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replications (MLR)? A recent paper by Kvarven, Stremland and
Johannesson (Kvarven et al. 2020 Nat. Hum. Behav. 4, 423-434.
(doi:10.1038/541562-019-0787-z)) compared effect size estimates
derived from these two different methods for 15 different
psychological phenomena. The authors reported that, for the
same phenomenon, the meta-analytic estimate tended to be
about three times larger than the MLR estimate. These results
are a specific example of a broader question: What is the
relationship between meta-analysis and MLR estimates?
Kvarven et al. suggested that their results undermine the value
of meta-analysis. By contrast, we argue that both meta-analysis
and MLR are informative, and that the discrepancy between
the two estimates that they observed is in fact still largely
unexplained. Informed by re-analyses of Kvarven ef al.’s data
and by other empirical evidence, we discuss possible sources of
this discrepancy and argue that understanding the relationship
between estimates obtained from these two methods is an
important puzzle for future meta-scientific research.

1. Introduction

Obtaining precise and unbiased estimates of the sizes of
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

experimental effects is an important goal in both theory and
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application in psychological science. Such estimates can be used for the development and testing of [ 2 |
quantitative models, leading to more robust theories [1]. Further, precise and unbiased estimates of
intervention effects are critical for decision-making in applied contexts. Unfortunately, studies run in
individual laboratories are rarely able to accumulate the sample sizes necessary to provide adequate
precision [2], and furthermore individual studies may be subject to substantial publication bias. There
is thus a critical need for alternative estimation methods.

Statistical meta-analysis [3,4] has long been considered a gold standard methodology for estimating
effect sizes. Indeed, evidence pyramids often treat meta-analysis as one of the most credible forms of
evidence, indicating the trust that is put on these quantitative summaries of the literature [5]. Yet in
recent years, psychology has experienced a crisis of confidence in its prior literature, brought on by
empirical reports that show low levels of replication for many prominent findings in the prior
literature [6-10]. Such failures to replicate may be due in part to ‘questionable research practices” on
the part of individual researchers (e.g. post hoc analytic decision-making; [11]) and a bias for findings
to be published only if they meet a significance threshold. Meta-analyses that include highly biased
findings are suspect as sources of accurate effect estimates (or even as indicators of whether an effect
is consistently non-zero; [12]).

An alternative method for estimating effects accurately is to conduct large, multi-laboratory
replication (MLR) studies. Such studies provide precise estimates by enlisting many laboratories to
contribute data, leading to unusually large sample sizes (by the standards of previous literature).
Further, such replication attempts are typically pre-registered, reducing bias in their effect estimates by
reducing analytic flexibility [13].

The presence of these two distinct routes for estimating important experimental effects naturally leads
to a question: in cases of uncertainty, how much relative confidence should we place on aggregated findings
using statistical meta-analysis versus large, multi-laboratory replications? In the current article, we examine
a recent paper by Kvarven, Stremland and Johannesson (henceforth ‘KSJ’; [14]) that provides evidence on
this issue. We conduct a series of re-analyses of their data that collectively suggest that (i) meta-analyses are
in fact informative about the results of MLRs, (ii) there is a real discrepancy between the meta-analytic and
MLR results (albeit less dramatic than it might seem), and (iii) publication bias probably does not fully
explain this discrepancy. We end by considering alternative explanations.
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2. Empirical comparisons of meta-analyses and multi-laboratory
replications

Taking advantage of the recent increase in the prevalence of MLRs, KSJ conducted a literature review for
relevant meta-analyses. They then compared effect size estimates derived from these two different
methods for 15 different psychological phenomena. Naively, we might expect that if studies in a meta-
analysis and the corresponding MLR assess the same psychological phenomenon, and there is no
analytical or publication bias, the effect size estimates obtained via the two methods should be
similar. By contrast, KSJ report that, for the same phenomenon, the meta-analytic estimate tends to be
about three times larger than the MLR estimate. KS] suggest that their results undermine the value of
meta-analysis. By contrast, we argue that both meta-analysis and MLR are informative but that the
relationship between them is an important puzzle for future meta-research.

To conceptualize the trade-offs between meta-analysis and MLR, it helps to consider different
scenarios. In the most extreme case, in which the prior literature is stipulated to be extremely biased
(perhaps due to cases of extreme analytic flexibility leading to a literature comprising only false
positives), it is easy to see that meta-analysis would be worthless; MLR would be the optimal method
for obtaining a precise estimate of the size of an experimental effect (for a possible example of this
type, see e.g. [12]). On the other hand, if the prior literature includes some genuine positive results
(even alongside some false positives), the meta-analysis will have at least some value.

Are we often in this first scenario? KSJ show that meta-analysis and MLR produce divergent estimates
of effect size, but this result does not necessarily indicate that the prior literature is composed exclusively
of false positives. There may be genuine and substantive reasons for differences between MLR and meta-
analysis estimates. Hence, KS]’s results do not necessarily undermine the value of meta-analysis.

Indeed, examining KSJ’s data indicate that there is a strong relationship between effect size estimates
from the MLR and the meta-analyses: phenomena with larger meta-analytic estimates tend to also have
larger estimates in the MLR (Pearson’s r=0.72 [0.32, 0.90], p =0.003; figure 1). Thus, although meta-
analyses do show larger effects, they are not uninformative regarding the results of MLR. Hence we
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Figure 1. Correlation between effect size estimates from multiple-laboratory replications and random effect meta-analytic estimates
(Pearson’s r(13) =0.72 [0.32, 0.9], p=0.003). Each point corresponds to a phenomenon (N =15), and ranges indicate 95%
confidence intervals. The best fitting linear model is MLR ES = —0.18 + 0.80 « MA ES, shown here with a band
corresponding to the standard error. The dashed reference line has a slope of 1.

can infer that KSJ's sample of findings are not generated from a world in which the prior literature is
worthless—in that case, there would necessarily be no correlation between the meta-analytic estimates
and the MLR estimates. Nevertheless, there appears to be a discrepancy in the size of the estimates
from the two sources. What is the source of this discrepancy?

3. Genuine effect heterogeneity may explain some of the discrepancy

Many of the meta-analyses in KSJ's study showed considerable effect heterogeneity. Some of this heterogeneity
may be due to minor methodological differences in implementation; indeed, empirical evidence suggests that
apparently minor methodological differences can substantially affect replication success.

Lewis & Frank [15] conducted a replication study of social context effects on category learning,
yielding a replication estimate that was considerably smaller than that of the original study (Cohen’s
d=0.17 versus d=1.49), as in many of KSJ's comparisons. However, in a series of four subsequent
replications, Lewis & Frank [15] identified and eliminated a handful of minor methodological
differences between their original replication design and the original study (such as the variability in
category exemplars). The final replication, with the fewest known methodological differences from the
original study, estimated a fairly large effect size of d =0.71, which was more than four times that of
the first replication study (d=0.17), although the estimate remained smaller than that of the original
study. The estimated heterogeneity across the five replication studies, 7> (0.04), was within the range
found in the sample of meta-analyses reported by KSJ (0-0.54, with a mean of 0.11). Notably, we
observed this effect size variability in a case where the experiment was motivated by a formal model
[16], and where the methodological modifications were theory-irrelevant (e.g. online versus in
laboratory; exact stimuli used). The fact that we find this variability, despite the tight link between
theory and experiment [1], is particularly suggestive that small methodological decisions about the
implementation of individual experiments can substantially influence the meta-analytic effect size. It
therefore seems plausible that similar methodological differences could be fairly common in MAs.

Importantly, when effects are heterogeneous, a comparison of the meta-analytic mean to the
MLR mean—KS]’s primary comparison—does not, on its own, adequately characterize
the evidence for a true difference between the two [17]. Comparing only the means of potentially
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Figure 2. The text values on the right represent estimated percentages and corresponding 95% Cls of true population effects in the
naive meta-analysis that are as small as, or smaller than, the MLR estimate. Cls are omitted when they were not estimable via bias-
corrected and accelerated hootstrapping [19]. The left side of the figure shows estimates from sensitivity analyses representing worst-
case publication bias (vertical tick marks) versus naive meta-analysis estimates (triangles) and multi-laboratory replication estimates
(MLR; circles). For orange-coloured meta-analyses, the worst-case estimate exceeds the MLR estimate, indicating that no amount of
publication bias that results could entirely explain the discrepancy between the naive estimate and the MLR estimate.

heterogeneous effect distributions cancreate a false impression of conflict when in fact little conflict
exists because the MLR mean could fall within the reasonable distribution of effects in the
meta-analysis [17,18].

To test this idea, we examined where each MLR mean would fall in the distribution of effects in the
corresponding meta-analysis. A naive approach to this question would simply look at the variability of
effects. However, this approach would overstate variability in true effects because it incorporates both
variability in the true effects measured by different studies and variability due to noise in individual studies.

To address this issue, we used statistical methods that estimate the distribution of population effects
in a meta-analysis while accounting for statistical error in the point estimates [17,19]. To do so, one first
fits a standard meta-analysis, then uses the resulting estimates to appropriately ‘shrink’ studies’ point
estimates toward the mean (to account for statistical error), and then finally uses the empirical
distribution of these shrunken estimates as an estimate of the distribution of population effects
[17,19,20]. (This shrinkage is necessary because the distribution of the point estimates themselves has
variability due to both statistical error and heterogeneity, so cannot be directly used to characterize
heterogeneity in the population effects.)

We thus estimated that, across the meta-analyses that KSJ analysed, a median of 20% of the
population effects in the meta-analysed studies were at least as small as the corresponding MLR mean
estimate (see right side of figure 2 for estimated values for each MA). For comparison, if 50% of the
population effects were at least as small as the corresponding MLR mean, then the MLR mean would
be at the meta-analytic population median. Thus, although average effect sizes were typically larger in
meta-analyses versus MLRs, often a sizeable minority of the effects in the meta-analyses were smaller
than the corresponding MLR estimate. This finding indicates a smaller discrepancy than is apparent
when comparing only the means.

This analysis reveals that, when we holistically consider the distribution of effects rather than only
its mean, there is a non-negligible amount of overlap between the distribution of possible effects in a
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meta-analysis and the MLR results. But although the discrepancy between meta-analysis and MLR [ 5 |
results is perhaps smaller than KSJ suggest, a discrepancy does still exist. Effect heterogeneity alone
does not fully account for the differences between the two approaches. The remainder of our
discussion focuses on explaining these differences.

4. Publication bias cannot entirely explain the discrepancy

KSJ speculate that the MLR /meta-analysis discrepancy is probably due to ‘questionable research practices’
[11] such as post hoc analytic decision-making or publication bias. Both of these practices act as filters that
select for statistically significant findings, leading to an inflation of effect size. Could these mechanisms be
fully responsible?

sosy/{euinof 610 Buiysiggndgaposiefor

One way to address this question is to estimate the meta-analytic effect size using a correction for
publication bias. KS] made this estimate using several different statistical methods; each of these still yielded
estimates that were considerably larger than the MLR estimates. KS]J therefore concluded that the statistical
methods are themselves flawed and ‘ineffective in fully adjusting inflated effect sizes for publication bias’.

In our view, this analysis presupposes its conclusions. The conclusion that the methods are flawed
because they do not eliminate the discrepancy itself requires assuming that the discrepancy is due to
publication bias rather than other possibilities. In fact, there are several different possibilities. That
principled statistical adjustments [35] do not eliminate the systematic discrepancy between the meta-
analysis and MLR estimates could reflect either: (i) that statistically adjusted meta-analysis estimates
were indeed badly biased due to serious violations of the methods’ assumptions, or alternatively (ii)
that the statistically adjusted meta-analysis estimates were not, in fact, badly biased, because there are
fundamental substantive reasons, not merely publication bias, for effect sizes to genuinely differ
between meta-analyses and MLRs.

To help adjudicate between these two possibilities, we conducted a re-analysis that uses a different
approach for assessing publication bias, called ‘sensitivity analysis’ [36]. In contrast to the methods
used by KSJ, the sensitivity analysis method corrects the estimate not by attempting to estimate the
actual severity of publication bias present in the meta-analysis, but rather by considering only a
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hypothetical worst-case form of publication bias. In a nutshell, this sensitivity analysis ignores all
statistically significant results in the expected direction [36]. Heuristically, the logic of this worst-case
analysis is that all of these estimates might be simply due to publication bias. By contrast, sensitivity
analysis considers only effects that are non-significant or in the unexpected direction, which could not
have been published due to publication bias. Thus, sensitivity analysis provides a highly conservative
estimate and obviates many (though not all) of the assumptions of standard methods that might in
principle have caused them to adjust inadequately [36].

For our sensitivity analysis, we assume a model of publication bias in which statistically significant
positive studies (affirmative studies) are more likely to be published than non-significant and/or negative
studies (non-affirmative studies), and there is no further selection based on the size of the point estimate
or on characteristics associated with the point estimate (such as the p-value treated as continuous, rather
than dichotomized at a = 0.05). This model of publication bias is identical to that assumed by the three-
parameter selection model' used by KSJ [35], and it conforms well to empirical evidence regarding how
publication bias operates in practice [11,37,38].

However, unlike the three-parameter selection models used in KSJ, the present methods do not
require a large number of meta-analysed studies to perform well [39,40] and do not make any
distributional assumptions (e.g. that the population effects are normal prior to the introduction of
publication bias). ‘Publication bias” in this context could reflect the aggregation of multiple sources
of bias, including, for example, investigators’ selective reporting of experiments or preparation of
papers for submission as well as journals’ selective acceptance of papers.

To provide some more intuition for how the sensitivity analysis methods work, if the degree of
publication bias were known, a bias-corrected meta-analytic estimate could hypothetically be obtained
by up-weighting the contribution of each non-affirmative study in the meta-analysis by the same ratio
by which the publication process favours affirmative studies. For example, suppose it were known
that affirmative results were five times more likely to be published than non-affirmative studies and

IThree-parameter selection models assume that studies with ‘significant’ positive estimates are more likely to be published than studies
with ‘non-significant’ or negative estimates. These models use maximum likelihood to model this form of publication bias, jointly
estimating the meta-analysis mean, heterogeneity, and the severity of publication bias operationalized as the ratio of publication
probabilities for ‘significant’ positive versus ‘non-significant’ or negative results.



that, given a study’s non-affirmative or affirmative status, the publication process did not select further [ 6 |
based on the size of the point estimate. Then the point estimates of the published non-affirmative studies
(i.e. those included in the meta-analysis) would be essentially a random sample of those from the larger,
underlying population of non-affirmative studies, of which most were not published. A bias-corrected
meta-analytic estimate could therefore be obtained by up-weighting the contribution of each non-
affirmative study in the meta-analysis by fivefold to counteract the publication process’ fivefold
favouring of affirmative studies.

Since the degree of publication bias is not exactly known in practice, the sensitivity analyses can also
estimate the meta-analytic mean under a hypothetical ‘worst-case’ publication bias scenario [36], in
which affirmative studies are infinitely more likely to be published than non-affirmative studies. That
is, worst-case publication bias would effectively favour affirmative studies by an infinite ratio, so a
worst-case estimate can be obtained by meta-analysing only the non-affirmative studies that are
included in the meta-analyses and simply discarding the affirmative studies. Intuitively, this method
works because such an analysis is effectively equivalent to up-weighting each non-affirmative study
by a factor of infinity. Such a worst-case analysis does not require actual estimation of the ratio by
which the publication process favours affirmative studies.

We conducted this sensitivity analysis for the KSJ data by analysing 13 of the 15 meta-analyses for
which the meta-analytic mean estimate was larger than the MLR estimate and for which these
analyses were statistically feasible (meta-analyses must contain at least one non-affirmative study).
Across the meta-analyses, the mean naive and worst-case estimates were d=0.39 and d=0.17,
respectively. Thus, the worst-case estimates were on average 32% as large as their corresponding naive
estimates, with a mean absolute difference of d=0.25. Nevertheless, for the majority of such meta-
analyses (62%), even worst-case publication bias of this nature could not attenuate the meta-analytic
estimate to match that of the MLR. That is, even selecting only the non-significant findings for the
meta-analysis led to a meta-analytic estimate larger than the MLR estimate! Also, for all but one of
these meta-analyses (i.e. 92%), worst-case publication bias could not attenuate the meta-analytic
estimate all the way to the null (figure 2).

It therefore appears somewhat implausible that publication bias, no matter how severe, could entirely
explain the discrepancy between meta-analytic and MLR effect size estimates. This suggests that KSJ’s failure
to eliminate the discrepancy in effect sizes derived from the two methods was not due entirely to limitations
of publication bias correcting statistical methods; rather, there are additional causes of the discrepancy.
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5. Possible explanations beyond publication bias for the remaining
discrepancy

What, then, are the other possible causes of the discrepancy? One possibility is that the phenomena being
studied may be sensitive to the details of the experimental materials and methods, and especially to how
these interact with the specific populations being assessed. This kind of method- and context-sensitivity
has frequently been invoked as a post hoc explanation for direct replication failures [41], but direct
evidence has been limited. Nevertheless, we are sympathetic to this explanation because a series of
pre-registered replications that we and our collaborators have carried out attest to the importance of
small methodological factors in replicating effects [15,42,43]. For example, in [15], we found that a
series of minor changes in stimulus materials (e.g. variability of exemplars) led to differences in the
strength of a categorization effect.

Further, subtle methodological choices made by individual studies within a meta-analysis may
interact with the population of participants in those experiments. (A version of this point is made by
Yarkoni [44] as well.) Investigators who are committed to understanding a particular phenomenon
may take pains to tailor their stimuli to that particular context, via pilot testing or application of their
intuitions about the specific participant population. Probably, this is one reason that the individual
studies in a meta-analysis typically vary considerably in their methods and stimuli. By contrast, MLRs
typically standardize their materials across all populations and contexts being studied in order to
establish a single method for all participating laboratories. This difference—variable materials versus
standardized materials—could account for some of the discrepancy in effect sizes.

For example, one of the phenomena included in KSJ’s paper is an effect whereby imagining interaction
with an outgroup member leads participants to be more likely to express an intention to engage with an
outgroup member in real life. In the original paper [45], the participants were British non-Muslim
undergraduates, and the ‘outgroup” was British Muslims. In the corresponding MLR, 34 out of the 35



replication sites used the same outgroup, ‘Muslim’, despite the fact that the sites spanned nine different
countries with probably varying degrees of prejudice toward Muslims. By contrast, in the meta-analysis,
individual studies used a wide range of outgroups, adapted to the local social context of each study.
Furthermore, even if laboratories were to likewise alter the stimuli according to context, individual studies
may be more likely than MLRs to select samples and exclusion criteria to maximize effect sizes.

In social psychology especially, effects could well be more context sensitive relative to other
psychological domains [41,46]. Notably, the majority of phenomena in KSJ concern effects that appear
social or contextually dependent (e.g. interactions between political belief and moral decision-making,
humor responses, imagined intergroup contact, expression of prejudice). However, to carry empirical
weight, speculations about context-sensitivity must be tested directly in future meta-scientific work.

A final hypothesis about the discrepancy between meta-analysis and MLR may be that in individual
studies, as compared with MLRs, investigators may make greater (or more effective) efforts to ensure
intervention fidelity, thereby increasing effect sizes. Such differences in fidelity would not constitute
investigator bias; instead, under such circumstances, the interventions themselves would effectively be
different (e.g. because participants received greater encouragement to engage). Such differences could
be due to experimenter expertise, though meta-scientific attempts to find effects of expertise on
replication success have been unsuccessful [6]. More plausibly in our mind, differences could be due
to feeling of ‘having more at stake’ by original investigators relative to the myriad teams participating
in a MLR effort, who may assume that a protocol being distributed to them should ‘just work’.
(We write this characterization as participants in a variety of MLR efforts.)

6. Conclusion

Building good scientific theories relies on having precise estimates of effect sizes, but the best way to
obtain these estimates is not obvious. Both meta-analysis and MLRs provide methods for estimating
the effect size of important phenomena by aggregating evidence across multiple studies. KS] present
the first systematic comparison of these two methods and show that effect sizes derived from meta-
analyses are puzzlingly larger than those derived from MLRs. We demonstrate that meta-analytic
effect sizes are related to MLR estimates, but there is still a remaining discrepancy between the two
methods. Further, our analyses suggest that effect size heterogeneity and publication bias may
contribute to—but are unlikely to account fully for—this discrepancy. Speculative possibilities for the
remaining discrepancy include that MLRs obtain smaller effect sizes because of standardization of
methods across laboratories (perhaps especially for context-sensitive phenomena) and because of the
potential for differential effort to ensure intervention fidelity comparing MLRs and original literature.
Understanding the source of the discrepancy between effect sizes estimated from meta-analyses and
those from MLRs is an important, complex question for future meta-scientific research.
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