resulting cohort
contained 152 patients for the SRVy1, 101 for the NLFy1,
105 for the CP2+, and 108 for the RIL end points.

The validation cohort from MDACC contained 143 patients
with HCC treated with RT between 2006 and 2016. The
patient characteristics in both cohorts are generally com-
parable (Table 1), except that MGH patients have smaller
tumors on average and the fraction of newly diagnosed cases
is lower atMDACC. In terms of outcome,median survival was
14 versus 17 months in the internal and external data set;
higher incidence of toxicity was observed in the MDACC
cohort.

Validation of the Final Model Using the External Cohort

After choosing the final model, we ran it through 100
bootstraps on the MGH data to evaluate stability and cal-
culate an internal AUC. Then, we trained the model on the
entire MGH data and locked it before gaining access to the
MDACC data. For the external validation we received only
the features, but not outcomes, fromMDACC and sent back
our predicted outcomes, on which all results are based. We
used Kaplan-Meier curves and Harrell’s c-index32 to
evaluate discriminative ability between low-risk and high-
risk groups, split by median risk and into top and bottom
quartiles. We further studied the model calibration by
comparing predicted against observed survival of the co-
hort binned in quartiles.33 Binary classificationmodels were
assessed using the area (AUC) under the receiver operating
characteristics curve, and accuracy in the 10% and 20%
high-risk groups. The high-risk and low-risk groups con-
sisted of patients with the cohort’s top/bottom risk scores,
which could vary for each end point. We assigned a
positive/negative label for the high-risk and low-risk groups
and calculated the accuracy of the assigned versus the true
labels.

Finally, the models’ clinical utility was evaluated using net-
benefit analysis,34 which generates a decision curve on the
basis of the true-positive and false-positive numbers for a
range of probability thresholds. Clinical utility is indicated if
the decision curve is positive for a probability threshold
larger than a clinically significant threshold, which is
specified by the treating physician.

RESULTS

Themodels presented below are those selected using nested
cross-validation and the criteria described above in the

TABLE 1. Major Characteristics for the Internal and External Data Sets (Continued)
Features MGH (n = 207) MDACC (n = 143)

2 mg/dL 171 (83) 129 (90.8)

2-3 mg/dL 17 (8.3) 10 (7.0)

. 3 mg/dL 18 (8.7) 3 (2.1)

PLT0 × 109/L 140.0 (90.0-194.0) 160.0 (109.0-217.5)

AFP0 24.0 (4.9-672.9) 27.9 (5.4-645.3)

ALC0 × 109/L 1.1 (0.7-1.4) 1.1 (0.8-1.6)

Dosimetry

Modality of RT, No.
(%)

Photon 140 (67.6) 103 (72.0)

Proton 67 (32.4) 40 (28.0)

Total dose, Gy 67 (60-81.6) 60.0 (50.4-67.5)

Fractionation 15.0 (5.0-15.0) 15.0 (15.0-25.0)

MLD 18.3 (13.0-21.6) 20.8 (16.1-23.6)

Liver V10 49.6 (32.7-58.7) 55.0 (39.3-72.0)

Outcome (% positive)

SRVy1 48.7 59.0

NLFy1 44.6 55.0

3-month CP2+ 22.3 36.8

3-month RIL 21.3 45.0

NOTE. Continuous variables are reported as median (interquartile range), and
categorical variables are reported as the number (percentage) of each class. The
total dose is corrected for relative biologic effectiveness (fixed value of 1.1) for
proton patients.
Abbreviations: AFP0, alpha-fetoprotein; ALB0, albumin; ALC0, absolute

lymphocyte count; BIL0, bilirubin; CP, Child-Pugh; CP0, baseline CP score; GTV,
gross tumor volume; MDACC, MD Anderson Cancer Center; MGH, Massachusetts
General Hospital; MLD, mean liver dose; NLFy1, 1-year nonlocal failure; PLT0,
platelet count; PVT, portal vein thrombosis; RIL, radiation-induced lymphopenia;
RT, radiotherapy; SRVy1, 1-year survival.
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internal cohort, and then validated externally. Figures 2 and 3
present the Kaplan-Meier and receiver operating character-
istic curve curves for the superior models for each end point.

Survival

Time to death. The Cox survival model showed excellent
patient stratification using a combination of clinical and
dosimetric variables, with baseline CP score (CP0), modality,
bilirubin (BIL0), and portal vein thrombosis being the most
important features. Themodel discriminated the top from the
bottom risk quartile well with an external c-index of 0.75 and
median survival of 10.6 and 42.5months in the high-risk and
low-risk groups (hazard ratio 4.0 [2.7-8.7], Fig 2A). Including
all patients into two risk groups yielded 11.5 versus
26.4 months of median overall survival (hazard ratio 2.3 [1.8-
2.4], Data Supplement). The random survival forests selected
only CP0, albumin (ALB0), and BIL0, which are the standard
risk assessment metrics in HCC but had lower external per-
formance (c-index 0.59, Table 2). Calibration analysis
revealed that survival predictions for patients above median
risk were well calibrated at 1-year post-RT; however, analysis
showed an overestimation and underestimation of survival in
the medium-low and low-risk groups, respectively (Data
Supplement).

1-year survival classification. The internal AUC ranged
from 0.78 to 0.81 across the different nonlinear algorithms
(Table 2) with an external AUC 0.70-0.71. The logistic
regression (internal AUC = 0.78) performed better exter-
nally (AUC 0.74, Fig 2B), with baseline CP, alpha feto-
protein, ALB0, MLD, and BIL0 being the most important
features. The model had excellent accuracy in identifying
a high chance of SRVy1 (83%-92%) and high risk of
1-year mortality (77%-83%). The model’s net-benefit

analysis showed a positive decision curve for probability
thresholds up to 0.85 (Data Supplement), meaning that
the model has clinical utility if predicting a 85% probability
of death within 1 year for a specific patient would affect
treatment.

Cause of death. We examined the underlying drivers of
survival outcome in the top and bottom 10% risk groups
(Fig 2C) to see if the prediction could indeed guide treat-
ment selection. In the low-risk group, 87% of the patients
were alive, with a median follow-up of 36.9 months. Fifty
percent of the patients had died of non–HCC-related
causes, compared with only 11% in the overall pop-
ulation. On the contrary, in the high-risk group, only 29% of
patients were alive after 1 year and 29% died from liver
failure without tumor progression compared with 10% in
the overall population (Fig 2C).

1-Year Nonlocal Failure

The nonlinear models had comparable internal and ex-
ternal AUC ranging from 0.69 to 0.74 and 0.60 to 0.72,
respectively, but the logistic regression (AUC = 0.69)
performed better on the external data set (AUC = 0.80,
Fig 3A). Feature selection revealed the importance of blood
counts (ALB0, alpha-fetoprotein, and absolute lymphocyte
count) and MLD for this end point. The model’s accuracy
in the 10% and 20% high-risk groups was 92% and 83%,
respectively. The decision curve (Data Supplement) indi-
cated a positive net benefit for all probability thresholds.

Hepatic Toxicity: Increase in CP Score

The baseline platelet count was selected by all nonlinear
algorithms, indicating a significant interaction with other
variables. The models had strong internal AUC (0.73-0.80)

Model generation on the internal data set Model selection External validation 
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but weaker performance externally (AUC = 0.59-0.68). The
MLP performed best (Fig 3B) with excellent accuracy (92%
and 83%) in the 10% and 20% high-risk groups. The net-
benefit analysis indicated clinical utility for probability
thresholds up to 0.8 (Data Supplement).

CP2+ was the only end point that benefited greatly from
nonlinear algorithms, which indicates that interactions be-
tween features could be relevant. We explored this further and
found strong interactions between radiation dose to the liver,
BIL0, and platelet count. The pairwise H-statistic was 32% for
BIL0 and platelet count, meaning that 32% of the contribution

these two variables make to the prediction comes from their
interaction. The interaction between MLD and platelets and
BIL0 was 28% and 17%, respectively (Data Supplement).

Effect on Peripheral Immunity: RIL

Baseline lymphocyte count was selected by all algorithms,
and nonlinear models indicated interaction of baseline ALC
with tumor dose. The support vector machine and MLP
indicated the important role of liver size, which could reflect
the blood volume exposed to radiation. The internal AUC of
the nonlinear algorithms was high (0.75-0.79), although
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TABLE 2. Final Models Selected for Each End Point and Class of Algorithms From the Nested Cross-Validation–Generated Pool of Candidate Optimal Models

End Point Final Model
Internal Score Mean

[6 SD]
External
Score

High-Risk
Accuracy

Low-Risk
Accuracy

OS Cox (ALB0, AFP0, BIL0, CP0, GTV, lesion size, liver size,
MLD, modality, PLT0, PVT, V10)

0.69 [0.63-0.75] 0.75

RSF (AFP0, BIL0, CP0) 0.76 [0.73-0.79] 0.69

SRVy1 Logistic (ALB0, AFP0, BIL0, CP0, GTV, lesion size, liver
size, MLD, modality, PLT0, PVT, V10)

0.78 [0.73-0.82] 0.74 0.93/0.89 0.71/0.70

SVM (ALB0, AFP0, CP0, TD) 0.79 [0.74-0.84] 0.71

XGB (age, BIL0, CP0, GTV, V10) 0.80 [0.75-0.84] 0.70

MLP (ALB0, TD, V10) 0.78 [0.73-0.83] 0.71

NLFy1 Logistic (ALB0, ALC0, AFP0, age, BIL0, GTV, MLD, TD,
V10)

0.69 [0.61-0.77] 0.80 0.92/0.83 0.75/0.83

SVM (ALB0, AFP0, CP0, TD) 0.74 [0.67-0.81] 0.72

XGB (age, BIL0, liver size, MLD) 0.72 [0.64-0.80] 0.60

MLP (ALB0, MLD, TD) 0.69 [0.61-0.77] 0.74

CP2+ (ensemble
modeling)

Logistic (BIL0, PLT0) 0.74 [0.68-0.81] 0.59

SVM (modality, PLT0, TD) 0.77 [0.59-0.85] 0.58

XGB (BIL0, PLT0) 0.73 [0.62-0.83] 0.62

MLP (BIL0, GTV, MLD, PLT0) 0.80 [0.74-0.87] 0.68 0.92/0.83 0.50/0.70

RIL (ensemble
modeling)

Logistic (AFP0, ALC0, BIL0, GTV, MLD, PLT0, V10) 0.75 [0.67-0.83] 0.70 0.77/0.69 0.71/0.78

SVM (ALC0, TD) 0.79 [0.69-0.88] 0.64

XGB (ALC0, liver size, TD) 0.79 [0.71-0.87] 0.66

MLP (ALB0, ALC0, age, liver size, TD) 0.85 [0.78-0.91] 0.67

NOTE. The best model for each end point is bolded. Columns 3 and 4 are the internal and external scores, respectively (c-index in rows 1-2 and area under
the curve in the rest of the rows). Columns 5-6 show the accuracy of prediction in the high- and low-risk groups displayed as accuracy for the 10%/20% high-
risk and low-risk groups, respectively. See Table 1 for definition of variables.
Abbreviations: AFP0, alpha-fetoprotein; ALB0, albumin; ALC0, absolute lymphocyte count; BIL0, bilirubin; CP, Child-Pugh; CP0, baseline CP score; GTV,

gross tumor volume; MLD, mean liver dose; MLP, multilayer perceptron; NLFy1, 1-year nonlocal failure; OS, overall survival; PLT0, platelet count; PVT, portal
vein thrombosis; RIL, radiation-induced lymphopenia; RSF, random survival forests; SD, standard deviation; SRVy1, 1-year survival; SVM, support vector
machine; TD, total dose; XGB, gradient=boosted trees.

Chamseddine et al

6 © 2022 by American Society of Clinical Oncology



decreased in validation (0.64-0.67). In comparison, an
ensemble of logistic regression models performed better
externally (AUC = 0.70, Fig 3C) despite inferior internal
score. The logistic regression selected V10 and MLD versus
tumor dose alone, which provides spatial information. The
accuracy in the high-risk group was 69%-77% and the
clinical net benefit of the RIL model was limited to a 0.5
probability threshold (Data Supplement).

DISCUSSION

We developed predictive models for patients with HCC after
RT for four clinically relevant end points: survival, nonlocal
failure, CP2+ increase, and lymphopenia. We validated the
models on an external data set (TRIPOD type 324,35) after
locking them and publishing the methods to ensure
transparency.21 We opted for this approach instead of
merging the data and creating a hold-out validation set
because, especially in RT for HCC, practice patterns vary
considerably36,37 and evaluation across institutions can
evaluate robustness toward different underlying pop-
ulations and referral patterns.

The survival model showed strong discriminative ability
(external c-index 0.75) and excellent calibration for high-
risk patients (Data Supplement). The model’s risk score
combined CP0, ALB0, and BIL0 with other blood counts,
dosimetric variables, liver function, and lesion size (Data
Supplement). Our composite risk score has higher dis-
criminative power than CP for the overall population and is
better than ALBI for the high-risk versus low-risk patients
(Data Supplement). The same pattern was observed in the
internal data set (Data Supplement), which demonstrates
the potential advantage of our model versus available
scoring system particularly in stratifying high-risk patients.

Prediction of SRVy1 was strong (external AUC = 0.74) with
high accuracy (. 89% and 70%) in the low-risk and high-
risk groups. We also achieved high predictive ability of

nonlocal failure (AUC = 0.80) and excellent accuracy
(. 83%) in the high-risk group. Both models showed
positive net benefit for the widest range of probability
thresholds, indicating possible clinical utility (Data
Supplement).

To investigate whether these models can inform clinical
decisionmaking, we analyzed the cause of death in the low-
risk and high-risk populations externally. The low-risk pa-
tients not only showed favorable outcomes, but a significant
percentage died from non–HCC-related causes, indicating
the high efficacy of current stereotactic body RT techniques
in this population. In the high-risk patients, however, the
incidence of death from liver failure without disease pro-
gression increased four-fold compared with the overall
populations (40% v 10%), with another large fraction of
patients (30%) succumbing to liver failure from disease
progression. Given the high LC rates for HCC, the latter
usually occurs because of disease progression in the liver
outside of the previously irradiated target. These divergent
cause-of-death distributions and the high accuracy of our
models in the high-risk groups could enable patient
stratification as outlined in Figure 4: a survival model filters
out the population with very high mortality risk, and in the
next stage, the nonlocal failure and CP2+ models further
specify the optimal course of treatment for these patients:
(1) patients at high risk of CP2+ become candidates for
liver-sparing approaches such as proton therapy and al-
ternative fractionation schemes, which are currently eval-
uated (ClinicalTrials.gov identifier: NCT03186898), or
possibly dose reduction; (2) patients at high risk of NLFy1
are eligible for treatment with a more systemic approach
combining RT with biologic agents, which are currently
under investigation, for example, ClinicalTrials.gov identi-
fier: NCT03482102. Enabling preselection of patients that
benefit most from drug-RT combinations or proton therapy
can also improve clinical trial design as evidenced by the

SBRT leads to excellent outcomes;
majority of patients die from non–HCC-
related causes 

CP2+ model

NLFy1 model

SRVy1 model
High probability

Systemic approaches indicated in
combination with SBRT (eg, ICI + RT)

Risk of liver failure
without progression

High risk of NLFy1 Risk of nonlocal tumor
progression 

Liver sparing is indicated: proton therapy
or alternative fractionation pending
results of ongoing clinical trial
(ClinicalTrials.gov identifier: NCT03186898)  

Low probability

Risk of non–HCC-related
death

New
patient

Dominant risk to patient

High risk of CP2+

FIG 4. Model-based decision tree for personalized treatment selection and clinical trial enrichment using risk scores for survival and nonlocal failure.
CP, Child-Pugh; HCC, hepatocellular carcinoma; ICI, immune checkpoint inhibitors; NLFy1, 1-year nonlocal failure; RT, radiotherapy; SBRT,
stereotactic body radiotherapy; SRVy1, 1-year survival.
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model-driven trial designs pioneered in the Netherlands.38

For this reason, we also see the inclusion of both proton and
photon patients as a strength, enabling the models to guide
patient selection for proton therapy.

For the toxicity end points, the CP2+ model had high ac-
curacy (. 83%) in the high-risk group. Combined with
positive clinical net benefit for wide range of occurrence
probability (Data Supplement), the model is informative for
high-risk patients. The intermediate performance in the
overall cohort (validation AUCs 0.58-0.68) can be interpreted
as a success of the currently used individualized prescription
practice in HCC. To improve treatment individualization, we
need to move past current biomarkers and explore new
approaches such as hepatocyte growth factor39 or
cytokines.40,41 Furthermore, our interaction analysis (Data
Supplement) revealed that the CP2+ sensitivity to dose de-
pends on the platelet count.

For post-RT lymphopenia, predictive power was good (external
AUC = 0.7). All the models combined baseline ALC with do-
simetric features, but the best performingmodel usedbothMLD
and V10, indicating the significance of spatial dose information.

It is worth noting that logistic regression outperforms
nonlinear algorithms in all clinical end points except CP2+,
where MLP performed the best. Logistic regression is highly
interpretable, less prone to overfitting, and easily repro-
ducible, making the models more applicable. For the
CP2+ model, the selection of MLP warrants future inves-
tigation into the predictive factors for radiation-induced
hepatic toxicity and possible interactions among them.

Machine learning has previously been applied to HCC to
estimate dose-based toxicity metrics,35,40 but few studies

considered clinical end points. These models suffered from
small sample size or relied on data not readily available,
impeding their clinical application. For instance, Shen
et al42 predicted disease-free survival from gene se-
quencing but the model was validated on 10 patients only.
Others also used powerful deep learning techniques43 or
focused on radiomics,44 but lacked external validation.

Our model is validated across institutions on large, unse-
lected cohorts receiving both photon and modern proton
therapies.

The main limitation of our study is the low incidence of
CP2+ and lymphopenia, which possibly prevents improved
training of the toxicity models. Dosimetric features did not
consider the entire liver dose-volume histogram but fo-
cused on known predictors, mean dose, and low-dose
bath.18 Functional imaging of the liver has been shown
to improve dose-response relationships for hepatic toxicity
in small cohorts and could further enhance prediction.45,46

In conclusion, we showed that generalizable prediction of
outcome after RT for HCC across diverse populations is
possible, particularly for survival, nonlocal failure, and
hepatic toxicity. Accuracy is particularly high in high-risk
subgroups, indicating potential applications to modify the
treatment of these patients. Cause-of-death analysis for the
high-risk and low-risk populations in the survival model
revealed differential modes of treatment failure. Together
with good prediction of nonlocal failure and hepatic toxicity
in high-risk patients, our model might enable stratification
of patients to either RT strategies that spare normal liver or
combination regimens including systemic agents.
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