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Abstract
Uterine leiomyosarcoma (LMS) contributes to a significant proportion of uterine cancer deaths. It is a rare and high-risk 
gynecological cancer. LMS is challenging to the treatment due to the resistance of several therapies. The activation of the 
Hedgehog (HH) pathway has been reported in several types of female cancers. Uterine LMS presents an upregulation of 
the crucial HH signaling pathway members such as SMO and GLI1. Although targeting the HH pathway exhibited a potent 
inhibitory effect on the phenotype of uterine LMS in vitro, the effect of the HH inhibitors on LMS growth in vivo has not been 
identified. The present study aimed to assess the effect of Hedgehog pathway inhibitors (SMO-LDE225 and GLI-Gant61) 
as a therapeutic option in the xenograft model of uterine LMS. The results demonstrated that LDE225 treatment did not 
show any inhibitory effect on LMS tumor growth; however, treatment with GLI inhibitor (Gant61) induced a remarkable 
tumor regression with a significant decrease in Ki67 expression, compared to control (p < 0.01). Moreover, administration 
of Gant61 decreased the expression of GLI1, GLI target genes BMP4 and c-MYC (p < 0.05), indicating that the HH pathway 
is implicated in the LMS experimental model. In conclusion, our studies demonstrate for the first time that GLI inhibitor 
(Gant61), but not SMO inhibitor (LDE225), shows a potent inhibitory effect on LMS tumor growth and concomitantly sup-
presses the expression of GLI1- and GLI-targeted genes using the xenograft model of uterine LMS.
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Introduction

Uterine leiomyosarcoma (LMS) contributes to a significant 
proportion of uterine cancer deaths [1–4]. It is a rare and 
aggressive gynecological cancer, which accounts for 1% of 
all uterine malignancies. LMS is challenging to treatment 

exhibiting resistance to several therapies including FDA-
approved drugs such as pazopanib and olaratumab [2, 5–8], 
evidenced by high rates of recurrence and progression [9, 
10]. These characteristics emphasize the need for new thera-
peutic options for this tumor.

The Hedgehog (HH) pathway activation depends on the 
HH ligand (SHH, IHH, or DHH) [11]. In the absence of the 
ligand, the PTCH1 receptor blocks SMO activity. However, 
when the HH ligand binds to PTCH1, the SMO inhibition 
is relieved, triggering activation and nuclear translocation 
of the GLIs transcription factors to regulate the HH target 
genes. In the absence of the HH ligand, the negative regu-
lator SUFU sequesters the GLI proteins in the cytoplasm 
[12–14].

The deregulation of the HH signaling pathway plays an 
important role in more than 30% of human cancers [15]. This 
deregulation of the HH pathway contributes to tumor initia-
tion and progression [16–19]. The activation of the HH path-
way has been described in several types of female cancer, 
including uterine LMS [20–27]. In LMS, the HH pathway 
was described for the first time by Garcia and collaborators 
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[25], who showed that the protein expression of SMO and 
GLI1, the crucial members of the HH signaling pathway, 
was increased in formalin-fixed paraffin-embedded (FFPE) 
LMS’ patient samples, compared to uterine leiomyoma and 
myometrium [25].

Due to the important role of key HH components in 
cancer progression, targeting SMO and the GLIs have 
been demonstrated to be a useful strategy to block the HH 
signaling pathway activity and suppress the tumor progres-
sion [28–33]. SMO and GLI inhibitors have been shown to 
exert an anti-cancer activity in vitro and in vivo on different 
types of cancer [20, 26, 34–36]. Furthermore, several SMO 
inhibitors are approved by the FDA (GDC099, LDE225, and 
PF-04449913) and have been tested in clinical trials showing 
promising results in breast cancer [37], basal cell carcinoma 
[38, 39], medulloblastoma [40], and pancreatic cancer [41].

Recently, our in vitro study demonstrated that LDE225 
(SMO) and Gant61 (GLI) inhibitors were capable of block-
ing the HH pathway signaling with a significant decrease 
in the LMS cell proliferation and migration with prominent 
apoptosis enhancement [26]. However, the effects of the HH 
inhibitors on LMS growth in vivo are unclear. The present 
study aimed to assess the effect of HH pathway inhibitors 
as a therapeutic option using the xenograft model of uterine 
LMS.

Material and Methods

Cell Culture and Reagents

The human uterine LMS cell line (SK-UT1, ATCC® HTB-
114™) was purchased from the ATCC (Manassas, VA, 
USA), and it was cultured in the recommended media and 
growth condition. GLI inhibitor, Gant61, was purchased 
from Sigma Aldrich (St. Louis, MO, USA) and SMO inhibi-
tor LDE225 from Selleck Chemical (Houston, TX, USA).

Leiomyosarcoma Xenograft Tumors

Twenty-nine nu/nu nude mice were purchased from Charles 
River (Wilmington, MA, USA). The mice were handled 
according to the approved protocol (18–174) and all mice 
were maintained in a 12-h light/dark cycle and provided 
with water and standard diet ad libitum in a pathogen-free 
facility under climate control. 2 × 107 of the human LMS 
cells were inoculated into the right flank of mice with 1:1 
Matrigel (Corning, Corning NY, USA) and fetal bovine 
serum (FBS) according to the previous publications [42–46]. 
After the tumor development, the animals were randomized 
separately into three groups, SMO inhibitor LDE225 (n = 5), 
GLI inhibitor Gant61 (n = 6 × 2), and control (n = 6 × 2). Gli 
treatments were repeated compared to the vehicle control 

group to receive enough tissues for cellular and molecular 
analysis due to Gant61’s marked inhibition of tumor growth; 
20 mg/kg of LDE225 [47], 20 mg/kg of Gant61 [20, 48, 49], 
or corn oil (vehicle) were administrated via oral gavage three 
times per week for 10 days to the Gant61 group and 21 days 
to the LDE225 group. After the treatment, the animals were 
sacrificed, and tumors were collected for histopathological 
and RNA and protein expression profile analysis.

RNA Extraction and Gene Expression

The total RNA was isolated using TRIzol Reagent (Invit-
rogen, CA, USA). The concentration was determined using 
NanoDrop (Thermo Scientific, Waltham, MA). The High 
Capacity cDNA Transcription Kit (Thermo Scientific, 
Waltham, MA) was used to perform the reverse-transcribed 
to complementary DNA by one microgram of the total RNA. 
The real-time PCR was performed using the CFX96 PCR 
instrument using SYBR Green Supermix (Bio-Rad, Hercu-
les, CA, USA). The results are presented as relative gene 
expression using CFX Maestro™. The primers for detecting 
the gene expression profile are listed in Table 1.

Morphological (H&E) and Immunohistochemistry 
(IHC) Assessment

The LMS tumors were fixed in 10% buffered formalin for 
24 h, then embedded with paraffin and subjected to H&E 
and IHC staining by Research Histology and Tissue Imaging 
Core at the University of Illinois at Chicago. The antibodies 
used in this study are shown in Table 2. The IHC analysis 
was performed using a semi-quantitative score consider-
ing the percentage of labeled cells (0, negative; 1, < 10% 
of the cells; 2, 10–50% of the cells; 3, 50–75% of the cells; 
4, > 75% of the cells) and the intensity of the immunostain-
ing (0, no staining; 1, weak; 2, mild; 3, strong staining). 
The multiplication of both scores resulted in a final quotient 
ranging from 0 to 12 [25]. The slides were scanned using 
the Aperio image scope software (Aperio Technologies, Inc., 
Vista, VA, USA).

Statistical Analysis

The data are expressed as the means ± standard error by 
using the GraphPad Prism 5 software. Statistical analy-
ses were carried out using the parametric (Student’s t-test 
or analysis of variance ANOVA followed by Tukey post-
test) or nonparametric distribution (Mann–Whitney test or 
Kruskal–Wallis followed by Dunns post-test). The signifi-
cant difference was defined as p < 0.05.
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Results

Inhibition of Hedgehog Pathway Promotes Tumor 
Regression in the Xenograft Model of Uterine LMS

The HH inhibitors, SMO-LDE225 and GLI- Gant61, were 
selected based on our previous findings that these two 
HH inhibitors exhibited a significant inhibitory effect 
(decreasing cell proliferation, migration, and increasing 
apoptosis index) on LMS cells in vitro [26]. In this study, 
after the tumors developed, the animals were randomly 
separated into three groups (SMO inhibitor, GLI inhibi-
tor, and control). SMO inhibitor group was treated for 
21 days with 20 mg/kg of LDE225. In contrast to the 
in vitro inhibitory effect, the LDE225 treatment did not 
show any inhibitory effect on LMS tumor growth. In addi-
tion, no significant difference in tumor volume between 
the LDE225 treatment and the control group was observed 
(Fig. 1A, B). However, the animals treated with 20 mg/kg 
of Gant61, GLI inhibitor, for 10 days showed a significant 
tumor regression compared to control (p < 0.01) (Fig. 1A, 
B). Both treatments were well tolerated by the animals, 
without causing weight loss or other side effects in the 
mice behavior (Fig. 1C).

Targeting Hedgehog Pathway Decreases HH Activity 
and Proliferation in the Xenograft Model of Uterine 
LMS

After the treatment with the HH inhibitors, LDE225 and 
Gant61, the tumors were collected, and H&E and IHC analy-
ses were performed to evaluate the expression of prolifera-
tion marker (Ki67) and HH components (SMO or GLI1). 
The tumors treated with LDE225, SMO inhibitor, exhibited 
no change in the expression of SMO and Ki67 compared 
to the controls (Fig. 2A, B). However, the tumors treated 
with GLI inhibitor (Gant61) showed a significant decrease in 
GLI1 and Ki67 protein expression compared to the control 
(p < 0.0001) (Fig. 3A, B).

Targeting Hedgehog Pathway Decreases Gene 
Expression of HH Components in Xenograft Model 
of Uterine LMS

After 21  days of the treatment with SMO inhibitor 
(LDE225), the tumors did not show a difference in the gene 
expression profile of SMO, GLI1, or GLI2 when compared to 
the control group (Fig. 4A). The tumors treated for 10 days 
with GLI inhibitor (Gant61) showed a decreased expression 

Table 1   qRT-PCR primers 
sequences

Gene/symbol Forward sequence Reverse sequence

GLI1 AGC​CTT​CAG​CAA​TGC​CAG​TGAC​ GTC​AGG​ACC​ATG​CAC​TGT​CTTG​
GLI2 CTG​TGG​GTT​AGG​GAT​GGA​CTG​ GTA​AAG​TGG​GTG​GAC​GTT​GCA​
GLI3 GTG​CTC​CAC​TCG​AAC​AGA​ TCC​AGG​ACT​TTC​ATC​CTC​ATT​AGA​
SMO TGA​AGG​CTG​CAC​GAA​TGA​GG CTT​GGG​GTT​GTC​TGT​CCG​AA
BCL-2 TGT​GTG​TGG​AGA​GCG​TCA​AC GCC​AGA​GAA​ATC​AAA​CAG​AGG​
CCND1 CTT​CAA​ATG​TGT​GCA​GAA​GG CTC​GCA​CTT​CTG​TTC​CTC​
P21 CCC​TTG​TCC​TTT​CCC​TTC​AGTAC​ GTG​GGA​CAG​GCA​CCT​CAG​A
BMP4 CGT​AGC​CCT​AAG​CAT​CAC​TCACA​ GCG​CCG​GCA​GTT​CTT​ATT​CT
FoxM1 GGG​CGC​ACG​GCG​GAA​GAT​GAA​ CCA​CTC​TTC​CAA​GGG​AGG​GCTC​
c-MYC AAT​GAA​AAG​GCC​CCC​AAG​GTA​GTT​ATCC​ GTC​GTT​TCC​GCA​ACA​AGT​CCT​CTT​C
P27 ATG​TCA​AAC​GTG​CGA​GTG​TCT​ TTA​CGT​TTG​ACG​TCT​TCT​GA
VEGF CTA​CCT​CCA​CCA​TGC​CAA​GT GCA​GTA​GCT​GCG​CTG​ATA​GA
TP53 TGT​AGT​GGA​TGG​TGG​TAC​AG CGT​GTG​GAG​TAT​TTG​GAT​GAC​
B2M CAG​CCC​AAG​ATA​GTT​AAG​TG CCC​TCC​TAG​AGC​TAC​CTG​T

Table 2   Description and details 
of antibodies used in this study

Antibody Manufacturer Species, monoclonal, or 
polyclonal

Application and 
dilution

Catalog number

SMO GeneTex Rabbit, polyclonal IHC, 1:400 GTX02530
GLI1 Sigma Rabbit, polyclonal IHC, 1:200 ABC217
KI67 Abcam Rabbit, monoclonal IHC, 1:200 ab16667
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of GLI1 compared to control (p < 0.05). Gant61 treatment 
did not alter the expression of GLI2 and GLI3 in LMS 
tumors (Fig. 4B). GLI-targeted genes (BCL-2, CCND1, 
P21, BMP4, FOXM1, C-MYC, P27, VEGF, and TP53) 
were selected to assess their expression after the Gant61 

treatment. The expression of BMP4 and c-MYC was signifi-
cantly decreased in the Gant61-treated tumors compared to 
the control group (p < 0.05). The expression of other GLI-
targeted genes (BCL-2, CCND1, P21, FOXM1, VEGF, and 
TP53) did not show a significant difference after treatment 
with Gant61 (Fig. 4C).

Discussion

To the best of our knowledge, this study was the first to 
assess the effect of the SMO and GLI inhibitors on LMS 
growth in the xenograft model and determined if both inhibi-
tors were capable of suppressing the activation of the HH 
signaling pathway in LMS in vivo. We have demonstrated 
previously that the HH signaling pathway is deregulated in 
LMS [25, 26]. Our key finding was the upregulation of SMO 
and the transcription factor GLI1 in LMS cell line compared 
to normal uterine myometrium cells [25] and human samples 
[26]. Moreover, inhibition of the HH pathway using SMO 
and GLI inhibitors suppressed the LMS proliferation and 
migration and increased LMS apoptosis rate in vitro.

Based on our previous results, the use of the LMS 
xenograft model to confirm the efficacy of SMO and GLI 
inhibitors was needed to understand the deregulation of 
HH pathway in LMS, as well as therapeutic options for this 
aggressive cancer. In this study, the treatment with LDE225, 
the SMO inhibitor, showed an inefficient suppression of 
LMS tumor growth, concomitantly with no changes in SMO 
and Ki67 protein expression, as well as in gene expression 
of SMO, GLI1, and GLI2.

Several studies demonstrated that LDE225 as an SMO 
inhibitor exhibited an anti-cancer efficacy in different 
types of tumors via blocking the HH pathway activity. In 
an animal model with glioblastoma, the treatment with 
LDE225 decreased the tumor size with downregulation of 
GLI1, GLI2, PTCH1, and SMO [50]. In a pancreatic tumor, 
LDE225 blocked the activation of the HH signaling pathway, 
decreasing GLI1 and PTCH1 gene expression (51]. In mela-
noma, LDE225 decreases the tumor size with a decrease of 
GLI1 expression [52].

Our results showed that the administration of SMO inhib-
itor (LDE225) in the animal model of LMS was inefficient to 
suppress the tumor growth. This result is inconsistent with 
our previous report showing that LDE225 treatment revealed 
an efficiency to block the HH pathway activity, inducing 
a significant decrease in cell migration, proliferation, and 
increased apoptosis rate in LMS cells in vitro [26].

Studies comparing in vitro and in vivo experiments 
have shown to be complex due to the difficulty of repro-
ducing the tumor and non-tumor cell interactions [53]. 
Cancer treatment has been challenging because of the 
complexity and heterogeneity of the tumor [54, 55]. Tumor 
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Fig. 1   Response curve of LMS tumors treated with SMO (LDE225 
20  mg/kg) or GLI inhibitors (Gant61 20  mg/kg). A The animals 
bearing tumors were administered with 20 mg/kg of LDE225 (SMO 
inhibitor) or Gant61 (GLI inhibitor), and the tumor growth was meas-
ured during the treatment. The relative tumor volume was calculated 
and plotted. B Pictures represented the tumor volume at the end of the 
treatment with SMO or GLI inhibitors compared to control. C Graph 
summarizing the percent body weight of mice during the treatment 
with SMO or GLI inhibitor
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progression is profoundly influenced by the interactions of 
cancer cells with their environment. The tumor microen-
vironment consists of different non-cancer cell types and 
their stroma, which have a role in the structure, physiol-
ogy, and function of the tumor [56]. In vitro experiments 
have been helpful to understand cell behavior, but they 
have cell bioactivities different from the in vivo response. 

The animal models mimic these complex interactions with 
their surrounding cells [53].

Gant61 as a GLI inhibitor has been used as a novel 
anti-cancer drug in preclinical studies [57]. In our previ-
ous studies, we demonstrated that GLI1 exhibited a higher 
expression in LMS compared to the myometrium and benign 
leiomyoma [25]. We also showed that the treatment with 

Fig. 2   H&E and immunohisto-
chemistry staining of SK-UT1 
xenograft tumors. A Immuno-
histochemical staining for SMO 
and Ki67 and hematoxylin and 
eosin (H&E) staining of tumors 
treated with SMO inhibitor 
(LDE225) for 21 days. B Graph 
summarizing the immuno-
histochemical staining score 
(intensity x frequency) for SMO 
and Ki67

Control SMO inhibitor – LDE225

H&E

KI67

SMO

B

A

20x 20x

20x 20x

20x 20x
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Gant61 blocked the GLI1 expression, decreasing cell pro-
liferation and migration and increasing apoptosis index in 
LMS cells [26]. In this study, we tested the efficiency of 
Gant61 used as a therapeutic option to treat uterine LMS in 
the xenograft model, and our results showed a remarkable 
regression of the LMS growth with decreased expression 
of Gli and GLI-target genes BMP4 and c-MYC. The use of 

Gant61 as a treatment option to LMS may have a poten-
tial promising outcome compared to other agents to over-
come drug resistance. Recently, Nakae et al. [46] showed 
that CD70 antibody conjugate was able to inhibit the LMS 
tumor growth in a PDX model. This model possesses several 
advantages including preserving tumor heterogeneity and 
lineage hierarchy, allowing for effective chronological tumor 

Fig. 3   Histology and immu-
nohistochemical analysis of 
the SK-UT1 xenograft tumors 
treated with GLI inhibitor. A 
Immunohistochemical staining 
for GLI1 and Ki67 and hema-
toxylin and eosin (H&E) stain-
ing of tumors treated with GLI 
inhibitor (Gant61) for 10 days. 
B Graph summarizing the 
immunohistochemical staining 
score (intensity × frequency) for 
GLI1 and Ki67. p < 0.0001

Control GLI inhibitor – Gant61

H&E

KI67

GLI1

B

A

* *

p<0.0001

20x 20x
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size monitoring, and potential applications in personalized 
medical treatments. In this regard, evaluating of Gli inhibitor 
in the PDX model is warranted.

The use of Gant61 to block the HH pathway has been 
described in other types of tumor. For instance, in breast can-
cer, Gant61 decreases tumor growth [20]. In thyroid tumors, 
the treatment downregulated the GLI1 protein expression 
and reduced the tumor volume [48]. In a xenograft model 
of osteosarcoma, Gant61 promoted tumor regression (49). 
c-MYC and BMP4 have been described as GLI target genes 
[58, 59]. In medulloblastoma, treatment with SMO inhibitor, 

GDC0449, showed a decrease in the c-MYC RNA expres-
sion and protein levels [59]. We previously described the 
upregulation of BMP4 in FFPE samples in LMS [25], and 
in human colon carcinoma, BMP4 expression was increased 
after stimulation with HH agonists [58].

In conclusion, our studies demonstrated for the first time, 
to the best of our knowledge, that GLI inhibitor (Gant61), 
but not SMO inhibitor (LDE225), showed a potent inhibi-
tory effect on LMS tumor growth and concomitantly sup-
pressed the expression of GLI1 and GLI-targeted genes in 
the xenograft model of uterine LMS. Our studies suggest 

Fig. 4   Gene expression analysis 
of LMS tumors treated with 
SMO or GLI inhibitors. A Rela-
tive quantification of the expres-
sion of SMO, GLI1, and GLI2 
in the LMS tumors after 21 days 
of treatment with LDE225 or 
vehicle (corn oil). B Relative 
quantification of the GLI1, 
GLI2, and GLI3 in the LMS 
tumors after 10 days of treat-
ment with Gant 61 or vehicle 
(corn oil). C RNA expression 
of GLI-target genes (BCL-2, 
CCND1, P21, BMP4, FOXM1, 
C-MYC, P27, VEGF, and TP53) 
in the LMS tumors after 10 days 
of treatment with Gant61 or 
vehicle (corn oil). p < 0.05
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that Gant61 targeting HH pathway might be considered a 
promising therapeutic option to inhibit the LMS progression.
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