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Females and males often exhibit different survival in nature, and it has been
hypothesized that sex chromosomes may play a role in driving differential
survival rates. For instance, the Y chromosome in mammals and the W
chromosome in birds are often degenerated, with reduced numbers of
genes, and loss of the Y chromosome in old men is associated with shorter
life expectancy. However, mosaic loss of sex chromosomes has not been
investigated in any non-human species. Here, we tested whether mosaic
loss of the W chromosome (LOW) occurs with ageing in wild birds as a natu-
ral consequence of cellular senescence. Using loci-specific PCR and a target
sequencing approach we estimated LOW in both young and adult individ-
uals of two long-lived bird species and showed that the copy number of
W chromosomes remains constant across age groups. Our results suggest
that LOW is not a consequence of cellular ageing in birds. We concluded
that the inheritance of the W chromosome in birds, unlike the Y chromosome
in mammals, is more stable.
1. Introduction
Many sex chromosomes in amniote species originated greater than 50 Myr [1–5]
following the emergence of genes that acted as regulators of gonadal develop-
ment [6]. Mammals show X/Y sex chromosomes, whereas birds have Z/W sex
chromosomes. During evolution, Y and W chromosomes underwent recombi-
nation arrests to preserve the sex-determining loci, a process that is often
associated with the accumulation of repetitive DNA and massive genetic loss
due to large-scale deletions [7–9].

Recently, it has been shown that sex-specific survival is more strongly
associated with the type of sex chromosome system (X/Y or Z/W) than with
typical ecological factors [10]. In general, the sex that carries the sex-limited
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chromosome (Y/W) dies earlier in vertebrates and invert-
ebrates [11]. In birds, specifically, males live longer than
females [12], a pattern likely caused by still unknown genetic
factors linked to the W chromosome that may affect female
survival. One hypothetical cause is particularly appealing:
mosaic loss of the sex-limited chromosome during ageing.
It has been noticed that mosaic loss of chromosome Y
(LOY) in blood cells of aged men is strongly associated
with reduced life expectancy [13–16]. We recently showed
that LOY is likely shared across mammals [17], but its pres-
ence in species with other sex chromosomes is still
unresolved.

It has long been debated whether senescence in birds is
analogous to that in mammals [18] because birds do not
show clear external signs of ageing. However, both taxa
evolved endothermy, and higher body temperatures appear
to foster cellular senescence [19–21]. Seabirds are among the
birds with the longest longevity [22]; for example, the blue-
footed booby (Sula nebouxii) can live up to 22 years [23,24],
and the magnificent frigatebird (Fregata magnificens) up to
30 years [25]. Adult populations of the blue-footed booby
are slightly male-biased and those of F. magnificens are
strongly male-biased (male/female ratios of greater than 1
and greater than 2, respectively; electronic supplementary
material, figure S1) [26–28]. We studied a wild population
of S. nebouxii off the Pacific coast of México that has been
monitored over the past three decades and for which we
know the exact age of individuals [29,30]. We also analysed
data from nestlings and adults of the magnificent Frigatebird
from a wild population in Baja California Sur, México. In this
work, we tested whether blood cells in long-lived birds
evolved age-related mosaic loss of W chromosome (LOW)
as a natural consequence of cellular senescence. Based on
these sex ratios, we also tested whether LOW could be associ-
ated with differential female survival (i.e. we expected higher
LOW in F. magnificens).
2. Material and methods
(a) Study site and sample collection
Blood samples were used to obtain genomic DNA. Blood
samples were obtained in the booby colony of Isla Isabel (21°
520 N, 105°540 W), México, where monitoring of birds has been
carried out annually since 1989 [29,30]; we sampled 61 females:
13 nestlings–fledglings (0–1 year), 19 young adults (2–7 years),
10 middle-aged adults (8–11 years) and 19 old adults (12–18
years). For the magnificent frigatebird, blood samples were
obtained from a population on Isla Espiritu Santo, in Baja Cali-
fornia Sur, México. Individuals in this population have been
monitored for the past four years; we sampled 41 females: 12
nestlings of 1 month old and 29 adult females of 6–30 years of
age (with a likely average of approx. 14 years of age according
to the species’ population structure [25]). For both species,
0.5 ml of blood was stored in 1 ml of DNA/RNA shield buffer
by Zymo Research (cat. no. R1200–125) supplied with 0.3 ml of
heparin. Permission for fieldwork and sampling was granted
by the Secretaría del Medioambiente y Recursos Naturales
(SEMARNAT; permit nos. SGPA/DGVS/08333/10, SGPA/
DGVS/05216/20 and SGPA/DGVS/03619/21).
(b) DNA purification
Purified genomic DNA was required for the analyses and 150 µl
of blood was used to purify DNA using the Blood DNA
Isolation Mini kit from NORGEN BIOTEK CORP (cat. no.
46300/ 46380).

(c) RNA purification and sequencing
We generated transcriptomic data to gather genetic information
for the blue-footed booby. RNA was purified from blood using
the RNAeasy QIAGEN kit. We generated strand-specific RNA-
seq libraries, using the Illumina TruSeq Stranded mRNA Library
protocol. Each library was sequenced on Illumina HiSeq 2500
platforms at the Macrogene facility in Korea (101 nucleotides,
paired-end).

(d) Assembly of W-linked transcripts in the blue-footed
booby

To assemble W-linked sequences in the blue-footed booby we
used a subtraction approach that compared male and female tran-
scriptomic data; we used this method previously for other amniote
species [1,4,31,32]. Briefly, we removed RNA-seq reads shared
between males and females and then used Trinity (v. 2.0.2,
k-mer of 25 bp) [33] to assemble a female-specific transcriptome.

(e) Primer design
The PCR-based method required the design of W, Z and autoso-
mal primers. We worked for the blue-footed booby with the male
transcriptome assembly and for the magnificent frigatebird, we
worked with a publicly available genome assembly
(ASM1338994v1 [34]). We identified genes that could be autoso-
mal or Z-linked by BLASTn [35] searches against orthologous
genes on the chicken reference genome (https://www.ensembl.
org/Gallus_gallus/Info/Index, v.98). We identified W-linked
transcripts from the female-specific transcriptome assembly of
the blue-footed booby. We designed primers that amplified
around 550 base pairs of exonic sequences using the AmplifX
software (v.2.0.7, https://inp.univ-amu.fr/en/amplifx-manage-
test-and-design-your-primers-for-pcr). W-specific primers were
required to show at least two mismatches with the Z gametolo-
gues to increase specificity. For PCR amplification we used the
Phusion Flash High Fidelity from Thermo Fisher Scientific (cat.
no. F548 L) with male and female genomic DNA. We confirmed
the expected copy numbers in males and females using standard
qPCR curves. We used four DNA dilutions: 0 ng/µl, 0.2 ng/µl,
2 ng/µl and 20 ng/µl and the PowerUp SYBR Green Master
Mix from Thermo Fisher (cat. no. A25741). We chose NCK2
(autosomal), VCAN (Z-linked) and RICTOR (W-linked) for the
blue-footed booby; and NCK2 (autosomal), DMRT1 (Z-linked)
and APC1 (W-linked) for the magnificent frigatebird. We could
not use the same Z/W genes in both species due to the lack of
the corresponding sequences in the datasets. Primers are
provided in electronic supplementary material, table S1.

( f ) Loci-specific PCR and target illumina sequencing
Loci-specific PCR for autosomal, Z and W markers were used as a
proxy to quantify the coverage of the sex chromosomes. DNA
samples were standardized to 10 ng/µl. We amplified the autoso-
mal, Z-linked and W-linked loci in the same PCR reaction using
the Phusion Flash High Fidelity from Thermo Fisher Scientific
(cat. no. F548 L). PCR products were purified using Agencourt
AMPure XP (cat. no. A63882). PCR products were multiplexed
and sequenced in a NextSeq 500 Illumina machine (paired-end,
75 nucleotides long) at UNAM. The quality of the reads was ver-
ified using FastQC, and the remaining adaptors were removed
with Trimmomatic (v. 036) [36]. Reads were aligned using
bowtie2 (v. 2.3.4.1) [37] against the genome sequence of the mag-
nificent frigatebird or the transcriptome assembly of the blue-
footed booby. The W-linked gene APC1 was missing from the
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Figure 1. PCR products for the autosomal, Z-linked, and W-linked loci. (a) One per cent agarose gel showing a single band of approximately 550 bp for autosomal
gene NCK2 and Z-linked gene VCAN in a female and a male of the blue-footed booby. (b) Same as (a) for autosomal gene NCK2 and Z-linked gene DMRT1 in a
female and a male of the magnificent frigatebird. (c) The same as in (a) but for the W-linked gene RICTOR in five females and five males of the blue-footed boobies.
(d ) Same as in (a) but for the W-linked gene APC1 in three females and three males of the magnificent frigatebird; in this case, we observed minor cross-ampli-
fication of the Z gametologue in males.
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genomic sequence of the magnificent frigatebird and was
assembled from the sequenced data; the Z gametologue was pre-
sent in the genomic assembly, which allowed us to confirm the
identity of W-specific reads. We then extracted the reads that
mapped uniquely to the expected loci and obtained on average
821199 reads (s.d.: ± 156 573) and 185 578 reads (s.d.: ± 22 995)
for the magnificent frigatebird and the blue-footed booby, respect-
ively (electronic supplementary material, table S2). To normalize
coverage estimates, we first calculated the difference in coverage
for the autosomal marker between individual samples and the
median across samples, assuming the same autosomal copy
number for all samples of the same species. We then used these
values to correct individual W/Z coverages (see electronic sup-
plementary material, table S2 for more details). The median
value of nestling birds indicated a copy number of one chromo-
some. All statistical analyses were performed using the R
package, standard libraries. Data were plotted using the
R package, ‘ggplot2’ library (https://ggplot2.tidyverse.org).
3. Results
(a) The loci-specific PCR and target sequencing approach
In humans, LOY is generally estimated using data from
whole-genomes across age groups. Similar data, however,
are lacking for birds. We developed a strategy to estimate
LOW using as a proxy the combined amplification and
target sequencing of three specific loci (an autosomal, a Z-
linked and a W-linked). First, we confirmed that the primers
showed the expected pattern: amplification of autosomal and
Z loci in both sexes, and amplification of the W locus in
females (figure 1).

(b) The W chromosome is not lost during ageing
in seabirds

Sequencing data of Z and W markers were used as a proxy to
estimate chromosomal copy numbers across age groups. For
the blue-footed booby, we compared the autosomal-
normalized coverage of the W-linked locus in 61 females
distributed in four different age groups and found no statisti-
cally significant differences across age groups (figure 2a,b).
We also analysed 41 females of the magnificent frigatebird
from two different age groups and found that the
autosomal-normalized coverage of the W-linked locus was
not significantly different between nestlings and adult
females (figure 2c).

We repeated the analyses using the autosomal-normal-
ized coverage of the Z-specific loci in both species. Again,
we did not find statistically significant differences between
age groups (figure 2d–e).

https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
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Figure 2. W and Z chromosome copy number estimates across age groups. (a) Dot plot of the estimated copy number of W chromosome relative to the age of
females in the blue-footed booby. Nestling–fledglings are in red; young adults are in green; middle-aged adults are in blue; old adults are in purple. Significant
differences, linear model: lm[W.coverage∼ age], p < 0.05, excluding outliers. (b) Box plot of the estimated copy number of W chromosome in the four different age
groups of the blue-footed booby: nestlings–fledglings (0–1 year), young adults (2–7 years), middle-aged adults (8–11 years) and old adults (12–18 years). N-
values are indicated in parenthesis. Significant differences, Benjamin–Hochberg corrected Mann–Whitney U test, p < 0.05. (c) Box plot of the estimated copy
number of W chromosome in the two different age groups of the magnificent frigatebird: nestlings (1 month old) and adults (6–30 years). N values are indicated
in parenthesis. Significant differences, Mann–Whitney U test, p < 0.05. (d ) Same as in (b) but for the estimated copy number of Z chromosome. (e) Same as in (c)
but for the estimated copy number of Z chromosome.
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4. Discussion
This is the first evaluation of the occurrence of mosaic loss of
the W chromosome in birds. These species have 140 million
years old Z/W chromosomes [2] that originated from a differ-
ent pair of autosomes than the human X/Y system [38],
where LOY was reported [15]. We found no signs of LOW
during ageing of either species; accumulation of lower cover-
age values in older individuals, despite technical stochasticity
from PCR amplification, would have indicated LOW. Cross-
sectional study of wild populations of two long-lived
seabirds allowed sampling across a wide age range, particu-
larly in the booby where individuals have been monitored for
over three decades, thus, providing the opportunity to
explore the genetics of ageing in a bird species. Similar
studies can be performed in other birds provided that
proper data (DNA samples for individuals of known age
and sex across multiple age groups) are available.

In vertebrates and insects, the sex that carries the Y/W
chromosome dies earlier [10,11] and because LOY in
humans has been correlated with the early death of men
[13,15,39], the mosaic loss of sex chromosomes has been pro-
posed as an important process shaping sex-specific survival
rates across taxa [40]. Our results, however, are at odds
with LOY/LOW reflecting a general process of cellular senes-
cence associated with W chromosomes and/or the evolution
of longer lifespans. Our work indicates that LOW does not
influence sex-specific survival in seabirds. We could hypoth-
esize that seabirds may be well-buffered against LOW and
that alternative genetic or ecological forces are shaping
male/female ratios.

We developed a PCR and target sequencing approach to
estimate the coverage of W/Z chromosomes using data from
an autosomal gene to standardize variations in sequencing
depths across samples. This approach allowed us to analyse
over 100 samples without the need to sequence whole-gen-
omes. Although further work is needed to establish
whether the PCR-based method can detect LOW at low fre-
quencies, our results support the idea that the ploidy of the
W chromosome remains constant across age groups,
suggesting that the inheritance of this sex chromosome is
stable in birds.

Aneuploidies involving the sex chromosomes are among
the more frequent chromosomal aberrations in humans [41].
For example, one in 300 newborn babies is aneuploid, most
commonly with a missing or additional sex chromosome
[42]. By contrast, aneuploidies involving sex chromosomes
in birds (ZO karyotype or triploids) are usually lethal at the
embryonic stage [43]. Rare cases of adult females with
ZZW triploidy have been reported in four species of birds
[44–47]. And in chickens, for example, ZZW females develop
as inter-sexes [46]. So, it appears that the lack of W chromo-
somes in birds may be more deleterious than the lack of
Y chromosomes in mammals [48,49].
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