A RTl C L E W) Check for updates

White matter myelination during early infancy
is linked to spatial gradients and myelin content
at birth

Mareike Grotheer® 2%, Mona Rosenke3, Hua Wu® 4, Holly Kular3, Francesca R. Querdasi®,
Vaidehi S. Natu® 3, Jason D. Yeatman3>©/ & Kalanit Grill-Spector® 3°

Development of myelin, a fatty sheath that insulates nerve fibers, is critical for brain function.
Myelination during infancy has been studied with histology, but postmortem data cannot
evaluate the longitudinal trajectory of white matter development. Here, we obtained long-
itudinal diffusion MRI and quantitative MRI measures of longitudinal relaxation rate (R1) of
white matter in 0, 3 and 6 months-old human infants, and developed an automated method
to identify white matter bundles and quantify their properties in each infant’s brain. We find
that R1 increases from newborns to 6-months-olds in all bundles. R1 development is non-
uniform: there is faster development in white matter that is less mature in newborns, and
development rate increases along inferior-to-superior as well as anterior-to-posterior spatial
gradients. As R1 is linearly related to myelin fraction in white matter bundles, these findings
open new avenues to elucidate typical and atypical white matter myelination in early infancy.
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uring the first year of life, the volume of the human

brain’s white matter increases by 6-16%!. A key micro-

structural component of this white matter development is
myelination?-%. That is, the formation of myelin, the fatty sheath
that insulates axons that connect different brain regions. Myelin
is essential for brain function, as it enables rapid and synchro-
nized neural communication across the brain and abnormalities
in myelination are linked to a plethora of developmental and
cognitive disorders’. However, the principles and nature of white
matter myelination of the human brain during early infancy are
not well understood.

Three main theories of white matter myelin development
during infancy have been proposed: (1) The starts-first/finishes-
first hypothesis, which is based on data from classic histological
studies®™4, proposes that postnatal myelination follows prenatal
patterns. This hypothesis predicts that white matter that is
more myelinated at birth will develop faster postnatally and will
finish myelinating earlier. This, in turn, may allow for the most
important brain functions to mature the fastest. (2) The speed-
up hypothesis, which is based on more recent imaging data®?,
suggests that white matter that is less myelinated at birth
develops faster postnatally. This development may be
experience-dependent!%-13 and may foster the efficient and
coordinated transmission of signals across the entire brain.
Both of the above hypotheses build on the observation that
myelin content is not homogenous in the newborn brain?->14.
(3) The spatial-gradient hypothesis suggests that postnatal
myelination progresses in a spatially organized manner>!°.
Different spatial gradients of myelination have been proposed,
including that white matter myelination begins closest to the
neurons and follows the direction of information flow?, or that
it occurs along a proximal to distal axis across the brain®. It is
important to note that, while the starts-first/finishes-first
hypothesis and the speed-up hypothesis are mutually exclusive,
spatial gradients may contribute to myelination during infancy
in addition to the effects of myelin content at birth predicted by
the former two hypotheses.

Testing these developmental hypotheses requires in vivo
measurements of the typical, longitudinal development of myelin
along the length of multiple white matter bundles of individual
infants. However, classic histological studies compare post-
mortem brain samples across individuals, often include pathol-
ogies, and use observer-dependent methods'®. Thus, classic
histology provides a cross-sectional and qualitative glimpse of
white matter myelination during infancy. Up to recently!7-22
most in vivo investigations of white matter development lever-
aged diffusion metrics (e.g., mean diffusivity (MD)), that have a
complex, non-linear relationship to myelin and are also affected
by other properties of the white matter, including the diameter,
spacing, and orientation of fibers!®23-2>, Thus, diffusion metrics
do not provide accurate measures of myelination. However,
quantitative MRI%1415.18,26-30 (qMRI) measurements, such as
the longitudinal relaxation rate, R1 [s~1], now offer metrics that
are directly related to myelin content in the white matter. In fact,
not only does the amount of myelin in a voxel (myelin fraction)
explain 90% of the variance in R1 in white matter bundles?®3!,
but also there is a linear relation between myelin fraction and R1
(Supplementary Fig. 1). Thus, longitudinal measurements of R1
along white matter bundles enable the assessment of white matter
myelin development during infancy.

To test the predictions of the developmental hypotheses of
white matter myelination during early infancy, we acquired
longitudinal measurements of anatomical MRI, diffusion MRI
(dMRI), and gMRI in infants during natural sleep at 3 timepoints:
newborn (N=09; age: 8-37 days), 3 months (N=10; age:
79-106 days), and 6 months (N = 10; age: 167-195 days) of age.

We used anatomical MRI to segment the brain to gray and white
matter, dMRI to identify the white matter bundles of the infant
brain, and qMRI to measure R1 along each white matter bundle
(Supplementary Fig. 2). All analyses were performed in each
infant’s native brain space. To relate our findings to prior
developmental studies, we also used dMRI data to assess the
development of MD in white matter bundles. However, as the
relationship between MD and myelin is complex and nonlinear,
we cannot accurately estimate from the rate of MD development
the rate of myelination®.

As increases in myelin in the white matter generate linear
increases in R1, the developmental hypotheses tested here make
the following predictions: The starts-first/finishes-first hypoth-
esis predicts that during the first 6 months of life, R1 will increase
faster in white matter that is more myelinated at birth and hence
has higher R1 values in newborns. The speed-up hypothesis
predicts the opposite, that during the first 6 months of life, R1
will increase faster in white matter that has lower R1 values in
newborns. Finally, the spatial gradient hypothesis predicts spa-
tially continuous differences in the development of R1 across the
white matter, which cannot be explained by differences in R1
values in newborns.

Here we show that R1 of white matter bundles increases from
newborns to 6-months-olds and that this development is non-
uniform within and across bundles. That is, we find faster R1
development in sections of bundles that are less mature in new-
borns, consistent with the predictions of the speed-up hypothesis
of infant myelination. In addition, we find that the rate of Rl
development increases along the inferior-to-superior and
anterior-to-posterior axes, consistent with the spatial gradient
hypothesis. Thus, our findings suggest that myelination of human
white matter bundles during early infancy is linked to both the
initial myelin content at birth and spatial gradients.

Results

A new method for automated fiber quantification in babies
(babyAFQ). We first identified each individual infant’s white
matter bundles in their native brain space in a systematic and
automated way. A major challenge is that present automated tools
for bundle identification in individuals (e.g.32-34) have been
developed for adults and school-aged children and therefore may
not be suitable for infants due to substantial differences in brain
sizel and organization?’. Thus, we developed a pipeline for
analyzing infant dMRI data (Supplementary Fig. 2) and a novel
method, baby automated fiber quantification (babyAFQ), for
automatically identifying 24 bundles (11 in each hemisphere and
2 between-hemispheres, Supplementary Figs. 2-4) in each indi-
vidual infant’s brain and timepoint (Supplementary Fig. 8). We
optimized babyAFQ for infants by: (i) generating waypoints
(anatomical regions of interest (ROIs) for defining bundles) on a
newborn brain template (University of North Carolina (UNC)
neonatal template3®), (ii) decreasing the spatial extent of way-
points compared to adults3° to fit the more compact infant brain,
(iii) adding waypoints for curved bundles to improve their
identification, and (iv) offering a volumetric approach for the
identification of the vertical occipital fasciculus (VOF) (Supple-
mentary Fig. 4), as the VOF is often identified using cortical
surface ROIs and cortical surface reconstructions can be difficult
to generate for infant brains.

BabyAFQ successfully identifies 24 bundles in each infant and
timepoint (example infant: Fig. 1, all infants: Supplementary
Fig. 8), including bundles that have not previously been
identified in infants: the posterior arcuate fasciculus®’, vertical
occipital fasciculus37-3%, and middle longitudinal fasciculus*’.
The 24 bundles have the expected shape and location in all
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Fig. 1 Baby automated fiber quantification (babyAFQ) identifies white matter bundles in individual infant brains across the first 6 months of life.
Twenty-four bundles (11 in each hemisphere and 2 cross-hemispheric) were successfully identified in all individuals and ages (Supplementary Fig. 8). a All
bundles of an example individual infant. Each row is a bundle, each column is a timepoint; left: newborn, middle: 3 months, right: 6 months. b Comparison of AFQ
and babyAFQ performances in identifying each bundle in newborns (N = 9) relative to manually defined (gold-standard) bundles. Overlap between automatically
and manually defined bundles is evaluated using the dice coefficient, which reveals higher performance for babyAFQ than AFQ. Bars show mean dice
coefficient + standard error across participants; circles: individual data. Source data are provided as a Source Data file. ATR anterior thalamic radiation, CS cortico-
spinal tract, pAF posterior arcuate fasciculus, VOF vertical occipital fasciculus, FcMa forceps major, FcMi forceps minor, AF arcuate fasciculus, UCI uncinate
fasciculus, SLF superior longitudinal fasciculus, CC cingulum cingulate, ILF inferior longitudinal fasciculus, IFOF inferior frontal occipital fasciculus, MLF middle

longitudinal fasciculus.

infants even as their brains grow from 0 to 6 months. 3D interactive
visualizations at 0 months (http://vpnlstanford.edu/babyAFQ/
bbl1_mri0_interactivehtml), 3 months (http://vpnlstanford.edu/
babyAFQ/bbl1_mri3_interactivehtml) and 6 months of age
(http://vpnl.stanford.edu/babyAFQ/bb11_mri6_interactive html)
show the 3D structure of bundles in an example infant.

For quality assurance, we compared babyAFQ and AFQ3?
(developed in adults and used in prior infant studies*!~43) to
manually identified bundles (‘gold-standard’). In newborns,
bundles identified by babyAFQ substantially overlapped the
gold-standard (mean dice coefficient + standard error (SE):

0.61 +0.02) and this overlap was significantly higher compared
to AFQ (Fig. 1b; Supplementary Fig. 3; two-way repeated
measure analysis of variance (rmANOVA) with AFQ-type and
bundle as factors: AFQ-type: F(1,08) =528.60, p<0.0001,
bundle: F(19,152) =11.31, p<0.0001, AFQ-type x bundle:
F(19,152) =7.13, p<0.0001; additional three-way rmANOVA
on the bilateral bundles, with AFQ-type, bundle, and hemi-
sphere as factors revealed no effects of, or interaction with,
hemisphere). The VOF and MLF were not included in this
comparison to manual bundles; this is because the MLF is not
identified by AFQ and the VOF is identified using a different
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birth to 6 months of age. a Mean R1 of each bundle as a function of age in

days. Each point is a participant; markers indicate hemisphere; lines indicate LMM prediction; lines for both hemispheres fall on top of each other; gray
shaded regions indicate 95% confidence intervals. b Mean R1 measured in newborns (N = 9) for 24 white matter bundles. ¢ Rate of mean R1 development

(slopes from LMMs) during the first 6 months of life for each white matter bu

ndle; Bundles are sorted by R1 at birth. d Mean MD measured in newborns

(N =9) for 24 white matter bundles. e Mean MD decreases linearly from O to 6 months, which can be modeled by LMMs (Supplementary Fig. 5). Here we
show the rate of mean MD development (LMM slopes) during the first 6 months of life for each white matter bundle. Note that slopes are negative;
Bundles are sorted by MD at birth. b-e Color: bundle; Darker shades: LH. Error bars: Standard error. Source data are provided as a Source Data file. CS
cortico-spinal tract, ATR anterior thalamic radiation, FcMa forceps major, FcMi forceps minor, VOF vertical occipital fasciculus, pAF posterior arcuate
fasciculus, AF arcuate fasciculus, UCI uncinate fasciculus, SLF superior longitudinal fasciculus, CC cingulum cingulate, ILF inferior longitudinal fasciculus,

MLF middle longitudinal fasciculus, IFOF inferior frontal occipital fasciculus, R

methodological approach in AFQ (for details see Supplementary
Fig. 4). Improvements from babyAFQ were also evident at the
other timepoints in qualitative evaluations in individual infants.
E.g., the Forceps Major was successfully identified by babyAFQ
in 29/29 brains, but identified by AFQ in only 13/29 brains
(Supplementary Fig. 8).

During infancy, R1 increases in all 24 evaluated white matter
bundles. We first measured the development of mean Rl in each
bundle during the first 6 months of life. Measurements of mean R1 of
the 24 bundles identified by babyAFQ at 0, 3, and 6 months reveal a
substantial increase in R1 from 0 to 6 months of age (Fig. 2a). Mean
Rl across bundles +SE [range]: 0 months: 0.46s1+0.007s~!
[0.42-0.55571], 3 months: 0.52s !+0.008s~! [0.46-0.63s71],
6 months: 0.62571+0.009 s~ [0.54-0.73 s~1]. This is a profound
change, as mean Rl increases on average by ~17% (0.16s71)

4

H right hemisphere, LH left hemisphere.

within just 6 months. We modeled mean R1 development in each
bundle using linear mixed models (LMM:s) with age as predictor
and a random intercept (estimated R1 at birth) for each partici-
pant. Overall, LMMs explained ~90% of the R1 variance across
development (adjusted Rs?>0.87, ps<0.0001). As R1 in white
matter is linearly related to myelin fraction, these data are con-
sistent with the idea that white matter bundles myelinate during
early infancy. To summarize the LMM results we plotted each
bundle’s mean R1 measured in newborns (Fig. 2b) and its rate of
development (Fig. 2c) with three notable findings: (i) Mean R1
measured in newborns varies across bundles. At birth, projection
bundles (CS and ATR) have the highest R1, and the forceps minor
(FMi) and inferior frontal occipital fasciculus (IFOF) have the
lowest R1 (Fig. 2b). (ii) The rate of R1 development during infancy
varies between bundles. Across the 24 bundles, the forceps major
(FcMa) has the fastest rate of R1 development, while the uncinate
(UCI) and the anterior thalamic radiation (ATR) have the
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Fig. 3 Development of R1 along each bundle. R1 along the length of each bundle in newborns (O m, dotted line), 3-months-olds (3 m, dashed line), and 6-
months-olds (6 m, solid line). Lines: average R1 at each node across participants. Lines per hemisphere largely overlap. Shaded regions: 95% confidence
intervals. Left panels show the bundles in a representative newborn. Source data are provided as a Source Data file. CS cortico-spinal tract, ATR anterior
thalamic radiation, FcMa forceps major, FcMi forceps minor, VOF vertical occipital fasciculus, pAF posterior arcuate fasciculus, AF arcuate fasciculus, UCI
uncinate fasciculus, SLF superior longitudinal fasciculus, CC cingulum cingulate, ILF inferior longitudinal fasciculus, MLF middle longitudinal fasciculus, IFOF

inferior frontal occipital fasciculus.

slowest rate of Rl development between 0 to 6 months. (iii)
Relating the bundles’ rate of R1 development to their R1 measured
in newborns reveals no systematic relationship between mean R1
in newborns and rate of mean R1 development (Fig. 2¢). Indeed,
there is no significant correlation between R1 in newborns and
R1 slopes across bundles (R% = 0.003, p = 0.81). For example, both
the cortical spinal tract (CS) and the forceps major (FcMa) have
fast R1 development (steep slopes) during early infancy, yet they
have vastly different mean R1 in newborns. Together, these ana-
lyses suggest that mean R1 in newborns does not seem to explain
mean R1 development rate during early infancy.

To relate our findings to previous work that evaluated diffusion
metrics!7~22, we also measured the development of MD across
bundles. Myelination of the white matter is expected to result in
decreases in MD. Consistent with this, we found that mean MD
systematically decreases in all 24 white matter bundles during the
first 6 months of life (Supplementary Fig. 5). Like R1, mean MD
in newborns and the rate of mean MD development varied across
bundles (Fig. 2d, e). Interestingly, while mean MD and RI in
newborns are correlated (R2 = 0.76, p < 0.0001), the rates of MD
and R1 development during early infancy are not correlated
(R2=0.08, p=0.17) across bundles. That is, the longitudinal
developmental patterns observed using MD are different from
those observed with R1. For example, the uncinate (UCI) has slow
R1 development (shallow slope) but rapid MD development
(steep slope). In contrast to R1, we find a negative correlation
between the rate of MD development and the measured MD in
newborns (R =0.71, p <0.0001), such that bundles with higher
mean MD in newborns have an accelerated decrease in MD
during early infancy. The differential development of MD and R1

is consistent with prior reports across the lifespan** and suggests
that other changes to the white matter beyond myelination
contribute to MD development in the first 6 months of life.

R1 development during early infancy varies along the length of
white matter bundles. White matter bundles are large structures
that span substantial distances across the brain and have variable
white matter properties along their length3244. Thus, mean
measurements across the entire bundle may not be representative
and may even obscure differential development patterns along the
length of the bundles. Thus, we next evaluated R1 development
along the length of 24 bundles.

We examined the development of R1 along each bundle using
babyAFQ with two main observations: (i) At each timepoint, R1
exhibits spatial variations along the length of the 24 bundles
(Fig. 3), with the range of variations differing across bundles. For
example, the cortico-spinal tract (CS) exhibits substantial
variations in Rl along its length, whereas the vertical occipital
fasciculus (VOF) shows only modest variations. (ii) Consistent
with the analyses of mean R1, along the length of each of the 24
bundles, R1 systematically increases from newborns (Fig. 3-
dotted line), to 3-month-olds (Fig. 3-dashed line), to 6-months-
olds (Fig. 3-solid line).

To quantify Rl development along white matter bundles
during the first 6 months of life, we used LMMs applied
independently at 100 equidistant locations (nodes) along each
bundle (LMM relating R1 to age; one LMM per node and bundle;
random intercepts for individuals). The LMM slopes estimate the
rate of R1 development at each node (Fig. 4-dashed lines), and we

NATURE COMMUNICATIONS | (2022)13:997 | https://doi.org/10.1038/s41467-022-28326-4 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Projection bundles

Inter-hemispheric bundles

Vertical bundles

D G _ ATR. 002 = T FcMa_ _FeMi _ 002 i) _VOE PAF __ 4002
) | S ) ) ) )
0.6 3 w06 | o u - P | -
5 /\ | k) Ve A o : > i RN )
205 S3e==s 0001 g 205! | 7 Teems loo01 g 8 & \ gl 0001 g
3 W \ o 3 W / b o H — L o
c 04 L 4 | w c 0.4 Wl w» c “—Vl w
£ Om ---slope —O0m ---slope b £ 77 |—0m---slope —O0m ---slope b £ m ---slope —O0m ---slope b
— — —
= 1 50 100 1 50 100 o« 1 50 100 1 50 100 24 1 50 100 1 50 100

Node (inf -> sup) Node (pos -> ant) Node (lh ->rh)  Node (lh -> rh) Node (inf -> sup) Node (inf -> sup)

Longitudinal bundles Curved bundles

5 _SLF_ _cc_ ILF MLF IFOF .~ 5 AF _UC
2, T 2, 7 i)
T = - PN 0 0 06 T
5 . / !t‘ ...~_\\\ / \\\ o 5 ‘.4, \‘~ n
g 05 / Vaza / \ ! b F YA\ 0001 g g05]| 3 0.001 g
2 Y \—m o \'/:N| = 2 ! > | 2
£04 Om ---slope —O0m ---slope —O0m ---slope —O0m ---slope —O0m ---slope = 04 om- --slope Om ---slope | b
- (o)
o 1 50 100 1 50 100 1 50 100 1 50 100 1 50 100 = 1 50 100 1 50 100

Node (pos -> ant) Node (pos -> ant) Node (pos -> ant) Node (pos -> ant) Node (pos -> ant)

Node (pos -> ant) Node (pos -> ant)

Fig. 4 R1 development rate varies along the length of each bundle. a Each panel jointly shows measured R1 in newborns (left y-axis, solid line) and the
slope of R1 development (right y-axis, dashed line) at each node along the bundle. Higher R1in newborns corresponds to higher values in solid lines. Faster
development (more positive slope) corresponds to higher values in dashed lines. Lines from both hemispheres are presented separately but fall on top of
each other. Shaded regions indicate standard error of measured R1 in newborns or slope of R1 development, respectively. Source data are provided as a
Source Data file. CS cortico-spinal tract, ATR anterior thalamic radiation, FcMa forceps major, FcMi forceps minor, VOF vertical occipital fasciculus, pAF
posterior arcuate fasciculus, AF arcuate fasciculus, UCI uncinate fasciculus, SLF superior longitudinal fasciculus, CC cingulum cingulate, ILF inferior
longitudinal fasciculus, MLF middle longitudinal fasciculus, IFOF inferior frontal occipital fasciculus.

compared the slope to the measured R1 in newborns at each node
(Fig. 4-solid lines). Results reveal that in all bundles there is a
nonuniform rate of R1 increase along the length of the bundle.
For example, the posterior ends of the inferior longitudinal
fasciculus (ILF) and middle longitudinal fasciculus (MLF) show a
larger change in R1 (more positive slope) than their anterior ends
(Fig. 4). As R1 is linearly related to myelin fraction, these data
suggest that myelination occurs at different rates along the length
of these 24 bundles.

By plotting the rate of R1 development (slopes from LMM:s;
Fig. 4-dashed) along each bundle together with the measured R1
in newborns (Fig. 4-solid), we could also begin to assess the three
developmental hypotheses. These plots revealed that in some
bundles (e.g., the cortico-spinal tract (CS) or forceps (FcMa/
FcMi)) the rate of R1 increase is higher in locations along the
bundle where R1 in newborns is lower. This suggests a negative
relationship between R1 development and R1 at birth, consistent
with the predictions of the speed-up hypothesis. In other
bundles (e.g., posterior acuate fasciculus (pAF) or acuate
fasciculus (AF)), R1 development rate varies substantially along
the length of the bundle, but not in a clear relation to RI
measured in newborns. This is consistent with the predictions of
the spatial gradient hypothesis. These qualitative observations
provide the first evidence that multiple factors, including spatial
gradients and R1 at birth, may contribute to the development of
R1 along white matter bundles.

Like R1, MD shows (i) spatial variations along the length of
each of the 24 bundles at all three time points, and (ii) significant
development along the length of each bundle (Supplementary
Fig. 6). Different than R1, (i) MD decreases with age
(Supplementary Fig. 6), and (ii) the rate of MD development
along the bundles shows a spatially distinct pattern compared to
R1 (Supplementary Fig. 7). These analyses provide additional
evidence that the development of MD in white matter bundles
differs from R1 during early infancy.

Spatial gradients and R1 at birth together explain R1 devel-
opment. The prior visualizations of R1 along white matter bun-
dles suggest that both R1 at birth and the spatial location in the

brain may contribute to the rate of R1 development during early
infancy. To gain a global understanding of the spatial nature of
R1 development across the white matter of the human brain,
next, we visualized R1 measured in newborns and the rate of R1
development of white matter bundles in the 3D brain space of
newborns (plotting every 10th node, Fig. 5), rather than along
each individual bundle (as in Figs. 3 and 4). These 3D visuali-
zations yield the following observations: (i) R1 in newborns varies
spatially across the brain with overall highest values in central
white matter and lowest values in frontal white matter (Fig. 5b),
and (ii) the rate of R1 development varies spatially across the
brain with faster increases in occipital and parietal white matter
(yellow in Fig. 5¢) and slower development in the temporal and
frontal white matter (black in Fig. 5¢). Overall, these visualiza-
tions suggest that both R1 at birth and spatial gradients across the
brain appear to contribute to the rate of R1 development during
early infancy. Thus, we next quantitatively tested the significance
of each of these two factors separately, and then tested the via-
bility of a model incorporating both factors. We applied a similar
approach to MD (Fig. 5d, e).

First, we tested if the rate of R1 development is related to R1
measured in newborns (LMM relating R1 slope to R1 measured
in newborns at every 10th node, with a random intercept per
bundle). The speed-up hypothesis predicts a significant negative
relationship but the starts-first/finishes-first hypothesis predicts a
significant positive relationship. LMM results reveal a significant
negative relationship between the rate of R1 development and R1
measured in newborns across the white matter (= —0.003,
p <0.0001), that accounts for 40% of the variance in R1 slopes
(R?2=10.40). That is, nodes that have higher R1 in newborns
develop more slowly than nodes that have lower R1 in newborns,
which is consistent with the speed-up hypothesis.

Second, we tested the spatial gradient hypothesis and evaluated
if the rate of R1 development at each node is related to its spatial
location in the brain (LMM relating R1 slope at every 10th node
to the nodes average |x|, y, z coordinates in newborns, and their
interactions |x | *y, |x | *z, and z*y; random intercept per bundle).
Results show that there is a significant relationship between the
rate of R1 development and spatial location along the z and y
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Fig. 5 Spatial gradients and measurements at birth together explain R1 and MD development. In all panels, each point is a node. In all plots only every
10th node of a bundle is plotted to ensure spatial independence of tested nodes. The coordinate of each node is the average |x|,y,z coordinate across

newborns. As all data were acpc-ed, the 0,0,0 coordinate is the anterior commissure; |x|-axis is medial to lateral; y-axis is posterior to anterior; z-axis is
inferior to superior. The axes are identical across panels. a 3D spatial layout of the 24 bundles in the average newborn brain volume. Nodes are color-coded
by bundle (see legend, darker shades for left hemisphere); approximate lobe annotations are included to clarify the spatial layout. b 3D spatial layout of
measured R1 at each node in newborns. Data are averaged across participants. Color indicates R1. € 3D spatial layout of R1 development rate (i.e., the slope
estimated from LMM) at each node. d 3D spatial layout of measured MD at each node in newborns. Data are averaged across participants. Color indicates
MD. e 3D spatial layout of MD development rate (i.e., the slope estimated from LMM) at each node. Source data are provided as a Source Data file. CS
cortico-spinal tract, ATR anterior thalamic radiation, FcMa forceps major, FcMi forceps minor, VOF vertical occipital fasciculus, pAF posterior arcuate

fasciculus, AF arcuate fasciculus, UCI uncinate fasciculus, SLF superior longitudinal fasciculus, CC cingulum cingulate, ILF inferior longitudinal fasciculus,

MLF middle longitudinal fasciculus, IFOF inferior frontal occipital fasciculus.

axes and their combination (z: f=1.68 x 1074, p<0.0001, y:
B=—1.10x10"% p<0.0001, y*z: f=1.05x10"% p<0.0001),
and smaller but significant relationships along the |x| and |x|*y
axes (x: f=4.19x107>, p=0.02, |x|[*y: B=-474x107°
p=0.03), which together explain 65% of the variance
(R? = 0.65). These results support the spatial gradient hypothesis
and suggest that development rate during infancy increases from
inferior to superior, and from anterior to posterior, with
additional gradients along medial to lateral directions.

As both R1 measured in newborns and spatial gradients
explain a considerable amount of variance, a question remains if
they are independent factors contributing to the rate of Rl
development or not. Thus, we tested if the rate of R1 development
at a node depends both on its spatial location and its R1 measured
in newborns (LMM relating R1 slope at every 10th node to
measured R1 in newborns and spatial coordinate: |x|, y, z, |x|*y,
|x|*z, and z*y; with a random intercept per bundle). This
combined model showed a significant negative relationship
between the rate of Rl development and R1 measured in
newborns: (8= —0.001; p=0.002) and significant effects of
spatial location along the z axis (f=1.53 x 1074, p <0.0001), y-
axis (B=—1.11x107%, p<0.0001), y*z axis (f=1.04x10~*
p<0.0001), and |x|*z axis (8=3.50x 1075, p=0.03). Overall,
this combined model explains 67% of the variance in the rate of
R1 development (R2 = 0.67) and outperforms the best individual
model, which was the spatial gradient model (likelihood ratio test,
p=0.002). Significant effects of Rl measured in newborns
(B=—0.0012; p=0.006) and spatial location (z axis:
B=121x10"% p<0.0001, y axis: = —1.19 x 1074, p <0.0001,
y¥z axis: f=1.79 x 1074, p < 0.0001) were also observed when the
first and last 10 nodes were excluded from the model, suggesting
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that the observed effects are not predominantly driven by nodes
in proximity of the cortical gray matter.

Similarly, we find that both MD measured in newborns and
spatial gradients explain the rate of MD development in the white
matter (Fig. 5d, e). As in the analyses of R1 development, we tested
whether the rate of MD development across the white matter
depends on both MD measured in newborns and spatial gradients
using an LMM relating MD slope at every 10th node to measured
MD in newborns and spatial coordinates (||, y, z, |x|*y, |x|*z, and
z*y), with a random intercept per bundle. This combined model
revealed a significant negative relationship between the rate of MD
development and MD in newborns: ( = —0.002; p < 0.0001) as well
as significant effects of spatial location along the x-axis
(B=-9.58x10"8, p=0.0004), the y-axis (B=9.78x1078,
P <0.0001), the z-axis (3= —1.56 x 10~7, p<0.0001), and the ||
*y axis (8= 6.41 x 1073, p=0.03). Overall, this combined model
explains 71% of the variance of the rate of MD development
(R2=0.71).

Together these analyses suggest that the nonuniform rates of
R1 and MD development across the white matter during early
infancy can be explained by two factors: initial values (measured
in newborns) and spatial location in the brain (particularly along
the inferior-to-superior and anterior-to-posterior axes).

Discussion

By combining longitudinal measures of diffusion MRI and
quantitative MRI with a novel approach for automated bundle
quantification (babyAFQ) in individual infant’s brains, we
evaluated the longitudinal development of R1 and MD during
early infancy along 24 white matter bundles, with three main
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findings: First, in accordance with previous research!®, we find
that across the white matter R1 systematically increases from
newborns to 6-months-olds. Second, we find that the develop-
ment of R1 is nonuniform across white matter bundles. Third,
we discovered that the rate of R1 development during infancy is
linked to both R1 at birth and spatial gradients. As R1 develops
faster in sections of bundles that are less mature in newborns
and as it is linearly related to myelin, these data support the
speed-up hypothesis of infant myelin development. In addition,
the rate of R1 development increases along the inferior-to-
superior axis, the anterior-to-posterior axis, as well as along
diagonal axes. These data suggest that myelination of the white
matter during early infancy depends both on the initial myelin
content at birth and spatial gradients.

Interestingly, the observed developmental pattern of MD
showed both similarities and differences from the developmental
pattern of R1. Consistent with the notion that increases in myelin
(and R1) would be associated with decreases in MD, we find that
MD in the white matter decreases during infancy, as reported
previously*>~47. However, we also find that the rate and pattern of
MD and R1 development across the white matter are not iden-
tical. As MD is impacted by structural components of the white
matter beyond myelin (e.g., fiber diameter and packing!823-2%)
these differences (i) highlight the importance of using measures
such as R1 which are linearly related to myelin?%29-31 to assess
myelin development specifically, and (ii) suggest that additional
properties of white matter bundles beyond myelin are also
developing during early infancy. Future histological measure-
ments in postmortem pediatric samples may elucidate these
mechanisms. In addition, while we have multiple measurements
over time in the same individuals, our sample is limited to 13
infants and the first 6 months of life. Thus, it would be fruitful to
extend these types of measurements to a larger sample of infants
as well as over a longer period of infancy to better assess varia-
bility across individuals and determine the full developmental
trajectory.

Crucially, as quantitative R1 measures are comparable across
MRI scanners of the same field strength®!>26, we can compare
our R1 measurements in infants to those of other populations. For
example, we find that Rl in white matter bundles of full-term
newborns ranges between 0.42-0.55 [s~!], which is higher than R1
in the white matter of preterm newborns, which ranges between
0.29-0.36 [s~1]8. This observation suggests that at birth there is
some level of myelin in all 24 bundles investigated here, con-
trasting with classic histological studies which reported myelin
only in a handful of white matter bundles in newborns (e.g., the
cortical-spinal tract)>=>. These contrasting results may be due to
two reasons: On the one hand, as classic dissection studies used
qualitative visual inspection of myelin stains in postmortem tissue,
quantitative R1 measurements may simply be more sensitive to
minimal amounts of myelin. On the other hand, more work is
needed to elucidate what impacts R1 in the white matter bundles
of the infant brain. While in the adult brain 90% of the variance in
R1 in white matter bundles is related to myelin?>31, in the sparsely
myelinated infant brain, additional factors such as tissue density
(e.g., proliferation of glia cells), water mobility, or changes in iron
may contribute more strongly to RI.

Our measurements also reveal that Rl in 6-months-olds’
bundles ranges between 0.54-0.73 [s~!], which is lower than the
average R1 measured in adults’ bundles, which ranges between
0.80-1.25 [s~ 114449, This comparison suggests that none of the 24
bundles investigated here are fully myelinated by 6 months of age.
This is not surprising, as the average R1 across the white matter
increases roughly linearly during the first year of life, after which
its development slows down!>°0, but continues until early
adulthood*+>1. Tt is interesting that the bundles’ R1 increases on

average by ~17% (0.16 [s~!]) within the first 6 months of life, as
this change is larger than the increase of ~0.05 [s~!] observed
over 10 years of childhood development** (from 8- to 18-years of
age). This observation highlights the profound changes occurring
in the white matter during early infancy.

The finding that less mature white matter at birth myelinates
faster during infancy has several implications. First, our data not
only provides empirical evidence against the classic view that
white matter develops in a strictly hierarchically manner from
early sensory to higher-level cognitive regions>3, but also offers
insights regarding the nature of white matter development in
infancy. As myelination is experience-dependent!%-13, and we
find that the rate of myelination after birth is negatively related
to its initial (birth) level, one conjecture from our data is that
the postnatal environment and experiences may produce a
flurry of myelination during the first 6 months of life, overtaking
earlier prenatal gradients. Second, as previous data has shown a
link between cognitive development, processing speed, and
myelin development during infancy and early childhood>>°3, we
further hypothesize that the observed negative relationship
between myelination at birth and the rate of myelin develop-
ment is functionally relevant. For example, one consequence of
this developmental trajectory is that it generates a more uniform
distribution of myelin across the white matter, which may allow
for more coordinated and efficient communication across the
entire brain.

The rate of R1 development also varies spatially, with faster
development occurring predominantly in the inferior-to-superior
and anterior-to-posterior directions. As a result of these spatial
gradients, the parietal and occipital lobe’s white matter develops
faster than central, frontal, and temporal white matter. This spatial
pattern differs from observations made in preterm newborns
before 40 weeks of gestation, which showed fastest development
in the central white matter4s. Instead, this pattern of R1 devel-
opment during early infancy is more aligned with spatial gra-
dients observed later in infancy and early childhood!®. An open
question is whether these spatial gradients are innate, or experi-
ence driven. One interesting avenue for answering this question
in future research would be comparing the longitudinal devel-
opment of spatial gradients across preterm newborns and full-
term newborns. We hypothesize that the consequence of these
spatial gradients may be to allow white matter that supports
crucial functions such as vision (occipital lobe) and motor control
(parietal lobe) to develop faster during infancy. Another inter-
esting avenue for future studies could hence be to examine the
relationship between R1 development in the white matter and R1
development in cortex”43>,

Finally, our study may have important societal implications.
First, as R1 values are quantitative and have units that can be
numerically compared across scanners, populations, and
individuals2®, our measurements in typically developing infants
provide a key foundation for large-scale studies of infant brain
development in typical®®>’ and clinical populations such as
preterm infants®8, infants with cerebral palsy>?, or fetal alcohol
spectrum disorders®. Second, our methodology is translatable to
clinical settings as it is performed during natural sleep. Third, we
developed an automated processing pipeline that simultaneously
provides high throughput and high precision in individual
infants. This level of precision may enable the early identification
of developmental impairments in at-risk infants, which in turn
may improve the efficacy of interventions®l. Further, the spatial
precision afforded by our methods may facilitate future work on
the spatial dependency of both quantitative and diffusion metrics.
For example, it would be interesting to formally assess if and how
these measures change in spatial locations where multiple bundles
cross each other.
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In conclusion, we find that during early infancy myelin content
at birth and spatial gradients of myelin development together
explain the rate of myelin growth across the white matter of the
human brain. This finding offers a parsimonious model of white
matter development during early infancy. We hypothesize that
this pattern of myelination during infancy enables some level of
myelin becoming quickly available throughout the brain, to
promote efficient and coordinated global communication, while
at the same time prioritizing the development of most critical
functions such as vision and motor coordination.

Methods

Participants. Sixteen full-term and healthy infants (seven female) were recruited to
participate in this study. Three infants provided no usable data because they could
not stay asleep once the MRI sequences started and hence we report data from 13
infants (six female) across three timepoints: newborn (N = 9; age: 8-37 days),

3 months (N = 10; age: 79-106 days), and 6 months (N = 10; age: 167-195 days).
Two participants were re-invited to complete scans for their 6-months session that
could not be completed during the first try. Both rescans were performed within
7 days and participants were still within the age range for the 6-months timepoint.
The participant population was racially and ethnically diverse reflecting the
population of the Bay Area, including two Hispanic, nine Caucasian, two Asian,
and three multiracial participants. Six out of the 13 infants participated at all three
timepoints (0, 3, 6 months). Due to the Covid-19 pandemic and restricted research
guidelines, data acquisition was halted. Consequently, the remaining infants par-
ticipated in either 1 or 2 sessions.

Expectant mothers and their infants in our study were recruited from the San
Francisco Bay Area using social media platforms. We performed a two-step
screening process for expectant mothers. First, mothers were screened over the
phone for eligibility based on exclusionary criteria designed to recruit a sample of
typically developing infants and second, eligible expectant mothers were screened
once again after giving birth. Exclusionary criteria for expectant mothers were as
follows: recreational drug use during pregnancy, significant alcohol use during
pregnancy (more than three instances of alcohol consumption per trimester; more
than 1 drink per occasion), lifetime diagnosis of autism spectrum disorder or a
disorder involving psychosis or mania, taking prescription medications for any of
these disorders during pregnancy, insufficient written and spoken English ability to
understand the instructions of the study, or learning disabilities that would
preclude participation in the study. Exclusionary criteria for infants were: preterm
birth (<37 gestational weeks), low birthweight (<5 bs 8 0z), small height (<18
inches), any congenital, genetic, and neurological disorders, visual problems,
complications during birth that involved the infant (e.g., NICU stay), history of
head trauma, and contraindications for MRI (e.g., metal implants). Study protocols
for these scans were approved by the Stanford University Internal Review Board on
Human Subjects Research. Participants were compensated with 25 dollars per hour
for their participation in the study.

Data acquisition procedure. Data collection procedure was developed in a recent
study*. All included participants completed the multiple scanning protocols
needed to obtain anatomical MRI, qMRI, and dMRI data. Data were acquired at
two identical 3 T GE Discovery MR750 Scanners (GE Healthcare) with Nova
32-channel head coils (Nova Medical) located at Stanford University: (i) Center for
Cognitive and Neurobiological Imaging (CNI) and (ii) Lucas Imaging Center.

As infants have low weight, all imaging was done with first level SAR to ensure
their safety.

Scanning sessions were scheduled in the evenings close in time to the infants’
typical bedtime. Each session lasted between 2.5 and 5 h including time to prepare
the infant and waiting time for them to fall asleep. Upon arrival, caregivers
provided written, informed consent for themselves and their infant to participate in
the study. Before entering the MRI suite, both caregiver and infant were checked to
ensure that they were metal-free, and caregivers changed the infant into MR-safe
cotton onesies and footed pants provided by the researchers. The infant was
swaddled with a blanket with their hands to their sides to avoid their hands
creating a loop. During sessions involving newborn infants, an MR-safe plastic
immobilizer (MedVac, www.supertechx-ray.com) was used to stabilize the infant
and their head position. Once the infant was ready for scanning, the caregiver and
infant entered the MR suite. The caregiver was instructed to follow their child’s
typical sleep routine. As the infant was falling asleep, researchers inserted soft wax
earplugs into the infant’s ears. Once the infant was asleep, the caregiver was
instructed to gently place the infant on a makeshift cradle on the scanner bed,
created by weighted bags placed at the edges of the bed to prevent any side-to-side
movement. Finally, to lower sound transmission, MRI compatible neonatal Noise
Attenuators (https://newborncare.natus.com/products-services/newborn-care-
products/nursery-essentials/minimuffs-neonatal-noise-attenuators) were placed on
the infant’s ears and additional pads were also placed around the infant’s head to
stabilize head position.

An experimenter stayed inside the MR suite with the infant during the entire
scan. For additional monitoring of the infant’s safety and tracking of the infant’s

head motion, an infrared camera was affixed to the head coil and positioned for
viewing the infant’s face in the scanner. The researcher operating the scanner
monitored the infant via the camera feed, which allowed for the scan to be stopped
immediately if the infant showed signs of waking or distress. This setup also
allowed tracking the infant’s motion; scans were stopped and repeated if there was
excessive head motion. To ensure scan data quality, in addition to real-time
monitoring of the infant’s motion via an infrared camera, MR brain image quality
was also assessed immediately after acquisition of each sequence and sequences
were repeated if necessary.

Data acquisition parameters and preprocessing

Anatomical MRI. T2-weighted images were acquired and used for tissue segmen-
tations. T2-weighed image acquisition parameters: TE = 124 ms; TR = 3650 ms;
echo train length = 120; voxel size = 0.8 mm?3; FOV = 20.5 cm; Scan time: 4 min
and 5s.

We generated gray/white matter tissue segmentation of all infants and time-
points and used these segmentations to optimize tractography (anatomically
constrained tractography, ACT®2). The T2-weighted anatomy, and a synthetic T1-
weighted whole-brain image generated from the SPGRs and IR-EPI scans using
mrQ software (https://github.com/mezera/mrQ) were aligned and used for
segmentation. Multiple steps were applied to generate accurate segmentation of
each infant’s brain at each timepoint>. (1) An initial segmentation of gray and
white matter was generated from the T1-weighted brain volume using infant
FreeSurfer’s automatic segmentation code (infant-recon-all; https://
surfer.nmr.mgh.harvard.edu/fswiki/infantFS®3). (2) A second segmentation was
done using the T2-weighted anatomical images, which have a better contrast
between gray and white matter in young infants, using the brain extraction toolbox
(Brain Extraction and Analysis Toolbox, iBEAT, v-2.0 cloud processing, https://
ibeat.wildapricot.org/®4-60). (3) The iBEAT segmentation, which was more
accurate, was manually corrected to fix segmentation errors (such as holes and
handles) using ITK-SNAP (http://www.itksnap.org/). (4) The iBEAT segmentation
was then reinstalled into FreeSurfer and the resulting segmentation in typical
FreeSurfer format was used to optimize tractography. We also identified the
ventricles in each infant using the iBEAT ventricle labels. We visually inspected
these labels in each infant and time point and manually edited them where
necessary, to ensure that all ventricle voxels were included in the label. We then
used this label as a mask, thus removing the ventricles from the R1 and MD maps,
to limit the impact of partial volume artifacts between cerebral spinal fluid and
white matter in neighboring bundles.

Quantitative MRI. An inversion-recovery EPI (IR-EPI) sequence was used to
estimate relaxation time (R1) at each voxel. Spoiled-gradient echo images (SPGRs)
were used together with the EPI sequence to generate whole-brain synthetic
T1-weighted images. We acquired 4 SPGRs whole-brain images with different flip
angles: a = 4°, 10° 15°, 20% TE =3 ms; TR = 14 ms; voxel size =1 mm?3; number
of slices = 120; FOV = 22.4 cm; Scan time: 4 times ~5 min. We also acquired
multiple inversion times (TI) in the IR-EPI using a slice-shuffling technique®”:
20 TIs with the first TI = 50 ms and TI interval = 150 ms as well as a second IR-
EPI with reverse-phase encoding direction. Other acquisition parameters were:
voxel size =2 mm?3; number of slices = 60; FOV = 20 cm; in-plane/through-plane
acceleration = 1/3; Scan time = two times 1:45 min.

IR-EPI data were used to estimate R1 (R1 = 1/T1) in each voxel. First, as part of
the preprocessing, we performed susceptibility-induced distortion correction on
the IR-EPI images using FSL’s top-up and the IR-EPI acquisition with reverse-
phase encoding direction. We then used the distortion corrected images to fit the
T1 relaxation signal model using a multi-dimensional Levenberg-Marquardt
algorithm®. The signal equation of T1 relaxation of an inversion-recovery
sequence is an exponential decay: S(t) = a(1 — be~*/T"), where t is the inversion
time, a is proportional to the initial magnetization of the voxel, b is the effective
inversion coefficient of the voxel (for perfect inversion b = 2). We applied an
absolute value operation on both sides of the equation and used the resulting
equation as the fitting model. We use the absolute value of the signal equation
because we use the magnitude images to fit the model. The magnitude images only
keep the information about the strength of the signal but not the phase or the sign
of the signal. The output of the algorithm is the estimated T1 in each voxel. From
the T1 estimate, we calculated R1 (R1 = 1/T1) at each voxel.

Diffusion MRI. We obtained dMRI data with the following parameters: multi-shell,
#diffusion directions/b-value = 9/0, 30/700, 64/2000; TE = 75.7 ms; TR = 2800 ms;
voxel size =2 mm?; number of slices = 60; FOV = 20 cm; in-plane/through-plane
acceleration = 1/3; scan time: 5:08 min. We also acquired a short dMRI scan with
reverse phase encoding direction and only 6 b= 0 images (scan time 0:20 min).
DMRI preprocessing and tractography were performed in accordance with
recent work from the developing human connectome project®®79, using a
combination of tools from MRtrix37172 (github.com/MRtrix3/mrtrix3) and
mrDiffusion (http://github.com/vistalab/vistasoft). We (i) denoised the data using a
principal component analysis’3, (ii) used FSL’s top-up tool (https://
fsl.fmrib.ox.ac.uk/) and one image collected in the opposite phase-encoding
direction to correct for susceptibility-induced distortions, (iii) used FSL’s eddy to
perform eddy current and motion correction, whereby motion correction included
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outlier slice detection and replacement’?, and (iv) performed bias correction using
ANTSs7>. The preprocessed dMRI images were registered to the whole-brain T2-
weighted anatomy using whole-brain rigid-body registration and alignment quality
was checked for all images. dMRI quality assurance was also performed. Across all
acquisitions, <5% * 0.72% of dMRI images were identified as outliers by FSL’s eddy
tool. We found no significant effect of age across the outliers (no main effect of age:
F(2,26) = 1.97, p = 0.16, newborn: 1.07 + 0.88%; 3 months: 0.4 + 0.40%; 6 months:
0.67 + 0.85%), suggesting that the developmental data was well controlled across all
time-points.

Next, voxel-wise fiber orientation distributions (FODs) were calculated using
constrained spherical deconvolution (CSD) in MRtrix37! (Supplementary Fig. 2).
We used the Dhollander algorithm?° to estimate the three-tissue response function,
and we lowered the FA threshold to 0.1 to account for the generally lower FA in
infant brains. We computed FODs with multi-shell multi-tissue CSD?7 separately
for the white matter and the CSF. As in previous work®, the gray matter was not
modeled separately, as white and gray matter do not have sufficiently distinct
b-value dependencies to allow for a clean separation of the signals. Finally, we
performed multi-tissue informed log-domain intensity normalization.

We used MRtrix37! to generate a whole-brain white matter connectome for
each infant and time point. Tractography was optimized using the tissue
segmentation from the anatomical MRI data (anatomically constrained
tractography, ACT%2). We argue that this approach is particularly useful for infant
data, as gray and white matter cannot be separated in the FODs. For each
connectome, we used probabilistic fiber tracking with the following parameters:
algorithm: IFOD1, step size: 0.2 mm, minimum length: 4 mm, maximum length:
200 mm, maximum angle: 15°. Seeds for tractography were randomly placed within
the gray/white matter interface (from anatomical tissue segmentation), which
enabled us to ensure that tracts reach the gray matter. Each connectome consisted
of 2 million streamlines. MRtrix3 software was also used to fit tensor kurtosis
models from which we estimated MD maps for each individual.

Bundle delineation with baby automated fiber quantification (babyAFQ). Here
we developed a new toolbox (babyAFQ) that identifies white matter bundles in
individual infants. BabyAFQ is openly available as a novel component of AFQ32
(https://github.com/yeatmanlab/AFQ/tree/master/babyAFQ) and identifies the
following bundles in infants (Fig. 1): anterior thalamic radiation (ATR), cortico-
spinal tract (CS), posterior arcuate fasciculus (pAF), vertical occipital fasciculus
(VOE), forceps major (FcMa), forceps minor (FcMi), arcuate fasciculus (AF),
uncinate fasciculus (UCI), superior longitudinal fasciculus (SLF), cingulum cin-
gulate (CC), inferior longitudinal fasciculus (ILF), inferior frontal occipital fasci-
culus (IFOF) and the middle longitudinal fasciculus (MLF).

BabyAFQ uses anatomical ROIs as waypoints for each bundle. That is, a given
tract is considered a candidate for belonging to a bundle only if it passes through all
waypoints associated with that bundle. The waypoint ROIs were adjusted from
those commonly used in adults®® to better match the head size and white matter
organization of infants (Supplementary Fig. 3). Specifically, we: (i) spatially
restricted some of the waypoint ROIs to account for the more compact infant
brain, (ii) introduced a third waypoint for curvy bundles, (iii) generated new
volumetric waypoint ROIs for the VOF (Supplementary Fig. 4) to allow
identification of the VOF in brains for which cortical surface reconstructions are
not available, and (iv) added new waypoint ROIs for identifying the MLF, as the
MLF was not included in prior AFQ versions. Critically, these waypoints were
defined in a neonate infant template brain (UNC Neonatal template®®) and are
transformed from this template space to each individual infant’s brain space before
bundle delineation. The use of an infant template brain is critical as commonly
used adult templates, such as the MNI brain, are substantially larger and difficult to
align to infants’ brains. In cases where a given tract is a candidate for multiple
bundles, a probabilistic atlas, which is also transformed from the infant template
space to the individual infant brain space, is used to determine which bundle is the
better match for the tract. Bundles are then cleaned by removing tracts that exceed
a gaussian distance of 4 standard deviations from the core of the bundle. Critically,
babyAFQ was designed to seamlessly integrate with AFQ, so that additional tools
for plotting, tract profile evaluation, and statistical analysis can be applied after
bundle delineation.

BabyAFQ quality assurance. To evaluate the quality of the bundle delineation by
babyAFQ, we compared the automatically identified bundles to manually deli-
neated gold-standard bundles. Manual bundle delineation was performed for the
newborns in DSI Studio (http://dsi-studio.labsolver.org/) by two anatomical
experts who were blind to the results of babyAFQ. As a benchmark, we also
delineated bundles with AFQ, which was developed using adult data, and com-
pared these bundles to the gold-standard bundles. For both babyAFQ and AFQ we
quantified the spatial overlap between the automatically identified bundles and the
manually identified bundles using the dice coefficient’® (DC): DC = ﬂ"’f‘%‘l , where |
A| are voxels of automatically identified bundles, |B| are voxels of the manual
bundles, and |ANB] is the intersection between these two sets of voxels (Fig. 1b).
We compared dice coefficients between babyAFQ and AFQ in two repeated
measures analyses of variance (rmANOVAs). First, a two-way rmANOVA with
AFQ-type and bundle as factors allowed us to evaluate the effect of AFQ type

across all bundles. Second, a three-way rmANOVA on bilateral bundles with AFQ-
type, bundle, and hemisphere as factors, enabled us to test for additional hemi-
spheric differences. Finally, we also used the dice coefficients to test if tracts
identified as belonging to the VOF were similar or different across methods—using
volumetric way-point ROIs vs. surface ROIs (Supplementary Fig. 4).

In addition to the quantitative evaluation, we examined all bundles delineated
using babyAFQ and AFQ qualitatively at all time-points (Supplementary Fig. 8) to
evaluate how well they match the typical spatial extent and trajectory across the
brain. We also created, with pyAFQ>%, an interactive 3D visualization of an
example infant’s bundles at each time point: 0 months, 3 months, and 6 months.

Modeling R1 development. After identifying all bundles with babyAFQ, we
modeled their R1 development using LMMs. First, we modeled mean R1 devel-
opment within each bundle using LMMs with age as predictor and a random
intercept (estimated R1 at birth) for each individual (Fig. 2a). We used model
comparison (likelihood ratio tests) to determine that LMMs allowing different
slopes for each individual do not better explain the data compared to LMMs using
a single slope across individuals. To evaluate differences in developmental trajec-
tories between bundles, we plotted the mean R1 measured in newborns (Fig. 2b)
and well as the mean R1 development rate (slopes of LMMs) for each bundle
(Fig. 2¢).

Next, we evaluated the development of R1 along the length of each bundle. For
this, we divided each bundle into 100 equidistant nodes and evaluated R1 at each
time-point in each node (Fig. 3). We then determined the rate of R1 development
at each node (one LMM per node; random intercepts for each individual as above).
For each bundle, we then plotted R1 measured in newborns and the rate of R1
development across nodes to visualize their relationship along each bundle (Fig. 4).

Finally, we evaluated the relationship between the rate of R1 development
(LMM slope) and both the measured R1 in newborns as well as the spatial location
in the brain (Fig. 5). This analysis was done for every 10th node along each bundle
to ensure spatial independence across nodes within a bundle. All subplots in Fig. 5
show the data at each node plotted at their average location in the newborn’s brain
(average|x|, y and z coordinates in the newborn sample). For the x axis we used the
|x| coordinates, as previous work suggests a medial to lateral spatial gradient of
development across both hemispheres of the infant brain®. As all newborn brain
volumes were rotated to be aligned to a plane crossing through the anterior and
posterior commissures (i.e., brain volumes were acpc-ed), the (0,0,0) coordinate
corresponds to the average coordinate of the anterior commissure across newborns.
Figure 5a is included to orient the reader to the spatial layout in these plots.
Figure 5b shows the spatial layout of measured R1 in newborns across the white
matter, and Fig. 5¢ shows the spatial layout of R1 development rate across the
white matter.

We quantified the relationship between R1 development rate and initial R1
as well as spatial location via a series of LMMs. In the first LMM, we related R1
development rate to R1 measured in newborns, with a random intercept for
each bundle:

(1) RiSlope ~ 1+ R1 in Newborns + (1|Bundle).
In the second LMM, we related R1 development rate to location in the brain
(%], 3> 2 |x|*y, y*z, and z*|x| coordinates, all coordinates were z-scored
before including interaction terms), with a random intercept per bundle:
(2) RiSlope~1+ |x| 4+ y+z+ |x|*y + [x[*z + y*z + (1|Bundle).
In the third model, we related R1 development to both R1 measured in
newborns as well as spatial location, with a random intercept per bundle:
(3) RilSlope~1+Rl in Newborns+ |x|+y+z+ |x|*y + |x|*z + y*z + (1]
Bundle).

We used a likelihood ratio test to assess whether this third model outperforms
the second model. Similar analyses were also performed on MD data, to relate our
findings to previous work. MD results are presented in Figs. 2d, e, 5d, e and
Supplementary Figs. 5-7.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data required to generate the main figures are provided as a Source Data file with this
paper and is also made available in GitHub (https://github.com/VPNL/babyWmDev)
and on Zenodo (https://doi.org/10.5281/zenodo.5788646). Source data are provided with
this paper.

Code availability

The data were analyzed using open source software, including mrDiffusion and MRtrix371.
We developed a new toolbox for automated fiber quantification in individual infants
(babyAFQ) and make it openly available (https://github.com/yeatmanlab/AFQ/tree/master/
babyAFQ, for an example of how to run babyAFQ see https://figshare.com/s/45628240
6044bbb490ee). Code to reproduce all figures is available in GitHub (https://github.com/
VPNL/babyWmDev) and on Zenodo (https://doi.org/10.5281/zenodo.5788646).
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