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Abstract

Computer vision (CV) is widely used in the investigation of facial expressions. Applications

range from psychological evaluation to neurology, to name just two examples. CV for identi-

fying facial expressions may suffer from several shortcomings: CV provides indirect infor-

mation about muscle activation, it is insensitive to activations that do not involve visible

deformations, such as jaw clenching. Moreover, it relies on high-resolution and unob-

structed visuals. High density surface electromyography (sEMG) recordings with soft elec-

trode array is an alternative approach which provides direct information about muscle

activation, even from freely behaving humans. In this investigation, we compare CV and

sEMG analysis of facial muscle activation. We used independent component analysis (ICA)

and multiple linear regression (MLR) to quantify the similarity and disparity between the two

approaches for posed muscle activations. The comparison reveals similarity in event detec-

tion, but discrepancies and inconsistencies in source identification. Specifically, the corre-

spondence between sEMG and action unit (AU)-based analyses, the most widely used

basis of CV muscle activation prediction, appears to vary between participants and ses-

sions. We also show a comparison between AU and sEMG data of spontaneous smiles,

highlighting the differences between the two approaches. The data presented in this paper

suggests that the use of AU-based analysis should consider its limited ability to reliably com-

pare between different sessions and individuals and highlight the advantages of high-resolu-

tion sEMG for facial expression analysis.

Introduction

Facial muscles have relatively well-defined geometry and specific actions, such as pulling the

lips upward, pressing the lips together, twitching the nose or furrowing the eyebrows [1].

Many actions rely on co-activation of two or more muscles, and some distant muscles are

innervated by the same branches. Facial movements can be voluntary (coordinated by cortical

pathways), reflexive, or automated (driven by central pattern generators located mainly in the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0262286 February 22, 2022 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gat L, Gerston A, Shikun L, Inzelberg L,

Hanein Y (2022) Similarities and disparities

between visual analysis and high-resolution

electromyography of facial expressions. PLoS ONE

17(2): e0262286. https://doi.org/10.1371/journal.

pone.0262286

Editor: Tomoyoshi Komiyama, Tokai University

School of Medicine, JAPAN

Received: October 30, 2021

Accepted: December 21, 2021

Published: February 22, 2022

Copyright: © 2022 Gat et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Data cannot be

shared publicly because of privacy. Data Access

will be provided for researchers who meet the

criteria for access to confidential data. Data

contact: Tel Aviv University Institutional Review

Board Email: ethicsbe@tauex.tau.ac.il.

Funding: This research was partially supported by

an ISF grant and support from X-trdoes Ltd.

through sponsored research agreement. There was

no additional external funding received for this

study.

https://orcid.org/0000-0001-8773-4100
https://orcid.org/0000-0002-4213-9575
https://doi.org/10.1371/journal.pone.0262286
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0262286&domain=pdf&date_stamp=2022-02-22
https://doi.org/10.1371/journal.pone.0262286
https://doi.org/10.1371/journal.pone.0262286
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:ethicsbe@tauex.tau.ac.il


brain stem), and as such they play an important role in medical diagnosis [2]. Facial muscles

take part in a multitude of critically important tasks, such as chewing, swallowing, breathing,

eye hydration and speech. Indeed, a multitude of medical conditions involve abnormal facial

expressions. In Parkinson’s disease, for example, hypomimia, the reduction or loss of sponta-

neous facial, or the “mask face” is one of the main symptoms of the disease [3–6]. Other

important examples are the Tourette syndrome [7] which is typified by abnormal facial muscle

activation patterns, hemifacial spasm (HFS), facial paresis, aberrant regeneration and synkin-

esis [8, 9]. Facial muscle control is particularly complex, as facial expressions also have an

important communicative and social role [10].

Mathematical representation of facial muscle activation is a key component in their study,

so they can be quantified and systematically compared, both between individuals and between

facial actions. To this end, several approaches were developed [11] including the FACEM [10]

and the FACS [12] approaches. Once a quantitative framework has been developed, a transi-

tion to CV-based analysis is a natural step. Indeed, owing to their ease of use, CV-based tools

have gained massive attention in mapping facial muscle activation [2, 13–15]. CV for facial

expression analysis is rapid and objective and can be implemented with minimal training.

Despite the many benefits, several pitfalls are expected in using visual data to analyze facial

expressions: First, it is expected that visual data and CV will be more reliable in identifying

activation associated with visible body or skin movement. In scenarios involving isometric

muscle activation, (muscular activation without apparent bodily movement) CV validity may

be dubious [16]. Another major challenge in analyzing muscle activation with CV is in the

identification of the movement source. CV analysis may be affected by crosstalk between dif-

ferent movements and may not be sensitive enough to distinguish, for example, between eye

movements associated with the activation of the muscle segments around the eye, versus

movements associated with pulling the cheeks upward [17]. When the lips are pulled up, they

may lift part of the upper facial region, making the false impression that the eye muscles are

active, when in fact they are not.

The difficulty in identifying facial movement source is best manifested in the study of

smiles. Smiles are widely studied in behavioral psychology research as a non-verbal social com-

municative mechanism [12, 18, 19], important for social interaction and emotional expression.

Of the many distinct smile types studied, a Duchenne smile (DS) and a non-Duchenne smile

(NDS) are two of the most studied [18–21]. DSs, as recognized from the muscle stimulation

experiments performed by Duchenne in the 19th century, involve the activation of both the

Zygomaticus Major and the Orbicularis Oculi muscles. DSs are widely considered to reflect

enjoyment and happiness, and they are commonly categorized as spontaneous, genuine smiles.

A NDS, on the other hand, is expressed by the activation of the Zygomaticus Major alone, and

is regarded as an artificial smile [20]. Several studies, however, question this paradigm, suggest-

ing that a DS and a NDS have no particular consistent meaning [17, 22]. To distinguish

between DS and NDS smiles using CV data, previous studies compared the activation intensity

around the lips and eyes during a smile. When both of them are active simultaneously, the

smile is classified as a DS. The exact cutoff appears to be subjective and varies from study to

study, possibly contributing to some of the inconsistencies in published literature [21].

Despite its apparent advantages and widespread use, the validity of CV analysis remains

unclear and only a few recent studies examined its soundness [23]. In one recent example,

low-resolution sEMG was used to conclude that the Affectiva iMotions software facial expres-

sion detection performances are comparable to that of low-resolution sEMG [23]. High den-

sity sEMG offers an alternative approach to the study of facial expressions [24, 25]. Using

blind source separation techniques, sEMG can be used to derive facial muscle activation maps
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with muscle-segment resolution [25]. Isometric activation can be readily recorded when

visual-based analyses may reveal negligible movement or none at all.

The aim of the work presented in this paper is to find whether CV-based analysis of facial

expressions and high-resolution sEMG provide similar mapping or are there any conspicuous

differences. In particular, we want to examine whether the FACS approach, as a mathematical

representation of facial muscles, is intra and inter subject stale. To this aim, we used our

unique and newly developed high-resolution facial sEMG mapping approach, which for the

first time allows such systematic comparison [25]. We compared the OpenFace software [26],

a widely-used CV tool for Facial Action Coding System (FACS), to an ICA-based sEMG analy-

sis of 16-channel facial electrode data. sEMG and AU sources were identified and compared to

identify similarities and conspicuous gaps.

Materials and methods

Data collection

sEMG and video data used in this study were collected as detailed in [25]. In summary, 13

healthy volunteers (age: 31.77 ± 7.11 years; 9 females) participated in the experiment in accor-

dance with relevant guidelines and regulations under approval from the Institutional Ethics

Committee Review Board at Tel Aviv University. Written informed consent was obtained

from all participants. Participants declared that they do not take antidepressants or stimulants

(such as Ritalin). Otherwise, they were not physically or psychologically examined. As the aim

of the study was to compare the mapping of facial expressions, the medical condition of the

participants is not likely to affect the analysis but may alter responsiveness and expressivity. All

participants exhibited significant response to the video presented to them. sEMG was recorded

using specially designed screen-printed adhesive electrode arrays comprised of 16 carbon elec-

trodes (4 mm in diameter). The electrode array was connected to an amplifier unit (Intan

Technologies amplifier evaluation board, RHD2000). A commercial ground plate electrode

(Natus Medical Incorporated; 019–409100) was used. sEMG was recorded at a rate of 3000

samples/s. The electrode array was located on the right side of the the participant’s face. Elec-

trodes 0–2 were located near the upper part of the jaw, 3–8 covered the cheek region, 9–11

surrounded the eye and 12–15 were located above the eyebrow. Participants were laterally pho-

tographed during neutral facial expression for later analysis.

The experimental procedure consisted of four steps: a calibration step of voluntary expres-

sions, a session of spontaneous smiles, an imitation step of different smile types and an addi-

tional repetition of the calibration session. Before initiating the preliminary calibration step,

the experimenter showed the participants a sample of photographs and text of six expressions:

big smile, wrinkle the nose, close the eyes, contract the eyebrows, press the lips and small

smile, to assure that the participants understood the upcoming task. During the calibration

sessions, each of the expressions above was presented on the screen for 3 s followed by a 3 s

gap of neutral expression. Each facial expression was presented 3 times consecutively (total of

6 repetitions, 3 in each calibration session). These specific expressions were chosen as they are

known to activate a large number of muscles. The spontaneous step was comprised of thirty-

three short (5–39 s) videos that were presented to the participant, separated by 7 s of a blank

slide. The participants were instructed to watch the videos and react spontaneously, and to

perform specific facial movements when written descriptive commands were shown on the

screen. This step involved three video types: 16 funny episodes, 12 individuals smiling to the

camera and 5 written instructions to smile. The imitation step included 12 videos of individu-

als smiling spontaneously or on command. The participants were instructed to imitate the

facial expressions in the videos.
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Data analysis

Data analysis flow is depicted in Fig 1.

sEMG data analysis. Pre-processing. Raw sEMG data was filtered using a 50 Hz comb fil-

ter to reduce the power line interference. A 20—400Hz 4th-order Butterworth bandpass filter

(BPF) was applied to attenuate non-sEMG signal components.

Independent components analysis. Independent Component Analysis (ICA), a widely used

blind source separation technique, is a computational method for separating a multivariate sig-

nal into additive independent non-Gaussian sources or components. ICA transforms the obse-

rved data x = [x1, � � �, xn]T into a vector of maximally independent components s = [s1, � � �, sn]T

using a linear transformation W, such that s = Wx. In the case of sEMG, recorded signals

from each electrode are composed of a superposition of electrical activity picked up by the

electrodes from different facial muscles, external noise and mechanical and physiological arti-

facts. When applied to multi-channel EMG recordings, ICA has been shown to vastly improve

differentiation between muscles while minimizing or entirely removing crosstalk [27]. In this

analysis, the 16 recorded channels of sEMG are the observed vector x, while the output vector s
is a 16-column data set, where each column represents a unique source. The sources can be

either sEMG signals, noise or possibly other bio-potential signals, such as those produced by

eye movements. In this investigation, we applied the fast ICA (fastICA, using the fastica
function from MATLAB FastICA library) algorithm [27] to the full-length 16-channel sEMG

recordings separately for each session to yield its originating signal sources or independent

components (ICs). Power spectral density (PSD) was then calculated for each IC. Sources

resulting from fastICA were considered to represent sEMG if they met all of the following cri-

teria: (1) PSD was within the typical sEMG frequency range of 25–300 Hz; (2) No harmonies

(periodically repeating peaks) were present; (3) PSD did not contain a strong 1/f component.

Fig 1. Data analysis flow chart. sEMG and video data were collected simultaneously. Video data was analysed using

the OpenFace software to yield AUs. sEMG data were first filtered, separated to independent components using the

fastICA algorithm, manually classified as sEMG or noise, manually associated to a specific FBB, converted to RMS and

finally aligned to the AU data.

https://doi.org/10.1371/journal.pone.0262286.g001
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ICA mapping and association with Facial Building Blocks (FBBs). ICA mapping builds on

our previously published approach in which we used data from 13 participants to identify 16

consistent muscle and muscle-segment sources [25]. Briefly: ICs were first derived from cali-

bration data consisting of six repetitions of instructed facial expressions (big smile, wrinkling

the nose, closing the eyes, contracting the eyebrows, pressing the lips and a small smile). Each

calibration set of each participant was first pre-processed and then FastICA was applied to

each expression. Next, the electrode locations were used to interpolate the values of the inverse

weights matrix, W−1 on the image surface to construct heat-maps. These projections reveal the

physical location and shape of each IC. By grouping together ICs derived from different facial

activations by the same participant and by different participants, it is possible to extract consis-

tent facial building blocks (FBBs), which we can associate to specific muscle and muscle-seg-

ment sources based on their anatomical position. 16 FBBs identified by the ICA, based on data

from 13 individuals, are shown in Fig 2, and are numbered in roman numerals from I to XVI.

Red and blue denotes maximal and minimal muscle activation, respectively [25].

In this investigation, each of the IC heat maps of each session of each individual was manu-

ally classified into one of the 16 FBBs, shown in Fig 2 according to similarity in shape, size and

location. ICA heat maps were derived from entire recording sessions (consisting of many

Fig 2. Facial building blocks. Most prominent FBBs (black contours) sketched manually on typical heat-maps,

projected on lateral photographs of the participants. Red indicates highest muscle activation and blue denotes the

lowest.

https://doi.org/10.1371/journal.pone.0262286.g002
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expressions). The ICA outputs were renumbered according to the numbering of the relevant

FBB source. Better automation can be achieved by, for example, implementing automated clas-

sification approaches [28–30].

Video analysis. Video analysis was performed using the OpenFace software, a commonly

used tool for facial analysis [26]. This toolkit provides facial landmark detection, head pose

estimation, facial AUs recognition and eye gaze estimation [26]. We focused on the AU inten-

sity detection provided by an OpenFace built-in algorithm for automatic coding of facial

expressions. The algorithm is an adapted AU recognition framework based on support vector

machines [26]. All 17 AUs derived from the algorithm (AU1—Inner Brow Raiser, 2—Outer

Brow Raiser, 4—Brow Lowerer, 5—Upper Lid Raiser, 6—Cheek Raiser, 7—Lid Tightener, 9—

Nose Wrinkler, 10—Upper Lip Raiser, 12—Lip Corner Puller, 14—Dimpler, 15—Lip Corner

Depressor, 17—Chin Raiser, 20—Lip Stretched, 23—Lip Tightener, 25—Lips part, 26—Jaw

Drop, 45—Blink) were used.

EMG and video analysis comparison. Data synchronization for video analysis. sEMG and

video recording were synchronized using a LabVIEW-based interface. For mathematical com-

parison between video analysis and sEMG, the sEMG data were down-sampled from 3000 to

30 samples/s to match the video recording sampling rate. In addition, an RMS envelope was

applied to the sEMG signals using a moving window of 800 samples.

Multiple linear regression. Multiple linear regression (MLR) was used to quantify the simi-

larity between the AU and the ICA data. MLR is a statistical method that aims to predict a

response variable using multiple explanatory variables. MLR is an extension of ordinary least-

squares (OLS) regression, and its goal is to model the linear relationship between the explana-

tory (independent) variables and response (dependent) variable. Given a data set (yi, xi1, � � �, xi
p](i = 1)n) of (n) observations, MLR assumes that the relationship between the response vari-

able (y) and the p-vector of explanatory predictors (x) is linear with a consideration of the

error variable (�), reflecting random noise. The model takes the following form: (yi = β0 + β1

xi1 + β2 xi2 + � � � + βp xi p + �), such that (i = 1, � � �, n), where (yi) is the dependent variable, (xi)
is the explanatory variables, (β0) is y-intercept (constant), (βp) is the slope coefficients for each

explanatory variable and (�) is the error. MATLAB built-in function regress was used to

apply the model separately on AU and ICA data sets and calculate the slope coefficients for

each. Statistical parameters were also calculated to evaluate the model performance: (R2)

(determination coefficient), F-statistic, p-value of the F-statistic and error variance.

MLR was used to reconstruct AU signals from the ICA data. For each analyzed session, the

six most relevant AUs were chosen as the model dependent variables, and all ICs were used as

explanatory variables. MLR was also used to reconstruct specific IC from AUs. Here, one IC of

each participant was used as the dependent variable, and all AU signals were used as the

explanatory variables. In both cases, coefficient values, which were derived from the MLR anal-

ysis, were used to present the signal reconstruction. Every reconstructed signal is presented as

a superposition of the explanatory variables weighted using the coefficient values.

Results

We begin by comparing sEMG to CV data of one participant (participant MD8040) during six

consecutive instructed expressions of the calibration step: big smile, wrinkling the nose, clos-

ing the eyes, contracting the eyebrows, pressing the lips and a small smile (Fig 3, see also S1

and S2 Figs).

Fig 3 shows IC plots numbered according to their corresponding FBBs presented in Fig 2

(a) and the AUs plots (b). AUs with an amplitude higher than 5 percent of the full scale (0–5)

during at least 1 s are presented. Channels corresponding to the upper and lower parts of the
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face (for both panels (a) and (b)) are plotted at the top and bottom, respectively, with upper

face channels plotted in grey and lower face channels in black. It is readily apparent that AUs

and ICs share similar features. Foremost, they both successfully identify all six activation

events (evidenced by a strong correspondence with the triggers). Second, both are generally

sensitive to the origin of activation (upper versus lower parts of the face). For example, closing

the eyes is captured in both IC and AU data primarily at the upper channels, while the activa-

tions corresponding to smiling (big) are contained in the lower channels.

In addition, several marked differences are also apparent and the first concerns localization.

For example, during smiling (’small smile’), no activation is observed in the IC channels corre-

sponding to activation of the upper part of the face. Besides, in the AU data, marked activity is

observed in both upper and lower parts of the face. A similar effect is seen in the ‘wrinkling the

nose’ activation. A second discrepancy concerns signal amplitude (muscle activation intensity)

sensitivity. ICs amplitudes appear to differ from that reported by the AUs. For example, the

three repetitions of ‘closing the eyes’ have different shapes (onset, offset and maximal power)

in the IC data, while in the corresponding AU data, these three repetitions have almost the

same amplitude. These differences between IC and AU data suggest a fundamental discrep-

ancy between the two systems, while also raising the question whether or not these

Fig 3. ICs and AUs data during a calibration step of participant MD8040. (a) ICs numbered according to the FBBs

analysis depicted at Fig 1. (b) Typical AUs derived from video data recorded simultaneously with the sEMG

recordings. Grey signals indicate muscle activation at the upper part of the face, while black, at the lower part.

https://doi.org/10.1371/journal.pone.0262286.g003

PLOS ONE Similarities and disparities in the analysis of facial expressions

PLOS ONE | https://doi.org/10.1371/journal.pone.0262286 February 22, 2022 7 / 14

https://doi.org/10.1371/journal.pone.0262286.g003
https://doi.org/10.1371/journal.pone.0262286


discrepancies vary between individuals or activations. To examine whether such variability

exists, we used MLR to calculate the inter-relatedness between the ICA and AU systems.

Comparison between different individuals and sessions

We first applied MLR on data from 13 different individuals that performed the calibration

step, as in Fig 3, to estimate the relationship between the AUs (treated as independent vari-

ables) and a specific IC (the dependent variable). Seventeen AU signals derived from the

OpenFace software were used in the model. The analysis was applied to two ICs, IC-II and

IC-IX, which correspond to two well separated segments of the Orbicularis Oculi muscle

(lower section and lower-lateral section, respectively). These segments have very robust and

well identified signatures and can be readily recognized across most participants.

Fig 4a shows two reconstructed examples calculated from data of two participants. High

correlation of 0.78 and 0.79 was obtained. To quantify the quality of the reconstruction and to

examine its stability across different participants, we present in Fig 4b the weights and regres-

sion metrics for IC-IX and IC-II (top and bottom, respectively). As evidenced by relatively

high weights (colored white in Fig 5 tables), both IC-II and IC-IX were reconstructed primarily

from AU6 (’cheek raiser’). Nonetheless, inconsistencies are common, even for two repetitions

of the same session of the same participant (SC8039). For example, in three separate sessions,

AU9—nose wrinkler, AU14—dimpler and AU20—lip stretcher have significant weights.

Fig 4. ICs data reconstruction from AUs data using multiple linear regression. (a) Top: Moving IC-IX RMS signal

of participant MD8040 (black) and its reconstruction signal (grey) using MLR, where the AUs are the explanatory

variables (P value (<<) 0.001, F test = 815, (R2) = 0.78, Error Variation = 0.005). Bottom: moving IC-II RMS signal of

participant SC8039 and its reconstruction signal (P value (<<) 0.001, F test = 842, (R2) = 0.79, Error

Variation = 0.006) (b) MLR’s weights of different participants for the reconstruction of IC-IX (top) and IC-II (bottom),

color-coded in grey level: white indicates the most influential weight for a specific IC, while black indicates the lesser

weight (P value (<<) 0.001, F test (>) 200, average of (R2) = 0.72, Error Variation (<) 0.016 for all MLR

reconstructions).

https://doi.org/10.1371/journal.pone.0262286.g004
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These results suggest that for some participants, for some muscle activations, AU analysis

results are inconsistent with ICA analysis, implying that AU analysis is participant specific.

Intra-subject analysis

To further explore the inconsistencies described above, we reconstructed the AU data from

four different sessions of the same participant (MD8040; two calibration, an imitation and a

spontaneous smile sets). For each session, six of the most relevant AUs were chosen (AU4 96

brow lowerer, AU6 96 cheek raiser, AU12 96 lip corner puller, AU25 96 lips parter, AU23 96

lip tightener, AU9 96 nose wrinkler) and were reconstructed using the ICs found from the

same session IC analysis.

Fig 5a presents the AU signals and their reconstruction from the ICs for one calibration ses-

sion (corresponding to the session presented in Fig 2). Fig 5b shows the weight matrix for each

session. Some similarities across sessions are apparent: AU23 consists mainly of IC-VI in three

of the four sessions, AU4 consists mainly of IC-III in the two calibration sessions, and both

smiling sessions (imitation and spontaneous) share that the reconstruction of AU6, AU12 and

AU25 are derived principally from IC-XV. However, most of the weights vary, even in two

similar data sets (calibration) recorded from the same participant, indicating that the superpo-

sition is not consistent across facial activations.

Fig 5. AUs data reconstruction from ICs data using multiple linear regression. (a) AUs data and the corresponding

multiple linear regression reconstruction, where the ICs are the explanatory variables for a single participant during a

calibration step. (b) Calculated reconstructions weights (see Methods section) for four different sessions (namely:

Calibration—repetition 1 (2 min), Calibration—repetition 2 (2 min), Imitation (5 min) and Spontaneous smile (16

min) for participant MD8040), color-coded in grey level: white indicates the most influential weight for a specific AU,

while black indicates the lesser weight.(P value (<<) 0.001, F test (>) 117, average of (R2) = 0.56, average of Error

Variation = 0.13 for all MLR reconstructions).

https://doi.org/10.1371/journal.pone.0262286.g005
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Genuine versus fake smiles in video and high resolution sEMG data

The results presented above indeed suggest that AU analysis is disturbed by crosstalk. This

issue may affect any facial activation analysis. We chose to illustrate this point with the analysis

of smiles. One of the most debated issues regarding facial expressions concerns fake and real

smiles. In particular, how and if these two smile types can be distinguished. As already demon-

strated in the example shown in Fig 3, big and small smiles have a different sEMG signature.

Their AU profiles, on the other hand, are similar, and can be distinguished from the lip parting

component (AU25) and lip raiser (AU10). The small smile has a clear AU6 signal associated

with the eyes.

Fig 6 (see also S3 Fig) shows segmented spontaneous smiles during the spontaneous smiles

session of participant NS8034. Smiles were segmented manually, according to instruction tim-

ing and SNR higher than 1.25. Each smile was confirmed with the video data. Smiles are

ordered from biggest (top) to smallest (bottom) activation of IC-XIII (Zygomaticus muscle),

according to the RMS of the signal segment. Also shown on the right are the AU6 and AU12

data of the same smiles. AU6 and AU12 appear the same with a slightly higher amplitude of

AU12. In contrast, ICA data indicates variability: Some smiles are with stronger activation of

the Zygomaticus muscle (FBBs I), and others with higher amplitude of the Orbicularis Oculi
muscle (FBBs VIII and II).

Discussion

Several approaches were developed to give facial expressions mathematical representation.

The facial action coding system (FACS) is by far the most known and widely used. FACS

describes observed facial movements and is widely used in psychological and neurological

research [12]. Each AU represents contraction or relaxation of one muscle or a group of mus-

cles, creating a specific facial movement. Identification of AU activation is based on visible

Fig 6. ICs and AUs data during spontaneous smiles. ICs corresponding to six specific FBBs (FBB-I, IV, VI, VIII, II

and X; left) and two AUs (AU12 and AU6; right) data of eight spontaneous smiles ordered from highest (top) to lowest

(bottom) amplitude (sorted according to IC-I) for participant NS8034. ICs corresponding to the upper and lower parts

of the face are plotted in grey and black, respectively.

https://doi.org/10.1371/journal.pone.0262286.g006
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movements of specific locations in the face and can be detected manually by human coders or

by automatic CV algorithms.

Benefiting from high computing power, and more efficient algorithms, CV have improved

dramatically in recent decades, overcoming many challenges such as sensitivity to movements

and large data sets. Despite these developments, CV for facial muscle activation suffers from

several fundamental shortcomings: Foremost, it does not provide direct information on mus-

cle activation; rather, it reports on indirect physical deformations. As a consequence, it may be

sensitive to crosstalk and insensitive to activations that do not involve visible deformations.

Second, the use of CV in facial expressions analysis necessitates direct visual contact and high

resolution, in particular for subtle and short expressions or when head movements occur.

Using a new analysis approach which builds on soft multi-electrode arrays and fastICA

analysis, we were able to achieve objective mapping of facial expressions and explore the corre-

spondence between sEMG and AU analysis across participants and sessions. In this investiga-

tion, we presented data analysis suggesting fundamental differences between high resolution

sEMG mapping of facial muscle activation and CV-based facial expression estimation. Fore-

most, sEMG has muscle specificity and differentiation between different muscle segments. The

data shown here suggests that sEMG mapping of facial muscle activation offers greater spatial

resolution and is more sensitive to small changes in activation compared to AU-based analy-

ses. AUs, on the other hand, measure facial movements that may comprise a superposition of

multiple simultaneous muscle activations. Challengingly, these discrepancies may contribute

to variability between participants and experiments, as we demonstrated above.

This point is especially important regarding DS and NDS classification. The standard pro-

cedure used to differentiate between these two smile types is to compare the activation power

between the Zygomaticus and the Orbicularis Oculi muscles during smiling. According to this

method, NDS is recognized when the Zygomaticus is active and the Orbicularis Oculi is not.

Our results support the notion that the AU amplitude of the Orbicularis Oculi activation origi-

nates from the Zygomaticus muscle. In which case, NDS will be faithfully identified only in

small smiles, where the Zygomaticus activation is low enough so there is little crosstalk to be

seen around the Orbicularis Oculi muscle.

The duration of the data collected from each participant and number of participants in our

study is limited. Although the comparison in and between participants reveals clear differ-

ences, owing to the limited sample size, we are unable to quantify the statistics of these differ-

ences. In fact, differences between individuals may be affected by many factors, such as

gender, age and ethnicity. Concerning the huge body of knowledge related to the link between

these and other factors and facial expressions, much more extensive mapping will be of great

value and remains beyond the scope of the current investigation. Our goal here was to high-

light methodological gaps which are both expected and clearly evident in the data. Moreover,

our findings support previous studies which have raised similar concerns. Unlike previous

reports, here we provide a physiological framework to better understand the concerns about

FACS as a mathematical representation of facial expressions.

Conclusion

AU analysis and high resolution sEMG are two alternative approaches to analyze facial expres-

sions. The analysis we presented in this paper suggests that the AU-based approach has an

inherently limited ability to reliably compare between different sessions and individuals. Res-

ervations about the validity of CV in studying facial expressions are recognized both among

computer vision specialists [31] and among investigators studying facial expressions from psy-

chological and neurological perspectives [17, 32]. Accordingly, better algorithms and data sets
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continue to be developed [33]. Contemporary efforts in CV focus on identifying optimal fea-

ture representations and classifiers. Availability of extensive data sets [33] and machine learn-

ing algorithms contributed to improved reliability 6222016. Yet, several challenges remain,

including the classification of the data sets themselves. It is also evident that generalization is a

major challenge and there is a need for personalized facial action unit detection [34]. Despite

the many concerns regarding the validity of the action unit approach, it is still widely used. In

affect, research and better evidence is needed to greater highlight the shortcomings of visual

analysis of facial expressions. Owing to these gaps and challenges, the significance of our

results is in three domains. First, our study helps in unraveling the physiological origin for the

discrepancy between CV and muscle activation. Second, for practitioners of facial action unit

methods in facial expression research, we present an alternative approach, which can be readily

applied for research purposes. Third, our results show that intra-subject, as well as inter-sub-

ject, are affecting CV analysis and should be considered. The discrepancies between computer

vision and sEMG analysis we highlighted in our investigations are not surprising, as differ-

ences in facial features are known to impact video based facial activation mapping. The main

strength of our approach is in its ability to establish an entirely objective classification of facial

activation, which may be used to construct sEMG validated facial data sets in order to allow

more reliable classifications which are needed in the training of new algorithms.

Supporting information

S1 Fig. ICA and CV data. (Top traces) ICA-derived signal sources containing sEMG. Associ-

ating each trace with a specific source (see Fig 1) was performed manually. (Bottom traces) AU

data derived from video data recorded simultaneously with the sEMG recordings.

(TIF)

S2 Fig. ICA and CV data. (Top traces) ICA-derived signal sources containing EMG. Associat-

ing each trace with a specific source (see Fig 1) was performed manually. (Bottom traces) AU

data derived from video data recorded simultaneously with the sEMG recordings.

(TIF)

S3 Fig. ICA and AU data during spontaneous smiles. ICA and AU data of eight spontaneous

smiles ordered from highest (top) to lowest (bottom) amplitude (sorted according to IC-I).

(TIF)
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