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Fine-scale heterogeneity in population density
predicts wave dynamics in dengue epidemics
Victoria Romeo-Aznar1,2,3, Laís Picinini Freitas 4,5, Oswaldo Gonçalves Cruz5, Aaron A. King 6,7,8 &

Mercedes Pascual 1,8✉

The spread of dengue and other arboviruses constitutes an expanding global health threat.

The extensive heterogeneity in population distribution and potential complexity of movement

in megacities of low and middle-income countries challenges predictive modeling, even as its

importance to disease spread is clearer than ever. Using surveillance data at fine resolution

following the emergence of the DENV4 dengue serotype in Rio de Janeiro, we document a

pattern in the size of successive epidemics that is invariant to the scale of spatial aggregation.

This pattern emerges from the combined effect of herd immunity and seasonal transmission,

and is strongly driven by variation in population density at sub-kilometer scales. It is apparent

only when the landscape is stratified by population density and not by spatial proximity as

has been common practice. Models that exploit this emergent simplicity should afford

improved predictions of the local size of successive epidemic waves.
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When a new pathogen emerges, how large will successive
epidemic waves be? When the infections confer tem-
porary or long-term immunity, the answer to this

central question will depend on spatial scale in complex ways we
do not yet sufficiently understand. In particular, the size of suc-
cessive outbreaks will result from the interplay of herd immunity
and transmission seasonality across a landscape determined by
the distribution and behavior of the human hosts, which has been
called the “spatiotemporal geometry of herd immunity”1. Out-
breaks of seasonal influenza, for example, can differ from city to
city along multiple axes: epidemic vs. endemic character, depth of
inter-seasonal troughs, and duration and shape of epidemic
waves2–4. City size can modulate the influence of climatic drivers
of transmission in seasonal influenza1, and differential crowding
within cities of different size has been shown to affect the shape of
COVID-19 outbreaks, with longer tails in larger populations5.
Megacities continue to grow spatially in ways that encompass
pronounced heterogeneity in population density and movement,
yet the effects of the resulting fine-scale structure on disease
spread remain largely unexplored6–8, with some notable excep-
tions relying on individual-based models9. What patterns have
been observed have been deduced from implicit treatments of
average crowding and connectivity as functions of city size1,5.
However, transmission is an intrinsically local process and the
local density and structure of the population has the potential to
be a critical determinant of infection spread. Therefore examining
the role of fine-scale population structure on infectious-disease
dynamics is essential to improve predictive models of urban
disease transmission and spread10,11.

Traditional mathematical models with ‘well-mixed’ transmis-
sion between individuals within a population have formed a
foundation for predictive epidemiological theory12,13. Explicit
consideration of the spatial dimension is proving increasingly
important8,10,14,15 due to growing population connectivity at
regional to planetary scales, novel sources of data on fine-scale
individual movement, and the pronounced heterogeneity of the
distribution of the human population across the landscape16,17.
Whereas connectivity among cities and regions has been
addressed with metapopulation formulations that couple local
dynamics via movement fluxes15,18,19, the treatment of space
within cities remains a challenge20,21. It remains unclear at what
scales aggregation of data is appropriate and how best to manage
the trade-off between model fidelity and computational expense
in the parameterization of movement, local environmental con-
ditions, and epidemiological dynamics.

The foregoing issues are prominent in the case of vector-borne
arbovirus infections, including dengue, Zika, and chikungunya.
The dengue virus, in particular, has become a global health threat
affecting a large fraction of the world’s population as it continues
to expand its geographical range22,23. Because of their domes-
ticated lifestyle and close association with human hosts, the
mosquito vectors responsible for dengue transmission (and also
Zika, chikungunya, and yellow fever), Aedes aegypti and Aedes
albopictus, are also expanding their distribution under urbani-
zation and climate change. The population dynamics of these
vector-borne diseases exhibit nonlinearity (in part, a consequence
of the immunity engendered by infection) and climate-driven
transmission seasonality (caused by seasonal cycles in mosquito
abundance) over the small spatial scales at which both hosts and
vectors vary in density24,25. A recent well-mixed model for the
city as a whole, applied to the emergence of DENV1 in the
megacity of Rio de Janeiro, Brazil, illustrates the challenge, by
failing to predict time to re-emergence26. Previous studies (e.g.,
refs. 27,28) also indicate the importance of spatial structure to the
population dynamics of the disease and the build-up of herd
immunity in particular.

The high spatial resolution of dengue surveillance data from Rio
de Janeiro (250 m by 250m) provides an opportunity to address
variation in human population density at a degree of granularity
unprecedented for a whole city. During the five years from 2010 to
2014, Rio de Janeiro experienced three major dengue outbreaks,
dominated first by the DENV1 serotype, then followed for two
consecutive years by the emergent DENV4 serotype, then newly
arrived in Brazil (Fig. 1A)29–31. The intermittent epidemic pattern
of two to three peaks dominated by an emergent single serotype, is
typical of dengue dynamics in many cities of South America32,33.
We address here one prominent feature of these emergent epi-
demics, namely the ratio of consecutive peak sizes when a serotype
first enters the city. This ratio varies widely across the city
(Fig. 1C); we demonstrate that it does so as a function of highly
localized population density. To understand this phenomenon, we
examine the interaction of local herd immunity with seasonal
transmission. Specifically, we show that sparsely populated areas
experience short-lived outbreaks which reach herd immunity
sooner than those in densely-populated areas. Seasonality plays a
major role by interacting with the build-up of herd immunity.
Because seasonal declines in mosquito abundance curtail the
transmission season, dense areas are left with disproportionately
more susceptible hosts at the end of the first wave. Accordingly,
the relative size of successive waves is highly sensitive to the timing
of the introduction of infection into each local area. We investigate
this “spark rate” of infection importation empirically, and examine
its dependence on population density (computed here as the
population in an area of 250m by 250m). We go on to investigate
alternative representations of space in predictive models (Fig. 1B).
We propose that spatial geometry based on human density at fine
scales is more relevant to disease dynamics than the traditional
coupling based on proximity in regular grids or arbitrary
administrative units. This suggestion carries implications for
predictive metapopulation models, including those for infectious
diseases other than vector-transmitting ones, such as seasonal
influenza and COVID-19.

Results
Empirical pattern in the size of successive epidemic peaks. We
specifically analyze the peak ratio for the two consecutive years of
DENV4 during which this serotype, unlike DENV1, was new to
the city (Fig. 1A)29,30. We consider that the whole population was
initially susceptible to the virus, which neglects heterotypic pro-
tection. We find that the ratio of the peak sizes for the second and
first seasons of DENV4 varies across the city with values below
and above one, and exhibits a clear nonlinear relationship with
human density (Fig. 2A, C). The peak ratio is larger at high and
low densities than it is at intermediate values (Fig. 2A). A similar
pattern is obtained for the ratio of the accumulated incidence in
each season (Supplementary Fig. 8). This pattern arises when
units are aggregated by population density but disappears when
aggregation is constrained by geographical contiguity as is typi-
cally done for administrative subdivisions (Fig. 2B) (see maps in
Supplementary Fig. 7). We can expect differences, since the two
criteria of aggregation generate a very different organization of
the city (Fig. 1B). Notably, the pattern of peak ratio as a function
of human density is invariant under the number of groupings
considered, as illustrated by the different colors in Fig. 2A. Thus,
this dependence becomes scale-independent over an order of
magnitude in the number of groupings when aggregation is
governed by population density itself.

Role of population density: deterministic SIR model. To
explain the peak ratio pattern, we initially investigated the role of
population density with a deterministic seasonal SIR model
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(Methods). We hypothesize that two opposite variables shape the
ratio of consecutive peaks by determining how much population
immunity is accumulated during the first season, namely the
arrival time of infection to a spatial unit and its population
density. According to the model, given an arrival time t0, the peak
ratio increases with the population of the unit, with the second
peak becoming larger than the first one (Fig. 3A). That is, smaller

units achieve the epidemic peak earlier, because their smaller
susceptible pool is more rapidly depleted. When transmission
rates vary seasonally, most of the susceptible population is
depleted in the first year in a small unit, leaving few to be infected
the next season. As the population density grows, the number of
susceptible individuals remaining at the beginning of the second
season is larger and the size of the second peak increases con-
comitantly. In addition to this effect, the timing of the local start
of transmission also strongly affects the size of the pool of

Fig. 2 Ratio between the size of the successive peaks of DENV4. The ratio
for the size of the second epidemic over the first one was computed for
each spatial location given different resolutions and the two different ways
to aggregate space. In (A), the 250m by 250m units are aggregated
according to their population density. In this case, the peak ratio exhibits a
clear but nonlinear relationship with human density (see Supplementary
Fig. 8D for a log scale representation). The colors correspond to partitions
of the city into different numbers of groups. The pattern is invariant to the
number of groups (resolution). In (B), space is subdivided according to the
typical geographical partition into administrative units based on contiguous
space. The city of Rio de Janeiro is administratively subdivided into different
resolutions, namely 10 or 33 administrative regions (Fig. 1B and Fig. S7B,
respectively) and 160 neighborhoods (Supplementary Fig. 7C). For any of
these partitions, no relationship is observed between peak ratio and
population density, as illustrated here for the three spatial scales of
established administrative subdivisions of the city (from left to right: 10, 33,
and 160 regions). In (C), the heterogeneity in peak ratio across the city is
illustrated at the finest spatial resolution. The peak ratio spans a range of
values, from below to above one (from blue to red), corresponding,
respectively, to locations with a second peak smaller than the first one, and
vice-versa. This fine-scale heterogeneity in peak ratio across space reflects
that of population density (Supplementary Fig. 6).

Fig. 1 Dengue incidence patterns in Rio de Janeiro city. A Total monthly
cases of dengue reported in the city from January 2010 to December 2014.
Red and blue dots correspond, respectively, to outbreaks with two different
dominant serotypes, DENV1 and DENV4, with the latter making its first
emergence in Rio de Janeiro. Black circles indicate seasons without
outbreaks and only a small number of cases. B The maps illustrate the
geography of the city when 250m by 250m units are aggregated into
10 strata by administrative regions (top) or population density—number of
individuals in an area of 250m by 250m—(bottom) (see Supplementary
Fig. 6 for the population density map with the scale reference). C Examples
of three different possible patterns for the relative size of the peaks and
therefore, peak ratio, for DENV4 incidence in three of the 10 administrative
regions shown in the upper map in (B). The colors indicate the
corresponding regions in this map.
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susceptible individuals remaining after the first season. In parti-
cular, if infection arrives late, the local epidemic has less time to
grow before the transmission season is curtailed. Thus, peak ratio
increases with later arrival (Fig. 3A). We find that the time of
local infection arrival is strongly associated with human density,
whereby the most dense units exhibit the first reported DENV4
cases about three months earlier (Fig. 3B). Thus, population
density affects peak ratio in two opposite directions, and the
seasonal SIR model qualitatively recovers the documented non-
linear empirical pattern (Fig. 3C) when population densities and
t0 values comparable to those observed in Rio de Janeiro are used
(Fig. 3B). The deterministic nature of the model combined with

the small size of the units makes simulations very sensitive to
initial t0 values. Small population sizes per se would introduce
important demographic noise, here neglected, and the observed
arrival times used in the simulations are likely delayed with
respect to the first true local introduction of the virus. These
limitations lead us to extend our analysis to a stochastic
framework.

Stochastic SIR model and spark rate. To verify that our hypo-
thesized effects are robust, we therefore consider a more realistic
model that takes demographic stochasticity into account. To this
end, we introduce the empirical rate of infection importation to a
local unit σu

emp, referred hereafter as the “spark” rate, which
allows us to sidestep the explicit coupling between the units.
Without loss of generality, the spark rate and its estimation do
not explicitly consider the source units from which infections are
imported (“Methods”). A stochastic SIR model under well-mixed
conditions applies within each unit, which allows for local
extinction of infection and for the spark rate to re-initiate
transmission. The initial conditions are self-contained in the
model through the arrival of the first infection to a given unit.
Specifically, for each unit u the transmission rate is modeled as
βSuIu=Nu þ σu, where β is the local transmission rate, Iu, Su, and
Nu denote, respectively, the number of infected, susceptible, and
total individuals in u, and σu is the spark rate per unit. To take
into account that we are working from observed cases, we con-
sider a reporting rate ρ 2 ð0; 1� and compute the spark rate as
σu ¼ Poissonðσuemp=ρÞ.

Armed with an estimated spark rate, we ask whether it can
explain both the observed time of initiation of transmission at the
unit level, and the pattern of peak ratio as a function of
population density. We recover the observed delay in arrival time
with population density, and find that this time is significantly
affected by ρ (Fig. 4A, see Supplementary Fig. 5 for the effects of
other parameters). A small ρ increases the spark rate, resulting in
a tendency of earlier initiation of infection, but also decreases the
detection of these early infections, which delays the observation of
the first local case. Since detection of a single case is sufficient to
determine arrival time, populated units are less affected by
inefficient detection because they generate more local infections.
The trade-off between these two effects of ρ becomes increasingly
unbalanced for larger population densities. Most importantly, the
stochastic model predicts the empirical relationship of peak ratio
with human density, and does so more accurately when it also
better captures arrival times (Fig. 4B). The peak ratio is also
affected by the initial levels of immunity in the population as
Supplementary Fig. 14 shows. The ratio increases with the initial
fraction of immune individuals, and this effect is stronger for
medium and large population densities. However, the overall
general pattern persists and the relationship with population
density remains. In particular, an initial immune fraction of 10%
produces a peak ratio pattern similar to that obtained when
starting with the whole population susceptible to DENV4.

Local and global determinants of the spark rate. The stochastic
model relied on an estimated spark rate. We now examine what
factors determine this rate. We find a clear dependence on both a
local and a global determinant, unit population density, and total
city prevalence, respectively. A positive relationship with the total
number of cases CTot is expected, since more infection importa-
tions should be produced under higher levels of the virus circu-
lating in the city. We find that the estimated spark rate grows as a
power law with CTot (Fig. 4C). This relationship is itself influ-
enced by the local population density of the units, as illustrated
with the different colors in Fig. 4C. More crowded areas would

Fig. 3 Deterministic SIR (susceptible–infected–recovered) dynamics and
successive epidemic size. A The temporal incidence of a unit is shaped by
human density directly, but also indirectly via the arrival time of the first
imported infection (the y-axis is normalized by the maximum value of cases
for better visualization). The temporal dynamics are simulated with a
deterministic SIR model with a seasonal transmission rate. For a given arrival
time, the size of the second peak increases with the population density
of the unit (top to bottom). The earlier the first infection reaches the unit,
the smaller the size of the second peak (left to right). B Importantly, denser
units are infected earlier (data: black circles). The blue triangles are used as
input to the model to specify arrival time and therefore initial conditions in a
given unit (with an exponential decay curve capturing the observed trend).
The earlier importation of infection in denser units implies two opposite
effects of population density on relative peak size (demonstrated in A).
C For arrival times similar to those observed in the data, the model
simulations (blue triangles) can capture the observed behavior (black
circles) of the peak ratio with human density. The results correspond to a
partition of the city into 12 groups according to population density.
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experience higher human movement fluxes than less dense ones,
resulting in a higher probability of their inhabitants commuting
to infected areas or receiving infected visitors. The spark rate
increment with population size is nonlinear, increasing faster
when densities are small, and saturating for the most populated
units (Supplementary Fig. 4). To analyze these behaviors of the
spark rate, we fit a linear relationship between the logarithm of
the spark rate and CTot as shown by the solid lines in Fig. 4C. The
estimated parameters for each population group, the slope m and
intercept b, describe the influence of human density (Fig. 4D).
These determinants of spark rate reinforce the important role of
population density in the behavior of peak ratio. They also pro-
vide a handle to potentially reduce the complexity of the infection
importation process.

Discussion
Our results demonstrate that human density is a dominant driver
of dengue dynamics at fine spatial scales comparable in size to city
block and census tract. This effect scales up to explain the relative
size of successive epidemic waves, a major epidemiological feature
reflecting the interplay of seasonality with the depletion of sus-
ceptible individuals and the build-up of herd immunity. In other

words, this fundamental aspect of the dynamics of an immunizing
infection is affected by variation in population density at fine
spatial scales. Importantly, this does not mean that spatial
aggregation or coarse graining of the landscape is not plausible.
We find that the pattern of peak ratio with density is invariant to
the number of spatial groupings over an order of magnitude, as
long as coarser spatial partitions follow aggregation according to
density itself, and not the traditional subdivision of administrative
units based on typical contiguous space.

Thus, efforts to model dengue and possibly other infectious
diseases in urban landscapes should consider the nature of
aggregation space and not just its spatial resolution. On the one
hand, administrative regions may better reflect similar environ-
mental conditions such as temperature and socio-economic status
influencing transmission intensity according to standard geo-
graphy. On the other hand, the new partition we propose should
by definition better capture human density and its effects on key
aspects of dengue transmission such as infection spread and
availability of susceptible individuals. Consideration of these
different organizations of space can help identify and disentangle
the effect of disease drivers, given that variation in incidence
within the city occurs along both aggregation axes but for dif-
ferent sets of factors.

The effect of human density on peak ratio has practical rele-
vance for informing public health efforts on the expected size of
the next infection wave in different parts of a city. The docu-
mented peak ratio pattern demonstrates that the fine-scale spatial
structure of urban populations strongly determines the temporal
patterns of incidence at coarser resolutions. The importance of
population structure was recently suggested by large-scale ana-
lyses of Covid-19 and influenza, in comparative studies of the
temporal shape and endemicity of outbreaks at the whole-city
level1,5. Here, we have explicitly described this structure through
its effects for dengue.

The high-resolution dataset for Rio de Janeiro also revealed a
clear dependence on human density of the seasonal timing of

Fig. 4 Stochastic simulations and empirical “spark” rate (number of
sparks per month per unit). A Mean observed arrival time as a function of
human density. The original units are binned into 100 groups and arrival
times are averaged for the units belonging to the same group. The arrival
times computed from the data (black circles) are compared to those
obtained in model simulations (with dots colored by reporting rate). B Peak
ratio obtained in the simulations as a function of population density for the
different reporting rates where the colors correspond to those in (A). The
boxplots are computed from 20 stochastic realizations (in these, the box
illustrates, as is standard, the median with the 25th and 75th percentiles,
and the dotted lines indicate the extremes of the distribution). For
comparison, the empirical values of peak ratio are also shown (in black, for
the 100 groups). C Spark rate as a function of total incidence (CTot). The
logarithm of the number of sparks (or number of imported infections) per
month per unit exhibits a linear relationship with the logarithm of the total
number of cases in the city. The more populated units receive a higher
number of sparks as expected in a pattern that is well approximated by a
power law. D The parameters of the power relationship between spark rate
and total incidence vary as a function of population density. The different
slopes (m) and intercept (b) from a linear regression to the log–log plot are
shown in (C) as a function of the logarithm of population density. Thus,
importation rate to a unit exhibits both a global and a local determinant,
namely the total number of cases in the city and the local population in a
given unit. These dependencies allow the specification of infection
importation via a mean-field coupling and local conditions, circumventing
the need to explicitly describe spatial connectivity at fine scales.
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infection arrival locally. This timing is critical to how much herd
immunity will be acquired by the local population before the
environmentally suitable transmission season ends, in the case of
dengue in Rio de Janeiro due to variation in temperature and
rainfall34–36. Crowded spatial units experience an earlier arrival
date of the dengue virus, as previously reported for influenza37.
The dependence of this timing on human density was successfully
captured here by a stochastic model in which there is no explicit
description of the spatial coupling between local units. Instead,
the link between units is implicit in our model, via “sparks”
arriving from unspecified locations from a global pool of city-
wide infections.

Except for the spark rate, the parameters of the stochastic
simulations were considered the same for all units and were not
estimated from the case data. Based on previous estimates for
dengue in the city, they are consistent with estimates of the
reproductive number of the disease at this location and proved
sufficient to explain the empirical patterns. An initial fraction of
immune individuals below 10% is likely since the DENV4 strain
responsible for the two outbreaks analyzed was not detected in
the city before 201129–31. Also, a reporting rate around 0.5 agrees
with values documented for the city of Rio de Janeiro38 and for
other cities of Brazil, such as Porto Alegre25 and Ceará
(Fortaleza)39. In general, the proportion of clinically inapparent
dengue in Brazil is estimated at around 40% (which implies a
reporting rate of about 0.6), much lower than the world average
of 75%25. Moreover, given that a total of 215,768 cases of dengue
were reported during the analyzed outbreaks, a reporting rate
below 0.4 would imply that more than 10% of the population was
infected, a number that increases with the initial fraction of
immune individuals (see Supplementary Fig. 13). For compar-
ison, estimates based on serology indicated that by 2018 about
24% of the residents of the city had been exposed to dengue at
some point in their lives40, which makes it unlikely that half of
these exposures would have happened only during the two stu-
died years. In addition, small reporting rates values, as well as a
large initial fraction of the population immune to the virus, are
difficult to support if we compare the DENV cases produced
during 2 years with the estimation of 16% of the population
infected by COVID-1941,42 (a much more transmissible virus) in
about 36 months. Up to 10% protection would still be consistent
with our results and could account for cross-protection from
another serotype from previous seasons.

The patterns we have uncovered are for a city with intermittent
seasonal epidemics. They raise the question of whether similar
patterns arise in more endemic but still seasonal dengue regions.
Exploratory analyses of a dengue dataset from Delhi suggests
similar trends in peak ratio with population density (Supple-
mentary Fig. 15). High-quality, high-resolution surveillance in
such regions, including serotype assignment of the reported cases,
would be valuable to examine the robustness of our findings
across the geographical distribution of the disease and in the
presence of co-circulating serotypes.

We have considered here frequency-dependent transmission
because of its relevance to vector-transmitted diseases and many
directly-transmitted ones. Future work should examine whether
similar results hold for density-dependent transmission.

Although the spatial spread of infection involves the complex
interplay of connectivity patterns and local transmission25,43,44,
our modeling of the spark process reveals that the effective result
can be described in some systems in terms of two accessible
quantities, namely the total number of cases in the city and the
local human density. This finding suggests a novel formulation of
metapopulation dynamics in urban environments that should be
explored in future work, where space is aggregated according to
population density and the coupling occurs through a global

incidence pool. Whether the complexity of human movement
and resulting connectivity patterns can be captured in such a
practical way in spatially explicit models of dengue and perhaps
other infections remains an open question. This formulation
combined with the sufficiently coarse partitions suggested by the
scale-independent pattern we uncovered, provides an alternative
to the intractable high-dimensional systems needed to resolve
population density heterogeneity when modeling cities and geo-
graphical regions.

Methods
Data
Spatial grid. We created a grid whose units measure 250 m by 250 m based on the
census tract layer for the city of Rio de Janeiro from the Instituto Brasileiro de
Geografia e Estatística [Brazilian Institute of Geography and Statistics] (IBGE)
website https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-
territoriais. Uninhabited locations were excluded.

Dengue cases on the grid. Dengue is a disease of compulsory notification in Brazil,
and cases are notified at the Sistema de Informação de Agravos de Notificação
[Information System on Diseases of Compulsory Declaration] (SINAN). Dengue
cases notified in Rio de Janeiro between January 2010 and March 2015 were
geocoded according to address of residency, and then counted for each grid unit by
the Secretariat of Health of the city. We obtained the monthly dengue cases data
aggregated at the grid level.

Population on the grid. The population data is obtained from the Census 2010
(IBGE) (https://www.ibge.gov.br/estatisticas/downloads-estatisticas.html) and it is
available at the census tract level. The census tract areas vary in size and can be
bigger than the unit of the grid, primarily in the least densely populated zones of
the city. To overcome this issue, we cropped from the census tract layer the areas
classified as non-urbanized (such as water bodies, swamps, agricultural areas, green
areas, beaches, rocky outcrops) in 2010 by the City Hall of Rio de Janeiro (layer
available at http://www.data.rio/datasets/uso-do-solo-2010). The population of
each census tract is distributed randomly (uniformly) in the areas obtained after
deleting the non-urban areas. The population within the units is computed by
adding the grid layer. To create the grid and edit the census tract layer we used
QGIS (version 3.6.3)45, and to obtain the population in the grid we used the R
software46 with the packages tidyverse47 and sf48. We verify the accuracy of our
estimated population by comparison with the WordPop dataset49 (see detailed
description and Supplementary Fig. 12 and Supplementary Note 2). We chose the
WorldPop dataset because: (i) the estimates are also calculated based on census
data and are available for 2010, (ii) the pixel size is 100 m, smaller than the size of
our grid unit, and (iii) it is open access.

Since the units are in fact small and most of them conserve their area of 250 m
by 250 m (Supplementary Fig. 1A), we consider population density as the
population of each unit. For consistency, we do not consider units with small
effective areas and/or populations sizes less than, or equal to, 10 in our analysis. In
total, 8954/20212 units were so excluded. This choice circumvents the problem of
high sensitivity to random population distribution, and urban vs. non-urban
classification, in very small and/or sparsely populated areas. It also facilitates model
simulation and does not affect the peak ratio pattern (Supplementary Fig. 1B).

Peak ratio and spatial aggregation. Since units are small, we binned them into G
groups and aggregated their times series of reported cases. The groups were gen-
erated according to two aspects: (1) the geographical location of the units as
determined by the administrative divisions of the city (10 areas, 33 regions, and 160
neighborhoods); and (2) the population of the units based on quantiles in order to
obtain equal size groups. We considered specifically four different partition levels,
resulting in 12, 25, 50, and 100 groups with about 900, 450, 225, and 100 units,
respectively (from a total number of 11,247 units for the whole city). Groups of
unequal size can introduce different statistical effects (it is not the same, for
example, to calculate a mean value using 1000 or 10 elements). To compare
quantities across groups it is therefore prudent to define groups with the same
number of elements. In particular, this consideration becomes important for a large
number of groups. Since the population density distribution (number of indivi-
duals per unit) is not uniform, groups defined with “equidistant” boundaries would
exhibit very different numbers of elements.

Given a unit u, we define its time series vu ¼ fcuðt1Þ; cuðt2Þ; :::; cuðtf Þg, where
cuðtiÞ is the number of reported cases of dengue at time ti (i = 1, 2, …f) (and the
bold symbol is used to indicate a vector). Thus, the aggregated time series is given
by

Vg ¼ ∑
u2g

vu ¼ fCg ðt1Þ ¼ ∑
u2g

cuðt1Þ;Cg ðt2Þ ¼ ∑
u2g

cuðt2Þ; :::;Cg ðtf Þ ¼ ∑
u2g

cuðtf Þg;

with g ¼ 1; 2; :::;G. Then, for each Vg we computed the ratio between the sizes of
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the second and first DENV4 peaks, that is

peakratiog ¼
maxt2season2fCg ðt1Þ;Cg ðt2Þ; :::;Cg ðtf Þg
maxt2season1fCg ðt1Þ;Cg ðt2Þ; :::;Cg ðtf Þg

ð1Þ

(Supplementary Fig. 2).

The deterministic SIR model. Although dengue is a vector-borne disease, for
simplicity we omitted the explicit representation of the dynamics of the mosquito
population, and treated vector transmission via the seasonality of the transmission
rate26. Thus, for each unit u, the deterministic SIR model is based on the following
traditional differential equations:

dSu
dt

¼ μNu � βSu
Iu
Nu

� μSu

dIu
dt

¼ βSu
Iu
Nu

� γIu � μIu ð2Þ

dRu

dt
¼ γIu � μRu;

where Su; Iu;Ru , are, respectively, the number of susceptible, infected, and recov-
ered individuals, and Nu the number of inhabitants, of the spatial unit u. Parameter
μ is the mortality rate (equal to the birth rate), and γ is the recovery rate. The
seasonal transmission rate is specified as βðtÞ ¼ β0ð1þ δsin ðωt þ ϕÞÞ. The units
are considered independent of each other, and the initial conditions establish that
the whole population of each unit is susceptible to the virus (Suðt ¼ 0Þ ¼ Nu and
Iu t ¼ 0ð Þ ¼ Ru t ¼ 0ð Þ ¼ 08u). Transmission begins with one infected individual at
a time t0u ≥ t ¼ 0 where t0u is obtained from the data.

Since the goal of this model is to examine the representative dynamics of
different population densities, we binned the units according to their population
into 12 groups, and computed the mean value of their number of inhabitants
Ng ¼ hNu2g i and of their arrival times of the infection t0g � ht0u2g i (where g= 1,
…, 12). We then simulated the system considering the 12 sets fNg ; t0gg as given.

The stochastic model. Since units will suffer local extinction of transmission, a
major component of a stochastic implementation is the description of the local
reintroduction of the virus, namely the arrival of a ‘spark’ or imported infection, in
analogy to fire spread. Because space is described by a highly-resolved lattice, we
considered that well-mixed transmission applies within each unit. Moreover, in lieu
of explicit spatial coupling between units, we postulated the importation of
infection through the specification of a spark rate.

For this purpose, we constructed a binary representation of the time series of
cases per month by defining the spatial units either as positive or negative
according to whether they reported cases or not (Supplementary Fig. 3). Then, to
derive a spark rate we explored the dynamics of the number of positive units as
follows,

U+ðt þ dtÞ ¼ U+ðtÞ þ U+
newðt; t þ dtÞ � U+

extinctðt; t þ dtÞ ð3Þ
The number of positive units at time t þ dt is equal to the number of positive

units at time t, plus the number of units that have been infected Unew
+ðt; t þ dtÞ

between t and t + dt, minus the number of units that were infected at t but are no
longer infected at t + dt (i.e., the number of ‘extinctions’ between t and t + dt,
Uextinct

+ðt; t þ dtÞ).
Since uninfected units (i.e., negative units) require the arrival of a spark to

become positive, the following equation specifies the mean of Unew
+ðt; t þ dtÞ

under the assumption that a small unit is unlikely to receive more than a single
spark in a period of time dt

hUþ
newðt; t þ dtÞi ’ N sparksðt; t þ dtÞU

�ðtÞ
U

; ð4Þ

where N sparksðt; t þ dtÞ is the number of sparks produced between t and t + dt,
U�ðtÞ is the number of negative units at a time t, and U is the total number of units
in the city (U ¼ U+ þ U�).

By introducing Eq. (4) into Eq. (3) we obtain,

U+ðt þ dtÞ ’ U+ðtÞ þ Nsparksðt; t þ dtÞU
�ðtÞ
U

� Uextinct
+ðt; t þ dtÞ ð5Þ

From Eq. (5) we can now compute the spark rate per unit σu
empðt; t þ dtÞ from the

high-resolution incidence data as

σu
empðt; t þ dtÞ ¼ N sparksðt; t þ dtÞ

U
’ U+ðt þ dtÞ � U+ðtÞ þ Uextinctðt; t þ dtÞ

U�ðtÞ ð6Þ

In order to address the effects of human density on the spark rate, we binned
the spatial units according to their population into G groups. To avoid statistical
effects due to group size, we considered population quantiles. Then, by applying
Eq. (6) to each of these groups, we obtained an empirical spark rate per unit that

depends on human density,

σemp
u2g ðt; t þ dtÞ ¼ σemp

u ðt; t þ dt;Ng Þ; ð7Þ
where Ng ¼ hNu2gi with g= 1, 2, …, G.

Simulations. The associated differential equations of the stochastic model are those
shown on Eq. (2) but the transmission component has now an additional term σu
to describe the importation of infections.

dSu
dt

¼ μNu � βSu
Iu
Nu

þ σu

� �
� μSu

dIu
dt

¼ βSu
Iu
Nu

þ σu

� �
� γIu � μIu ð8Þ

dRu

dt
¼ γIu � μRu

Since the inferred spark rate from the data (Eq. (7)) is obtained from observed
infections, we computed the spark rate σu as:

σu2g ¼ Poissonðσu2g emp=ρÞ ð9Þ
where ρ is the reporting rate.

The model shown on Eq. (8) was formulated as stochastic by incorporating
demographic noise (with the different events represented as Poisson processes). It
was implemented in R with the package pomp50. We also considered measurement
error by assuming that the observed number of cases Cu

obs during a period of time
T is,

Cu
obs Tð Þ ¼ binomial ρ;Cu Tð Þ� �

; ð10Þ
where CuðTÞ is the number of cases computed in the unit u. We simulated the
11,247 units that compose the city of Rio de Janeiro, and aggregated the resulting
time series as for the empirical data (see Peak ratio section).

The parameters of the model are given in Supplementary Table 1. We relied on
parameters estimated for dengue transmission in Rio de Janeiro by ref. 26. Those
estimates were obtained for the aggregated city and for the emergence of DENV1.
We use these parameters here as a sufficiently realistic set for illustrating and
exploring the behavior of the stochastic model with population density. Moreover,
with the exception of the spark rate, the model parameters were considered the
same for all units. In particular, we applied a uniform reporting rate because access
to the nearest public healthcare clinic does not show a dependency on population
density (see Supplementary Note 1).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data for the population and the time series of presence and absence of infections in
each unit, as well as the aggregated time series of cases by administrative region and
population density group, are available at51: https://github.com/vromeoaznar/
DengueRio_peakRatio. Requests concerning the epidemiological raw data should be
made to the Secretariat of Health of Rio de Janeiro city.

Code availability
The code to produce the figures and to simulate the model is also available at51: https://
github.com/vromeoaznar/DengueRio_peakRatio.
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