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Aim. To establish a classification tree model in DR screening and to compare the DR screening accuracy between the classification
tree model and the logistic regression model in type 2 diabetes mellitus (T2DM) patients based on OCTA variables.Methods. Two
hundred forty-one eyes of 241 T2DM patients were included and divided into two groups: the development cohort and the
validation cohort. Optical coherence tomography angiography (OCTA) images were acquired in these patients. -e data of foveal
avascular zone area, superficial capillary plexus (SCP) density, and deep capillary plexus (DCP) density were exported after
automatically analyzing themacular 6× 6mmOCTA images, while the data of radial peripapillary capillary plexus (RPCP) density
was exported after automatically analyzing the optic nerve head 4.5× 4.5mmOCTA images. -ese OCTA variables were adopted
to establish and validate the logistic regression model and the classification tree model. -e area under the curve (AUC),
sensitivity, specificity, and statistical power for receiver operating characteristic curves of two models were calculated. Results. In
the logistic regression model, best-corrected visual acuity (BCVA) (LogMAR) and SCP density were entered (BVCA :OR� 60.30,
95% CI� [2.40, 1513.82], p � 0.013; SCP density: OR� 0.86, 95% CI� [0.78, 0.96], p � 0.006). -e AUC, sensitivity, and specificity
for detecting early-stage DR (mild to moderate NPDR) in the development cohort were 0.75 (95% CI: [0.66, 0.85]), 63%, and 83%,
respectively. -e AUC, sensitivity, and specificity in the validation cohort were 0.75 (95% CI: [0.66, 0.84]), 79%, and 72%,
respectively. In the classification tree model, BVCA (LogMAR), DM duration, SCP density, and DCP density were entered. -e
AUC, sensitivity, and specificity for detecting early-stage DR were 0.72 (95% CI: [0.60, 0.84]), 66%, and 76%, respectively. -e
AUC, sensitivity, and specificity in the validation cohort were 0.74 (95% CI: [0.65, 0.83]), 74%, and 72%, respectively. -e
statistical power of the development and validation cohorts in two models was all more than 99%. Conclusions. Compared to the
logistic regression model, the classification tree model has similar accuracy in predicting early-stage DR. -e classification tree
model with OCTA variables may be a simple tool for clinical practitioners to identify early-stage DR in T2DM patients. Moreover,
SCP density is significantly reduced in mild-to-moderate NPDR eyes and might be a biomarker in early-stage DR detection.
Further improvement and validation of the DR diagnostic model are awaiting to be performed.

1. Introduction

Diabetic retinopathy (DR) is a serious ocular complication
of diabetes mellitus (DM) that may cause irreversible
blindness among the working population worldwide [1,2].
Nearly 200 million people around the world are expected to
be affected by 2030 [3]. Diabetic macular edema (DME),
retinal neovascularization, and tractional retinal detachment

are common and severe complications of DR. Antivascular
endothelial growth factor (anti-VEGF) and dexamethasone
implants treatment are useful treatments for DME [4,5].
Besides, anti-VEGF has proved to be effective in retinal
neovascularization [1]. As for tractional retinal detachment,
pars plana vitrectomy should be adopted. However, the
prognosis of these severe complications of DR is relatively
poor. Early diagnosis and treatment of DRmay contribute to
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a better visual prognosis; thus, DR screening in DM patients
is crucial and necessary [6]. Manual fundus examination and
fundus photography are traditional and useful methods to
detect DR, but they are not quantitative and can only be
determined by ophthalmologists [7]. Although many arti-
ficial intelligence (AI) products have been developed based
on fundus photography, their practical uses are limited
because of their relatively narrow application, complicated
manipulations, and expense [8,9]. Recently, optical coher-
ence tomography angiography (OCTA), a noninvasive
cross-sectional imaging device, has been introduced in
retinopathy diagnosis. -e quantitative data of retinal mi-
crovasculature in different layers are obtained through one
shot only without pupil dilation and are automatically an-
alyzed and output [10]. OCTA provides an opportunity to
develop prediction models to detect DR because of its ob-
jective and quantitative nature. In our previous studies and
other researchers’ studies [4,11–13], the vessel densities
decreased more significantly as the severity degree became
higher, which meant the vessel density alterations between
nondiabetic retinopathy (NDR) and early-stage DR (mild
and moderate non-proliferative diabetic retinopathy
(NPDR)) are less obvious than those between NDR and
severe NPDR or proliferative diabetic retinopathy (PDR).
-erefore, it may be easier for a model to recognize the
severity when referred to NDR and PDR eyes, while it may
be more difficult for a model to recognize the severity when
referred to NDR and early-stage DR eyes. -e establishment
of the latter model is crucial for the early diagnosis of DR.
Clinical practitioners will be able to participate in disease
early intervention and management.

Besides, most studies established prediction models
using regression analyses. When assessing external data,
regression analyses usually involve data input and machine
calculation, which is not convenient for face-to-face clinical
decisions. Recently, the classification tree model has been
widely applied in clinical practice, and it helps to signifi-
cantly improve the quality and efficiency of clinical decisions
[14,15]. A classification tree is a nonlinear discrimination
method that can split a sample into small subgroups using
independent variables. -is procedure chooses the most
crucial variables according to specific classification rules.
Clinical practitioners move through the tree by answering
the questions at the branches according to patients’ data and
obtaining risk grades until a terminal node is present [16].

-erefore, the purpose of this study was to establish a
classification tree model in DR screening and to compare the
DR screening accuracy of two models, the classification tree
model and the logistic regression model, in type 2 diabetes
mellitus (T2DM) patients based on OCTA variables.

2. Methods

2.1. Subjects. -is cross-sectional study was approved by the
ethics committee of Sun Yat-sen Memorial Hospital, Sun
Yat-sen University (SYSEC-KY-KS-2021-263) and was
conducted according to the tenets of the Declaration of
Helsinki. -e medical records of 241 T2DM patients from
the endocrinology and ophthalmology departments from

January 2021 to June 2021 were selected and reviewed.
General characteristics included age, sex, hemoglobin Alc
(HbAlc) level, DM duration, and the presence of hyper-
tension. All the patients had complete ocular examinations,
including best-corrected visual acuity (BCVA), intraocular
pressure (IOP) (noncontact tonometry, TX-20, Canon Inc.,
Tokyo, Japan), axial length (AL) (IOLMaster, Carl Zeiss
Meditec, Inc., Dublin, USA), Early Treatment Diabetic
Retinopathy Study 7 standard color fundus photographs
(7F-ETDRS) (Canon, Inc., Tokyo, Japan), OCTA (Optovue,
Inc., Fremont, CA, USA), and FFA (when necessary)
(Microclear, Inc., Suzhou, China). OCTA images were ac-
quired using AngioVue 2.0, and images with a scan quality of
less than 6 were excluded. A 6× 6mm area centered on the
fovea and a 4.5× 4.5mm area centered on the optic disc were
captured (Figure 1). -e data of FAZ area, SCP density, and
DCP density were exported after automatically analyzing the
macular 6× 6mm OCTA images, while the data of RPCP
density was also exported after automatically analyzing the
ONH 4.5× 4.5mm OCTA images.

-e inclusion criteria were as follows: (1) a diagnosis of
T2DM with NDR or mild to moderate NPDR; (2) age not
less than 40 years; and (3) complete demographic data and
ophthalmic examinations. -e exclusion criteria were as
follows: (1) AL longer than 26mm; (2) intraocular pressure
higher than 21mmHg; (3) diabetic edema: central foveal
thickness <300 μm; (4) optic neuropathy, glaucoma, uveitis,
and other retinal diseases; (5) refractive media opacity af-
fecting imaging; and (6) a history of intraocular surgery. -e
DR stage was graded by two senior ophthalmologists based
on the 2017 American Diabetes Association (ADA) criteria
[17]. A random eye was chosen when the severity was
similar, and the more serious eye was chosen when the
severity differed in bilateral eyes. Two hundred forty-one
eyes of these patients were included and divided into NDR
and NPDR.

2.2. Statistical Analysis and Model Establishment. Two dif-
ferent methods were applied to establish and evaluate the
models.

In the first model, the whole cohort was randomly di-
vided into two groups. In cohort 1 (121 eyes), the variables
between the two groups were analyzed using commercially
available statistical software SPSS 24.0 (SPSS Inc., Chicago,
USA). Student’s t-tests were adopted in numerical variables,
while chi-squared tests were performed in categorical var-
iables. Statistical significance was set at p< 0.05. Afterward, a
collinearity test was performed among the variables with
significant differences. Statistically significant variables
without collinearity were included in a binary logistic re-
gression model. A backward method was adopted. Cohort 2
(120 eyes) was used to validate the model.

In another model, a classification tree method was
adopted. In our study, variables with significant differences
in cohort 1 were chosen, and cohort 1 was included in this
classification tree model. -e “rpart” package of R software
(http://www.r-project.org) was used to establish this model.
Cohort 1 was randomly divided into training sets (81 eyes)
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and test sets (40 eyes) several times, and a proper model was
chosen based on clinical and statistical standards. -e
classification and regression tree algorithmwas adopted, and
the Gini indexes were clues to arrange the order of specific
variables and to set cutoff values of each node. Cohort 2 was
also used to validate the model.

Afterwards, receiver operating characteristic (ROC)
curves for the development and validation of these two
models were generated, and the AUC, sensitivity, and
specificity of the ROC curve were presented. Power analyses
were performed in these ROC curves using the power and
sample size software PASS 15.0 (NCSS, LLC. Kaysville, Utah,
USA). -e flowchart of development and validation in two
models is shown in Figure 2.

3. Results

-e general and ocular characteristics of diabetic patients in
two cohorts are shown in Table 1. In the development cohort
(cohort 1), DM duration and BVCA (LogMAR) were sig-
nificantly lower in patients with NDR compared with those
with NPDR, whereas SCP, DCP, and RPCP density were
significantly higher in patients with NDR. -ere was no
significant difference in the remaining variables. No col-
linearity was found among DM duration, BVCA (LogMAR),
SCP, DCP, and RPCP density. -erefore, these 5 variables
were included in the binary logistic regressionmodel and the
classification tree model. In the former model, BVCA
(LogMAR) and SCP density were entered (BVCA :OR�

60.30, 95% CI� [2.40, 1513.82], p � 0.013; SCP density: OR�

0.86, 95% CI� [0.78, 0.96], p � 0.006). Details are shown in
Table 2. -e AUC, sensitivity, and specificity for detecting
early-stage DR (mild to moderate NPDR) in the develop-
ment cohort were 0.75 (95% CI: [0.66, 0.85]), 63%, and 83%,
respectively. Besides, the AUC, sensitivity, and specificity in
the validation cohort were 0.75 (95% CI: [0.66, 0.84]), 79%,
and 72%, respectively. In the latter model, BVCA (Log-
MAR), DM duration, SCP density, and DCP density were
entered, and the classification tree is shown in Figure 3. -e
AUC, sensitivity, and specificity for detecting early-stage DR
were 0.72 (95% CI: [0.60, 0.84]), 66%, and 76%, respectively.
Besides, the AUC, sensitivity, and specificity in the valida-
tion cohort were 0.74 (95% CI [0.65, 0.83]), 74%, and 72%,
respectively. -e ROC curves for these two models are
shown in Figure 4. Detailed validation outcomes and pre-
dictors in two models are shown in Table 3.

With regard to the power analyses, in the development
cohort, a sample of 71 from the NPDR and 50 from the NDR
group achieves 99.44%/99.96% power to detect a difference
of 0.22/0.25 between the AUC under the null hypothesis of
0.50 and an AUC under the alternative hypothesis of 0.72/
0.75 using a two-sided z-test at a significance level of 0.05,
respectively, in the binary logistic regression model and the
classification tree model. Similarly, in the validation cohort,
a sample of 70 from the NPDR and 50 from the NDR group
achieves 99.89%/99.96% power to detect a difference of 0.24/
0.25 between the AUC under the null hypothesis of 0.50 and
an AUC under the alternative hypothesis of 0.74/0.75 using a
two-sided z-test at a significance level of 0.05, respectively, in
the binary logistic regression model and the classification

(a) (b) (c) (d)

(e) (f ) (g)

Figure 1: Optical coherence tomography angiography (OCTA) assessments. (a) Color fundus photographs, (b) macular 6× 6mm OCTA
image in the superficial vascular plexus (inner plexiform layer (ILM) - inner plexiform layer (IPL): area between the red and green lines in
(E)), (c) macular 6× 6mm OCTA image in the deep vascular plexus (IPL - outer plexiform layer (OPL): area between the green and blue
lines in (e)), (d) foveal avascular zone: white arrowhead, (e) a horizontal OCT B-scan of the retina, (f ) optic nerve head (ONH) 4.5× 4.5mm
OCTA image: area between the red and green lines in (g), and (g) a horizontal OCT B-scan of the ONH.
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tree model. All the data are continuous responses. -e AUC
is computed between false positive rates of 0.00 and 1.00.-e
ratio of the standard deviation of the responses in the NDR
group to the standard deviation of the responses in the
NPDR group is 1.00.-e power analysis results are shown in
Figure 5.

4. Discussion

In previous studies on DR screening [18–20], demographical
information, disease information, and biochemical indica-
tors were major variables in DR prediction models. In our
study, DM duration was included in the classification tree

Table 1: General and ocular characteristics of diabetic patients in two cohorts.

Cohort 1 Cohort 2
NDR NPDR P value NDR NPDR P value

Eyes (n) 71 50 NA 70 50 NA
Age (years) 56.39± 11.01 57.00± 8.83 0.749 56.83± 10.62 57.61± 9.12 0.676
Sex (male: female) 43 : 28 31 :19 0.873 41 : 29 26 : 24 0.475
HbAlc (%) 8.63± 2.17 8.83± 2.45 0.640 8.59± 2.09 9.22± 2.56 0.159
DM duration (years) 7.27± 6.77 11.46± 7.58 0.003∗ 7.64± 6.92 11.50± 6.94 0.006∗
Presence of hypertension (n, %) 6, 8.45% 5, 10.00% 1.000 4, 5.71% 5, 10.00% 0.598
Severity (mild: moderate) NA 20 : 30 NA NA 24 : 26 NA
IOP (mmHg) 15.51± 2.52 15.38± 3.69 0.822 15.48± 2.72 15.17± 3.63 0.600
BVCA (LogMAR) -0.0079± 0.11 0.10± 0.21 <0.001∗ 0.0020± 0.10 0.072± 0.19 0.01∗
FAZ area (mm2) 0.33± 0.12 0.37± 0.24 0.153 0.37± 0.26 0.41± 0.27 0.443
SCP density (%) 46.79± 3.83 43.71± 4.72 <0.001∗ 46.51± 4.22 43.80± 4.32 0.001∗
DCP density (%) 46.18± 6.12 43.09± 6.32 0.008∗ 45.52± 4.87 42.17± 6.18 0.001∗
RPCP density (%) 48.02± 3.13 46.43± 3.04 0.007∗ 47.49± 4.00 46.27± 3.04 0.078
NDR, nondiabetic retinopathy; NPDR, nonproliferative diabetic retinopathy; NA, not available; DM, diabetes mellitus; IOP, intraocular pressure; BCVA, best
corrected visual acuity; FAZ, foveal avascular zone; SCP, superficial capillary plexus; DCP, deep capillary plexus; RPCP, radial peripapillary capillary plexus.
∗P <0.05.

Table 2: Regression coefficients in the binary logistic regression model.

B SE Wald P value OR
95% CI for OR

Lower Upper
BVCA (LogMAR) 4.10 1.64 6.21 0.013∗ 60.30 2.40 1513.82
SCP density −0.15 0.053 7.71 0.006∗ 0.86 0.78 0.96
Constant 6.06 2.40 6.37 0.012∗ 428.50
B, regression coefficient; SE, standard error; OR, odds ratio; CI, confidence interval; BCVA, best-corrected visual acuity; SCP, superficial capillary plexus;
∗P <0.05.

T2DM patients with NDR or mild to moderate NPDR

Variables with 
significant differencesModel 

development

Cohort 1 (121 eyes)

Randomization

t-test and collinearity test 

Model 1 Model 2

Model validation

Binary logistic 
regression

Train set (81 eyes)
Test set (40 eyes)

Cohort 2 (120 eyes)

Figure 2: Flowchart of the development and validation in two models. T2DM, type 2 diabetes mellitus; NDR, nondiabetic retinopathy;
NPDR, nonproliferative diabetic retinopathy; Model 1, binary logistic regression model; Model 2, classification tree model.
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DM duration<5.5
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SCP density<43.91 NPDR: 5.63%
NDR: 0%
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NPDR: 1.25%
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NDR: 5.63%
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Risk
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no yes

NPDR:1.25%
NDR:14.38%

NPDR: 3.75%
NDR: 13.75%

no yes

NPDR: 3.75%
NDR: 1.88%

Figure 3: Classification tree for detecting non-proliferative diabetic retinopathy. DM, diabetes mellitus; BCVA, best-corrected visual acuity;
SCP, superficial capillary plexus; DCP, deep capillary plexus; NPDR, nonproliferative diabetic retinopathy; NDR, nondiabetic retinopathy.
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Figure 4: Receiver operating characteristic curve of the development cohort and validation cohort. (a) Logistic regression model de-
velopment, (b) logistic regression model validation, (c) classification tree model development, and (d) classification tree model validation;
AUC: area under the curve; SE: sensitivity; SP: specificity.
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model but not included in the logistic regression model
because of a collinearity between DM duration and BCVA
existed in the regression analysis. A regression analysis may
extract the major components in prediction but may lose
detailed valuable information [21].-erefore, a classification
tree model seems to be more appropriate because it can keep
more clues and evidence to support a diagnosis. Moreover,
in other studies on DR screening [18,19], the risk variables
for the occurrence of DR were diverse. -e alterations
among these models or studies imply that the construction
of a statistical model may be affected by a series of factors.
-ese factors not only included the statistical problems such
as collinearity among the variables, but also included the
cohort characteristic alterations.-erefore, the included risk
variables may be distinct in different screening models
because the study cohorts have various demographical and
disease characteristics. Ethnicity may have contributed to
the difference. DM duration, insulin treatment, HbA1c level,
and microalbuminuria were major risk contributors in a
Spanish study [18], while the presence of hypertension, DM
family history, and low frequency of physical activity were

risk factors in a Danish study [22]. Besides, our study was a
hospital-based study, and the included patients might have
more serious and complicated conditions than patients in
communities or regions outside hospitals. -is might also be
an explanation for the alterations between other studies and
ours, even performed in the same country [23].

Different methods were adopted in these models, and the
models acquired relatively high accuracy. Shen and his
colleagues [23] proposed a model using the XGB-Stacking
algorithm based on improved backward search, and the
highest accuracy was 83.95%. Similarly, in Romero–Aroca’s
study [18], a clinical decision support system based on a
fuzzy random forest was utilized and an accuracy of 87.6%
was obtained. Although proper models have been estab-
lished using advanced algorithms, these models solely focus
on the systemic conditions of T2DM patients.

A more straightforward method to screen DR is fundus
imaging. Our present study is a combination of systemic
conditions and fundus assessments. Herein, a binary logistic
regression model and a classification tree model were de-
veloped to detect early-stage DR, and the results showed

Table 3: Validation outcomes and predictors in two models.

Binary logistic regression model Classification tree model
Predicted NPDR (n) Predicted NDR (n) Predicted NPDR (n) Predicted NDR (n)

True NPDR (n) 55 15 52 18
True NDR (n) 14 36 14 36

Predictors BVCA (LogMAR) and SCP density BVCA (LogMAR), DM duration, SCP density, and
DCP density

NPDR, nonproliferative diabetic retinopathy; NDR, nondiabetic retinopathy; BCVA, best-corrected visual acuity; SCP, superficial capillary plexus; DM,
diabetes mellitus; DCP, deep capillary plexus.
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Figure 5: Power analysis results for the development cohort and validation cohort. (a) Development cohort; (b) validation cohort;
(A) classification tree model; (B) logistic regression model.
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similar AUCs and accuracies in detection. In our study, a
novel quantitative machine called OCTA was adopted. It is a
noninvasive, convenient, and promising machine frequently
used in DR diagnosis. According to the regions and layers of
the retina, the microvasculature can be divided into different
capillary plexuses. A certain capillary plexus provides blood
supply for a certain region and layer [24]. SCP, DCP, and
RPCP have been proved to be sensitive variables in DR
severity assessment [25,26]. Fundus photography is a
common and traditional tool in DR screening [7]. Many
studies yielded an accuracy of more than 80% in their
proposed models [27,28]. Texture was adopted to model the
establishment in Acharya’s study [29]. An accuracy of 85.2%,
a sensitivity of 98.9%, and a specificity of 89.5% were
achieved. Features based on exudate area, blood vessels,
texture, and entropies were used to detect DR in Mookiah’s
study [30]. An accuracy of 92.88%, a sensitivity of 96.27%,
and a specificity of 96.08% were yielded by the probabilistic
neural network classifier. Mane [27] set up a holoentropy
enabled-decision tree model. -e accuracy, sensitivity, and
specificity were 96.45%, 96.72%, and 97.01%, respectively.
-e algorithm alterations may exert an influence on the
accuracy in some degree. Nevertheless, because fundus
photography is not inherently quantitative, it can only be
assessed by ophthalmologists or AI techniques [31].
-erefore, though the accuracy of our models was less than
that of other models based on fundus photography, OCTA,
as a quantitative device, may still be a potentially extraor-
dinary technique for model establishment. In recent years,
researchers have made efforts to update DR screening
strategies besides using fundus photography. Deng [32]
integrated a quantitative device called a handheld electro-
retinogram with the classification tree model and found
good accuracy. Moreover, handheld smartphone-based
retinal cameras were applied in urban primary healthcare
settings and the accuracy maintained above 80% [33,34].
Studies on DR screening using advanced quantitative de-
vices are dramatically increasing, but most of them are
awaiting further improvements. In the future, if the sim-
plification of the imaging and analysis process for OCTA has
been improved, OCTA may be increasingly acceptable for
DR prediction. A combination of OCTA and the classifi-
cation tree model will be of great use in DR screening. Our
study was the first primary attempt to complete the
combination.

SCP density was included both in the logistic regression
model and the classification tree model, while DCP was only
included in the classification tree model. Moreover, SCP was
at a higher node than DCP was in the classification tree.
Generally, SCP mainly connects with retinal arterioles while
DCP mainly connects with retinal venules [24]. SCP may
have a stronger self-regulatory capacity than DCP, and DCP
is more vulnerable in DR. In Simonett’s study [35], a re-
duction was found in DCP density but was absent in SCP
density; however, Tian and our studies [36] confirmed
significant differences in SCP. In our study, although sig-
nificant differences existed in both SCP density and DCP
density, SCP density seemed to be more extraordinary in
prediction. One possible reason is that SCP projects flow

signal artifacts onto the DCP and affects the accuracy of DCP
density.

We noticed an interesting phenomenon in the classi-
fication tree: when SCP density was less than 43.91%, a DM
duration of less than 18.5 years seemed to be a risk factor.
-is finding might suggest that a long DM duration does
not necessarily accelerate DM development because DM
development is also closely related to blood glucose control
and other factors [18]. Moreover, the percentage of patients
with a DM duration of not less than 18.5 was small, and the
difference may not be obvious. Besides, in the binary lo-
gistic regression model, the 95% CI was large. As we have
performed a collinearity test among the statistically sig-
nificant variables and no collinearity was found among
them, we may contribute the reason to the relatively small
sample and scattered data in BCVA. Clinically, BCVA
alterations between NDR and mild-to-moderate NPDR
may be less obvious than those between NDR and PDR,
therefore required lager data. However, we finally included
BCVA as a predictor because BCVA may be a basic and
crucial variable in present clinical practice. Moreover, we
finally validated and evaluated the model, and the outcome
was relatively satisfactory. However, more well-designed
studies should be performed to further improve and val-
idate the model.

-ere were some limitations in this study. First, the
classification tree model is a general and rough prediction
and cannot make very precise decisions. Second, the sample
size was relatively small and hospital-based, which may have
caused some bias. -e absence of evidence in difference of
AUC between the two models may be due to the small
sample size in this study. Moreover, this was a retrospective
study, and some other variables were not included. A
prospective cohort with a large population needed to im-
prove and validate the model.

5. Conclusions

Compared to the logistic regression model, the classification
tree model has similar accuracy in predicting early-stage DR.
-e classification tree model with OCTA variables may be a
simple tool for clinical practitioners to identify early-stage
DR in T2DMpatients. Moreover, SCP density is significantly
reduced in mild-to-moderate NPDR eyes and might be a
biomarker in early-stage DR detection. Further improve-
ment and validation of the DR diagnostic model are awaiting
to be performed.
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