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Abstract

Protein-protein interfaces have been attracting great attention due to their critical roles in protein-

protein interactions and the fact that human disease-related mutations are generally enriched in 

them. Recently, substantial research progress has been made in this field, which have significantly 

promoted the understanding and treatment of various human diseases. For example, many 

studies have discovered the properties of disease-related mutations. Besides, as more large-scale 

experimental data become available, various computational approaches have been proposed to 

advance our understanding of disease mutations from the data. Here, we overview recent advances 

in characteristics of disease-related mutations at protein-protein interfaces, mutation effects on 

protein interactions, and investigation of mutations on specific diseases.
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Introduction

The protein-protein interface makes crucial contributions to the specificity and strength of 

protein interactions, which are essential to most biological processes, and determines the 

mechanism by which proteins fulfill their functions [1]. The loss or alteration of protein 

functions caused by amino acid mutations can result in diseases and these mutations are 

hence referred to as ‘disease-related mutations’ [2]. Disease-related mutations have been 

reported to be enriched at protein-protein interfaces [3, 4, 5, 6], and are more evolutionarily 

conserved than other surface residues [7, 8, 9]. Therefore, studies of disease-related 

mutations involved in protein-protein interfaces provide important insights for deciphering 
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disease mechanisms and potential treatments. For example, ECLAIR, a unified machine 

learning framework of Interactome INSIDER [3], computationally predicted protein-protein 

interfaces of 185,957 binary interactions with previously unresolved interfaces in human and 

seven other model organisms on a large scale, which extensively makes the downstream 

studies possible. Cheng et al. [10] used the predicted protein-protein interfaces in 

Interactome INSIDER to demonstrate that network-predicted oncoPPIs, which is a protein 

interaction with a significant enrichment in interface mutations across individuals, are 

closely related to patient survival and drug resistance/sensitivity either in human cancer cell 

lines or in patient-derived xenografts. This finding provides promising prognostic markers 

and pharmacogenomic biomarkers for potential clinical guidance.

Large-scale studies have reported that disease-related mutations tend to cause large 

geometrical and physicochemical changes of mutation sites, which in turn affects the 

stability of protein interactions by changing their binding affinity [6, 7, 11]. In the 

past few years, many computational methods have been proposed to predict mutation 

effects on protein interactions, especially their effects on the binding affinity of protein 

interactions [12]. Although there is often a trade-off between accuracy of experimental 

methods and efficiency of computational methods, the computational methods have achieved 

remarkable successes given that experimental methods are generally laborious, costly, and 

time-consuming. In the following sections, we focus on recent studies on the characteristics 

of disease-related mutations at protein-protein interfaces, advances in the identification of 

mutational effects on protein interactions, and investigations of mutations on specific human 

diseases.

Mutations at protein-protein interfaces on human diseases

It has been widely demonstrated that disease-related mutations preferentially localize to 

protein-protein interaction interfaces [3, 4, 5, 13, 14]. Figure 1 shows that a disease-related 

mutation located at an interface disrupts the interaction and implicates the corresponding 

disease [9]. Moreover, mutations on the same protein can cause distinct clinical diseases 

by disrupting its interactions with different partners [3, 4, 5]. David et al. [14] examined 

the frequencies of 2,420 disease-related mutations in three different regions of proteins 

(protein core, interface, and surface noninterface) and compared the quantified preferences 

of disease-related mutations at protein interfaces with that of the other two regions. Their 

results showed that disease-related mutations preferentially occur at interfaces than surface 

noninterface with an odds ratio (OR) of 1.59. Additionally, a similar observation (OR=1.44) 

has been reported by another study [2].

Interface residues, which are located over a large surface area, can be distinguished into 

‘core residues’ and ‘rim residues’ based on their solvent accessibility in the bound state 

of two interacting proteins [15]. Interface rim residues are partially solvent-accessible and 

surround the interface core region at which the residues are completely buried as a result 

of the protein-protein interaction. It has been shown that residues on the interface core 

region generally make more contributions than those on the rim to protein interactions [2, 

13]. Specifically, Navío et al. [2] showed this tendency by examining 2,062 residues in 

the interface core and rim regions. The authors concluded that interface residues that make 
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an energetic contribution to the protein complex stability or related to human diseases are 

more likely to locate at the interface core region rather than rim region, and quantified this 

preference using OR (OR = 2.11). However, disease-related mutations did not show any 

preference to be located at the interface rim regions than the non-interface surfaces [13]. 

Moreover, the significance of preference for the neutral mutations, which do not cause any 

genetic disorders, for interface core vs rim has not been established [2].

The binding affinity change (ΔΔG) is an important factor to discriminate disease-related 

mutations from neutral mutations. While random amino acid substitutions including neutral 

and disease-related mutations tend to decrease the binding free energe [6, 13, 16], disease-

related mutations are more likely to cause a decrease in their binding affinity [6, 13]. 

Jemimah et al. [6] performed a statistical analysis to explore the change in binding affinity 

caused by neutral and disease-related mutations. They found that most of the disease-related 

mutations decrease the binding affinity and showed that there exists a significant difference 

in the effect on protein stability between neutral and disease-related mutations.

Mutations may introduce various types of effects, which include reduction in hydrophobic 

region, overpacking, decrease in electrostatic interactions etc., and cause protein instability 

and, eventually, loss of protein interactions [14, 17]. For example, an amino acid substitution 

from a smaller residue to a larger residue could lead to steric clashes. On the other hand, a 

mutation from a larger amino acid to a smaller amino acid could create a spatial gap. Either 

of the cases is likely to impair protein stability [17]. Besides, the impact is more significant 

if the mutation is carried out by energetic hotspots or residues in the protein core [13]. The 

change of hydrophobicity of residue caused by mutations in the interface region also brings 

about loss of protein interactions. As interface residues are more hydrophobic than surface 

noninterface residues [18], their substitution to charged or polar residues could disrupt 

protein interactions [14]. While destabilization is a more common effect, disease-related 

mutations could also stabilize the proteins and complexes [19, 20]. This suggests that, 

although the decrease in binding affinity and protein instability could be the dominant 

effects of disease-related mutations, they could bring other types of effects, or even opposite 

effects, to protein structures and protein interactions, which requires more comprehensive 

analysis to understand their mechanisms.

Approaches to identifying mutation effects on protein interactions

The change in binding affinity of protein interactions caused by mutations can further affect 

the stability of protein interactions and the function of proteins involved and, eventually, 

cause diseases. Effects of mutations on protein-protein binding sites can be assessed by 

the change in binding free energy, which is one of the most significant factors contributing 

to pathogenicity [11, 21]. The binding affinity can be quantitatively measured through 

various experimental methods, including Isothermal Titration Calorimetry (ITC), Förster 

Resonance Energy Transfer (FRET), Surface Plasmon Resonance (SPR), and Fluorescence 

Polarization (FP) [11, 22]. These methods provide accurate measures of binding affinity 

change, however, they are laborious, expensive and time-consuming and, more importantly, 

not feasible to large-scale datasets in practice. These drawbacks of experimental methods 

motivated the development of fast and reliable computational approaches to predicting 
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protein-protein ΔΔG in large-scale studies. In the past decades, as shown in Table 1, many 

computational approaches have been proposed to meet the needs, which can be broadly 

categorized into classical energy-based methods and machine learning-based methods [12, 

23].

Classical energy-based methods typically rely on physical/empirical energies and/or 

statistical potentials to find the optimal models. Some of these methods, such as FoldX 

[24, 25], Rosetta [26], CC/PBSA [27], ZEMu [28], Flex ddG [29], etc. use physical 

energies. The physical energies mainly come from van der Waals, solvation, hydrogen 

bonds, water bridges, electrostatic, entropy, Lennard Jones interactions. Furthermore, the 

statistical potentials are also used to predict ΔΔG, such methods include BeAtMuSiC [30], 

contact potentials-based model [31], etc. These statistical potentials describe the correlations 

between numbers of pairwise inter-residue contacts, pairwise inter-residue distances, amino 

acid types, backbone torsion angles and solvent accessibilities. The most recently published 

energy-based methods including BindProfX [32] and SSIPe [33] combined such energies 

with other information (such as protein interface profiles) to predict ΔΔG and have achieved 

better performance than other energy-based models. However, these methods require the 

structures of mutated complexes as an input, which in turn limits their applicability 

drastically.

Machine learning methods capture the relationship between the ΔΔG and a set of generally 

important features extracted from the protein structure, sequence, energy, evolution, etc.. 

Due to the ever-increasing mutation data availability in public databases such as SKEMPI 

2.0 [34] and PROXiMATE [35], a high number of machine learning-based methods 

have been proposed in recent years. Some of them, such as mCSM-PPI2 [36], iSEE 

[37], TopNetTree [38], MutaBind2 [39], ELASPIC2 [40], etc., have been developed with 

structure-based features using extra trees (ETs), random forest (RF), gradient boosting 

decision tree (GBDT), convolutional neural network (CNN), transformer neural network 

(TNN), graph neural network (GNN) and so on. Several machine learning-based methods, 

which give better representations of structures of mutated complexes, typically include 

the aforementioned energies as features. However, these methods, like the energy-based 

methods, suffer in terms of their applicability due to their reliance on the input structures, 

even though the structures of a small portion of mutated complexes can be approximated 

by modeling 3D structures from sequences using homology modeling. Therefore, some 

sequence-based methods, such as ProAffiMuSeq [41], MuPIPR [23], SAAMBE-SEQ [42], 

etc., have been proposed using bidirectional long short-term memory (Bi-LSTM), recurrent 

convolutional neural network (RCNN), multi-layer perceptron (MLP), GBDT and so on. 

Over the past few years, deep learning has shown remarkable success and the explosive 

growth in its application to various fields including bioinformatics [43, 44]. For studying 

mutational effects on protein interactions, several deep learning models such as TopNetTree, 

MuPIPR, have been developed and achieves satisfactory performance. Especially, MuPIPR 

achieves success in an end-to-end manner without the need of hand-crafted features, which 

indicates the strong representation power and practical advantages of deep learning. Along 

with further accumulation of data and advances in computational technology, deep learning 

will lead to enormous opportunities for machine learning-based methods to learn the 

complicated patterns between various protein features and the ΔΔG.
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Feature design also plays a crucial role in computational approaches. The knowledge of 

feature importance would greatly contribute to the understanding of mechanisms of mutation 

impact on ΔΔG and the development of novel computational approaches [12]. Several 

methods have reported the relative importance of features they used. Specifically, iSEE 

reveals that the Position Specific Scoring Matrix (PSSM) value of the wildtype amino 

acid and the difference of PSSM values between mutant and wildtype residues are the 

most important features. The PSSM captures the evolutionary conservation information of a 

specific amino acid. In SAAMBE-SEQ, the PSSM-based evolution and conservation scores 

were also found to be the two most important features. It is worth noting such evolution and 

conservation information can be obtained through protein sequence without the need for any 

structural information.

The pathogenicity of mutations affecting protein interaction on human 

diseases

Mutations that affect protein interaction interfaces influence the formation of protein 

complexes. They lead to phenotypic changes and have been demonstrated to play “driver” 

roles in human cancers as well as other genetic diseases. A vast number of studies 

have discovered that pathogenic mutations cause different diseases by disrupting protein 

interactions or changing the binding affinity of specific protein complexes [45, 46, 47, 48, 

49, 50, 51]. Kato et al. [48] reported that the cancer-derived substitution mutation is likely 

to occur at highly conserved amino acids of the ubiquitously transcribed tetratricopeptide 

repeat on the X chromosome (UTX). The authors also observed that several mutations in the 

tetratricopeptide repeat (TPR) alter the interactions of UTX with core components of mixed-

lineage leukemia complexes (MLL3/4 complexes), the interactions with crucial importance 

in the tumor suppressor function. Yan et al. [50] investigated the structural basis of the 

pathogenicity of Legius syndrome mutations and discovered that these mutations reduce the 

binding affinity between SPRED1 and NF1. This finding supports the hypothesis proposed 

in [51] that mutations in SPRED1 could cause Legius syndrome due to an inability to form 

the NF1-SPRED1 complex. Chen et al. [52] showed that missense mutations disrupting 

interactions of autism spectrum disorder (ASD) proteins are enriched in individuals with 

ASD and further constructed and analyzed an “ASD disrupted network” by connecting all 

disrupted pairs of proteins to explore the risk genes of ASD.

The pathogenicity of disease mutations can also be derived from the alteration of binding 

properties of proteins and their interactome [4, 19, 53, 54, 55], of which little research has 

been conducted as the perturbations of interactome is much more difficult to analyze than 

the alterations in single disease proteins. Mehnert et al. [53] analyzed cancer mutations in 

the Dyrk2 protein kinase and found that these mutations significantly change the Dyrk2 

interaction network. For more information, readers may refer to Wanker et al. [55], which 

reviewed the studies about the perturbed interactors of the huntingtin (HTT) protein with 

mutants and their pathobiological roles in the disease.

Moreover, mutations of SARS-Cov-2 proteins that affect specific protein interactions have 

significant impacts on its infectivity. It is well known that the coronavirus disease 2019 
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(COVID-19) has stronger infectivity than the SARS coronavirus 2003 [56]. The key factor 

causing this difference discovered by Wang et al. [57] is the mutation of a hydrophobic 

residue in the SARS-CoV sequence to Lys417 in SARS-CoV-2. It enhances protein 

interactions between SARS-CoV-2 and the host receptor ACE2 which serves as a major 

receptor for SARS-CoV-2 in human cells. Besides, several SARS-CoV-2 mutations (e.g., 

D614G [58, 59], N501Y [60]) were also observed to enhance the binding affinity between 

SARS-CoV-2 and ACE2. These mutations might either increase the infection rates or be 

related to a higher case fatality rate from the strains of SARS-CoV-2 found in different 

countries. Rawat et al. [61] performed a mutational analysis for the interactions of three 

strains of NL63, SARS-CoV and SARS-CoV-2 with ACE2, respectively. They found the 

mutation of the conserved Gly residue in all three strains (Gly537 in NL63, Gly488 in 

SARS-CoV and Gly502 in SARS-CoV-2) significantly reduced the binding affinity, which 

revealed its importance for both stabilizing and interacting with ACE2. Further, the SARS-

CoV-2 mutations could also change intraviral protein interactions and might influence the 

transmission of SARS-CoV-2 and the treatment of COVID-19 [62].

Conclusion

The significance of protein-protein interfaces has prompted rigorous research and resulted 

in great insights that enhance our understanding of molecular mechanism of protein 

interactions. Many studies have demonstrated that disease-related mutations at interfaces 

may lead to various effects such as destabilizing protein interactions, decreasing binding 

affinity, etc. Although experimental methods allow us to accurately measure such effects, 

many computational approaches have been proposed to efficiently study protein functions 

with large-scale datasets. Especially, deep learning has been given considerable attention 

due to the accumulation of large data and powerful computational resources, and its strong 

feature representation ability. The deep exploration of disease-related mutations will enable 

the novel and rational drug design.
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Highlights

• Disease-related mutations preferentially localize to protein-protein interfaces.

• Mutations, in general, destabilize protein-protein interactions and protein 

structures.

• Deep learning shows great advantages and potential in mutation effect 

prediction.

• Pathogenic mutations may lead to different diseases by disrupting or changing 

the binding affinity.
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Figure 1. A disease-related interface mutation G352R on SMAD4.
This mutation disrupts the SMAD4 interaction with SMAD3, and implicates the TGFβ/

SMAD signaling pathway in the formation of juvenile polyposis.
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Table 1.

Summary of representative computational approaches for ΔΔG prediction.

Categories Names Webservers/Softwares Unique features/advantages References

Energy-
based

FoldX http://foldxsuite.crg.eu Uses a rotamer library [24, 25]

Rosetta - Uses a rotamer library, focusing on alanine 
mutations

[26]

CC/PBSA - Considers structural flexibility [27]

ZEMu https://simtk.org/projects/rnatoolbox Uses a multiscale method which models 
flexibility of mutation region

[28]

Flex ddG https://github.com/Kortemme-Lab/
flex_ddG_tutorial

Samples conformational diversity using 
“backrub” to generate an ensemble of models

[29]

BeAtMuSiC http://babylone.ulb.ac.be/beatmusic Uses the coarse-grained representation of 
protein structures

[30]

Contact 
potentials-based 
model

- Uses atomic and residue contact potentials [31]

BindProfX https://zhanglab.dcmb.med.umich.edu/
BindProfX

Calculates ΔΔG as the logarithm of relative 
probability of mutant residues over wild-type 
ones

[32]

SSIPe https://zhanglab.ccmb.med.umich.edu/
SSIPe https://github.com/tommyhuangthu/
SSIPe

Combines interface profiles derived from 
structural and sequence homology searches 
with a physics-based energy

[33]

Machine 
learning-
based

mCSM-PPI2 http://biosig.unimelb.edu.au/mcsm_ppi2 Integrates mCSM graph-based signatures, 
evolutionary information, inter-residue non-
covalent interaction networks analysis and 
energetic terms with ETs

[36]

iSEE https://github.com/haddocking/iSee Combines structural, evolutionary, and 
energetic features with RF

[37]

TopNetTree https://codeocean.com/capsule/2202829/
tree/v1

Integrates topological describtors with CNN-
assisted GBDT

[38]

MutaBind2 https://lilab.jysw.suda.edu.cn/research/
mutabind2

Combines a set of scoring functions with RF [39]

ELASPIC2 http://elaspic.kimlab.org https://
gitlab.com/elaspic/elaspic2

Incoraporates features generated using pre-
trained TNN and GNN, and employs GBDT 
with a ranking object function

[40]

ProAffiMuSeq https://web.iitm.ac.in/bioinfo2/
proaffimuseq

Considers the functional classes [41]

MuPIPR https://github.com/guangyu-zhou/MuPIPR An end-to-end deep learning framework 
using Bi-LSTM, RCNN and MLP without 
the need of hand-crafted features

[23]

SAAMBE-SEQ http://compbio.clemson.edu/
saambe_webserver/indexSEQ.php#started

Employs GBDT on a set of features, and 
doesn’t require the knowledge of interfacial 
residue

[42]
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