
Modeling PFAS Removal Using Granular Activated Carbon for 
Full-Scale System Design

Jonathan B. Burkhardt1, Nick Burns2, Dustin Mobley3, Jonathan G. Pressman4, Matthew L. 
Magnuson5, Thomas F. Speth, M.ASCE6

1Environmental Engineer, US Environmental Protection Agency, Office of Research and 
Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268.

2Director, Black & Veatch, 5420 LBJ Freeway, Suite 400, Dallas, TX 75240.

3Process Engineer, Black & Veatch, 12740 Gran Bay Pkwy. W, Suite 2140, Jacksonville, FL 
32258.

4Branch Chief, US Environmental Protection Agency, Office of Research and Development, 26 W. 
Martin Luther King Dr., Cincinnati, OH 45268.

5Research Chemist, US Environmental Protection Agency, Office of Research and Development, 
26 W. Martin Luther King Dr., Cincinnati, OH 45268.

6Associate Director for Science, US Environmental Protection Agency, Office of Research and 
Development, 26 W. Martin Luther King Dr., Cincinnati, OH 45268.

Abstract

Per- and polyfluoroalkyl substances (PFAS) are increasingly of interest to drinking water utilities 

due to state regulations, the release of federal and state health advisories, and public concern. 

Pilot-scale data were fitted for 16 PFAS species and five commercial-activated carbons using 

an open-source pore and surface diffusion model that includes an automated parameter-fitting 

tool. The estimated model parameters are presented, and an uncertainty analysis was evaluated 

considering the expected temporal variability of influent concentrations. Expected treatment 

performance differed between two seasons in the pilot phase for the same carbon, which was 

not captured by modeled uncertainty. However, modeling results can support a utility’s decision 

to choose activated carbon, and make design and operational decisions that can address changing 

water production rates and treatment goals. For the utility that undertook this pilot study and their 

desired treatment goals, granular activated carbon (GAC) was found to be an effective treatment 

technology for PFAS removal.
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Introduction

The presence of per-and polyfluoroalkyl substances (PFAS) in source waters has become 

a concern for drinking water utilities and their communities. Waterbodies can be 

contaminated by PFAS from numerous sources (e.g., manufacturing, industrial users, 

land-fills, firefighting applications—specifically in airports or training facilities) potentially 

impacting both the quantity and speciation of PFAS in waterbodies used for drinking water. 

To date, several states have set health advisories or regulatory levels for various PFAS, 

where levels associated with perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic 

acid (PFOS) are among the most common. Although there are no federal regulations for 

PFAS, the United States Environmental Protection Agency (USEPA) has released health 

advisories (USEPA 2016) and a proposed decision to regulate (USEPA 2020) PFOA and 

PFOS in drinking water. The USEPA also released draft toxicity assessments in 2018 for 

perfluorobutane sulfonate (PFBS) and hexafluoropropylene oxide, dimer acid (HFPO-DA, 

Gen-X) (USEPA 2018). Hopkins et al. (2018) reported concentrations of various PFAS in a 

water source used by utilities in North Carolina, which included the Cape Fear River that 

was the source of water for this study. Given this increased attention to PFAS in drinking 

water sources, utilities need information and tools to assess treatment options.

Several PFAS treatment studies have been published, primarily focusing on bench-scale 

research for PFOA and PFOS (USEPA 2016; Dickenson and Higgins 2016; Kucharzyk 

et al. 2017; Sun et al. 2016; Crone et al. 2019; USEPA 2019; Wang et al. 2016; Aly 

et al. 2018; Schaefer et al. 2019). A recent study on removal of PFAS using point-of-use/

point-of-entry devices that used rapid small-scale column tests (RSSCTs) was published to 

help home-owners understand the available options for treating contaminated well water 

(Patterson et al. 2019). Although generally lacking data on shorter-chain PFAS, these studies 

indicate granular activated carbon (GAC) may be an effective technology for PFAS removal 

for many water qualities and treatment goals.

To date, GAC treatment has been studied more often and under a wider range of test 

conditions than other PFAS removal technologies such as high-pressure membrane systems 

and anion exchange treatment (Crone et al. 2019). However, given this, there continues to 

be an information gap about how to best implement GAC nation-wide. Utilities would need 

to consider GAC effectiveness related to various mixtures of PFAS, wide differences in 

background water chemistry, other site-specific factors, and any applicable regulatory levels 

or treatment goals.

To help address some of these information gaps, modeling tools can be used to explore 

treatment effectiveness under a variety of conditions. Historically, multiple approaches 

have been used for GAC modeling (Sontheimer et al. 1988; Summers and Roberts 1988a, 

b; Knappe et al. 1999; Munz et al. 1990; Crittenden et al. 2012). Generally, simplified 
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approaches consider adsorption capacity while ignoring the effects of diffusion, such as 

simplified single-solute mass balances (Sontheimer et al. 1988). Modeling approaches 

can become more complicated by adding factors such as dispersion, external mass 

transfer, surface and pore internal diffusion, multicomponent adsorption, and preloading 

of background organics (Sontheimer et al. 1988; Summers and Roberts 1988a; Knappe et 

al. 1999; Munz et al. 1990; Carter et al. 1992; Jarvie et al. 2005; Summers et al. 1989). 

Adsorption capacity parameter values are required for modeling within all these approaches. 

Adsorption capacity for GAC is typically determined in single-solute isotherm studies 

and represented by the Freundlich adsorption equation (Sontheimer et al. 1988; Mittal et 

al. 2007). However, single-solute isotherms and their Freundlich values are not currently 

available for many PFAS and GACs (Crone et al. 2019; Wang et al. 2016). Recent efforts 

explore carbon and PFAS characteristics to help understand adsorption by GAC and its 

effectiveness (Kempisty 2014; Xiao et al. 2017; Park et al. 2020). These studies are likely 

beyond the scope of most water utilities due to prohibitive cost, limited personnel, and 

duration of the experiments. Additionally, if factors associated with natural organic matter 

(NOM) fouling are to be considered, then the number of experiments will also grow.

Knappe et al. (1999) investigated atrazine removal by GAC and highlighted the various 

uncertainties in model parameters and how they might be impacted by fouled GAC. The 

variability in both Freundlich isotherm K and 1/n [Eq. (1)] for atrazine were reported based 

on preloading (i.e., fouling) of the GAC. Further, Knappe et al. (1999) and Speth (1991) 

discuss the impact of different mass transfer coefficients related to fouling, noting that while 

having a smaller impact than K and 1/n, both ds (surface diffusion coefficient) and kf (film 

transfer coefficient) were expected to decrease over time due to fouling. This was also seen 

to be a function of bed depth (Summers et al. 1989), although generally NOM tends to 

evenly foul throughout a column due to its slower adsorption kinetics (Zimmer et al. 1987) 

and was assumed to foul evenly in the model (Jarvie et al. 2005). Experiments designed to 

predict unfouled K and 1/n for PFASs are needed to reduce the uncertainty related to the 

impact of fouling or allow a more thorough investigation into those effects and are used 

as inputs to the modeling effort discussed herein. Although some values for K and 1/n are 

available (reviewed in Crone et al. 2019), there is significant variability, and it is difficult to 

draw conclusions on a true parameter set for each compound and GAC.

Although there are many obstacles to overcome, modeling tools can be used to analyze or 

predict treatment performance. In an ideal modeling situation, the relevant model inputs 

would be known for all compounds to be modeled. However, as previously stated, a 

great deal of work is required to generate these parameters, which include single-solute 

isotherms, external mass-transfer coefficients, internal diffusion coefficients (surface and 

pore diffusion), adsorption parameters for background organics as a whole, and fouling 

factors for both adsorption capacity and kinetics. The effort needed to generate this list of 

parameters is likely more onerous than simply operating a pilot column study. Also, further 

temporal changes in water quality, and other parameters such as temperature, can make it 

difficult for predicting long-term, full-scale GAC column operations via modeling. Although 

this suggests that advanced modeling is not worth the effort, pilot studies also suffer from 

some of the same uncertainties from temporal changes in water quality. A combination 

approach of both piloting and modeling may give more confidence to the pilot-scale results 
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when trying to predict treatment performance at conditions not tested at the pilot scale 

(other bed sizes and flow rates, potential changes in influent concentrations, and so forth). 

This approach would help with discerning optimal operations such as bed staggering and 

replacement frequency. Although all uncertainties cannot be eliminated, it would be helpful 

for a utility to have an idea of the magnitude of possible impacts.

Data for 16 different PFAS compounds were modeled from a two-phase pilot study 

conducted using Cape Fear River water with five different activated GACs (seven total 

columns). The specific objectives of this article are to (1) demonstrate an automated 

model fitting procedure for pilot data that can be used by any utility, (2) demonstrate 

the use of these estimated parameters to predict pilot column performance against a 

multi-PFAS treatment objective, and (3) evaluate uncertainties. Automation of data analysis 

and parameter prediction from site-specific pilot or RSSCT data can simplify model use 

and provide utilities valuable information for system design and operation. In addressing 

system design and operation, the treatment objective is critical, and the full-scale predictions 

generated herein were based on a system-specific design treatment objective as defined by 

the water utility. The general procedure, however, would be applicable to other systems or 

treatment objectives. To the authors’ knowledge, this work is the first comprehensive pilot- 

to full-scale analysis related to PFAS compounds.

Methods

This article discusses the application of pore and surface diffusion model (PSDM) to predict 

pilot- and full-scale PFAS removal results. Specifics regarding the pilot phase of this study 

are presented in Supplemental Materials. In brief, a two-phase pilot study was conducted 

at a water utility, which analyzed for nine PFAS compounds in Phase I and 16 PFAS in 

Phase II (see Table 1) and included five different GACs (see header rows of Table 2). All 

pilot columns reported herein were operated at a 10-min empty bed contact time (EBCT). 

The parameters that were determined in the prediction phase of the modeling were then 

used to simulate full-scale performance under different scenarios such as different influent 

concentrations and flow rates. Because the intent of the project was to evaluate the chosen 

design parameters under potential future scenarios such as an increase of flow from 19 to 44 

million gallons per day (MGD), the modeled EBCTs were adjusted accordingly to match the 

desired EBCT (20 min) at 44 MGD, as stipulated by the utility’s design plans.

Table 1 shows the included PFAS, their acronyms, measured compounds, and summary 

concentrations in the influent to the pilot columns during the entire piloting period. 

Only compounds that occur in over half of the influent samples at concentrations above 

the minimum reporting limit were included in this study. Total organic carbon (TOC) 

concentration averages were 2.6 ± 0.3 mg L−1 for “raw” water and 2.2 ± 0.3 mg L−1 for 

postbiologically activated carbon (BAC) water during the study [N = 9 (Phase I) or 17 

(Phase II)]; for this study the term raw water was used to indicate water that was supplied 

to BAC beds. Most PFAS compounds had mean concentrations of 3–100 ng L−1, while 

perfluoro-2-methoxyacetic acid (PFMOAA) was estimated to have an average concentration 

exceeding 1 μg L−1. Compounds marked with “estimated” concentrations were reported as 
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such from the analytical labs providing the data due to the lack of standard methods for 

those compounds during the pilot period.

Adsorption Modeling

The PSDM tool within EPA’s “Water Treatment Models” GitHub site (USEPA 2021) was 

used in this study. This tool uses the same PSDM with fouling model utilized in AdDesignS 

(Mertz et al. 1999; Jarvie et al. 2005) and was used to simulate PFAS adsorption, but it was 

developed in Python version 3.8.

Parameter Estimation

The general approach for parameter estimation used within the Python code was as follows. 

Each PFAS/GAC combination was fit individually. The first step within the parameter 

estimator is to calculate a “fouled capacity” [q; see Eq. (1) and Table S1] by calculating the 

area between influent and effluent pilot data prior to complete breakthrough. Breakthrough 

was established as either where measured effluent intersected influent data or where 

the intersection would occur (extrapolated) for the average influent concentration, based 

on a linear estimate for any partial breakthrough data. Breakthrough was also manually 

established for some compounds where influent and effluent concentrations shared the same 

trends and differed by less than 20%, which was treated as an implied breakthrough. This 

was considered the fouled capacity because it was calculated based on the actual water not 

an organic-free test water. From this fouled capacity, an estimate for the Freundlich constant 

was calculated from the Freundlich adsorption isotherm as

q = x
m = Kc1/n (1)

where, q (μg g−1) and x = adsorbed mass of chemical (μg); m = mass of the adsorbate (g); 

c = average concentration of the adsorbing compound in liquid (μg L−1); and 1/n (unitless) 

and K [(μg g−1)(L μg−1)(1/n)−1] = compound-specific Freundlich constants. For the initial 

estimate, a 1/n value of 0.45 was used based on previous experience and the assumption 

that PFAS would have some affinity for GAC, and the average prebreakthrough influent 

concentration was used for c.

Mass-transfer parameters used by PSDM were correlated based on previously reported 

studies and incorporated into the current available code. The pore diffusion coefficient (dp) 

was calculated based on the correlation for fluid diffusion coefficient (Hayduk and Laudie 

1974) and the film transfer coefficient (kf) was calculated using the simplified Gnielinski’s 

correlation (Roberts et al. 1985). The surface diffusion coefficient (ds) was calculated using 

the correlation described in Mertz et al. (1999) and Sontheimer et al. (1988).

Optimization Approach

A brute-force optimization approach was used to find the set of parameters that minimized 

sum-of-squared error (SSQ) between the effluent and modeled data [using PSDM function 

analyze_all()] to determine the unfouled Freundlich K and 1/n. The brute-force search space 

was 1–3.5 times (Kmult: or K-multiplier, increment 0.1) the unfouled K and 0.3–1.0 for 

1/n (increment 0.01). This provides optimization for two parameters: Freundlich constant 
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(K) and adsorption isotherm exponent (1/n). The optimal Kmult multiplied by unfouled K 
established the unfouled or organic-free value of K. This range of 1/n’s was selected based 

on values presented in Wang et al. (2016) and previous PSDM experience. The range of 

Kmult’s was selected based on expected impact of fouling. The Rhine River was selected 

as the fouling water type (Jarvie et al. 2005) because the source of this pilot was an 

industrialized river with similar TOC levels. It is recognized that this is a source of potential 

error; however, to address this water specifically would require a significant experimental 

effort. Since a contaminant-specific category for PFAS was not available in the AdDesignS 

software, each PFAS was modeled individually with the PFAS-specific fouling factors listed 

in Table 1 [derived using the method outlined in Magnuson and Speth (2005); quantitative 

structure-property relationships (QSPR); a and b are parameter identifiers]. The input values 

to derive the QSPR values are presented in the Supplemental Materials (Table S4; section 

“Estimation of QSPR Correlation Factors for Capacity Reduction Equation”). For fouled 

cases, the value of ds reduced the correlated value by a factor of 1010 rather than set to 

10−30 (original PSDM behavior) due to numerical convergence issues in the solver. To better 

capture the breakthrough trend, especially for compounds with only a few prebreakthrough 

effluent points, the SSQ was calculated for every day within the pilot—where daily values 

were linearly interpolated for sampled effluent data.

The tool uses orthogonal collocation to solve partial differential equations in PSDM (for a 

full description, see Crittenden et al. 1986). For this work, eight (8) radial and eleven (11) 

axial collocation points were used. The SciPy function integrate.solve_ivp was used to solve 

the differential equations related to column adsorption (Jones et al. 2001).

Full-Scale Modeling

The best-fit parameters for the six compounds (PFHpA, PFOA, PFNA, PFHxS, PFOS, and 

GenX) were then used to model full-scale GAC beds based on the utility’s preferred bed 

design and a treatment objective that was being used by the utility for GAC assessment. 

The simulated full-scale system was supplied with water having the average concentrations, 

or multiples of average, for each compound. The hypothetical system considered by the 

utility contained eight beds that each had surface areas of 76 m2 (820 ft2) and a media depth 

of 3.8 m (12.5 ft), which are operated in parallel (to simulate a proposed system design, 

staged-parallel operations discussed in Denning and Dvorak 2008; Corwin and Summers 

2012). No other configurations, such as series or lead/lag operation, were considered. The 

reported apparent densities were used to estimate GAC mass for each bed, which ranged 

from approximately 113,398 kg (250,000 lbs) (Hydrodarco 4000) to 167,829 kg (370,000 

lbs) (Calgon F300). The system was modeled at the current system max-day demand, 

0.83 m3/s (0.10 m3/s per bed) [19 MGD (2.375 MGD per bed)], and a future expected 

max-day demand of 1.9 m3/s (0.24 m3/s per bed) [44 MGD (5.5 MGD per bed)]. Both flow 

rates were tested with water having influent concentrations of pilot period average, twice 

average, and 75% of the average for each compound. GACs were assessed by comparing 

the calculated bed replacement interval—expected two beds per cycle replacement—with a 

treatment goal of 70 ng L−1 total of the six PFAS chemicals. This treatment goal was not a 

regulatory value but merely a standard target, defined by the water utility, against which to 

assess configurations. The system was designed to yield a 20-min EBCT for the max-day 
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production of 44 MGD. Fouling parameters for Rhine River water were used due to its 

analogous industrially impacted water quality. Total PFAS results were modeled using sums 

of the individual PFAS model runs. For more information about the scale-up of pilot data to 

large-scale models, see Crittenden et al. (2012) and Sontheimer et al. (1988).

Results and Discussion

Fitting of Parameters

In this work, Freundlich isotherm parameters for unfouled or organic-free water were 

estimated from pilot data collected from columns, each loaded with fresh GAC that became 

fouled and experienced competitive adsorption throughout the study (see Table 2). Fig. 1 

contains an example of a model fit Fig. 1(a), the associated SSQ maps Fig. 1(b), and an 

example of a parameter uncertainty analysis Fig. 1(c). The “x” in Fig. 1(b) indicates the 

selected minimum, which was selected to correspond to the minimum that fell within a 

general area of decreasing SSQ, where a minimum that was not surrounded by other similar 

(within 15%) SSQ values was rejected as an outlier. Most of the SSQ maps looked like 1b, 

where a clear minimum was evident and subsequently selected. Values that correspond to 

either extreme of the search range (0.3 or 1.0) may have experienced further improvement 

in fit but were not considered—discussed subsequently. For Fig. 1(c), uncertainties of ±10% 

error in K and ±10% error in 1/n were selected to provide a general indication of how these 

values impact modeled predictions for the signal PFAS and carbon.

The selection of an optimal GAC is a function of a utility’s influent water quality, specific 

conditions, intended application, and design objectives. While some GACs performed less 

well than others (as observed in Table 2), that does not necessarily mean that they would 

perform similarly in all cases. Some GACs may perform better against certain PFAS 

compounds, so the unique PFAS mixture, treatment objective, and other system-specific 

considerations may change the relative performance of GACs compared to this study. 

Additionally, previous studies have highlighted that the impact of NOM varies depending 

on the type of GAC (Knappe et al. 1999; Zimmer et al. 1987; Summers et al. 1989), which 

was not directly investigated here. The modeling approach and data-fitting functionality 

used in this study would be of value for utilities with site-specific data or those conducting 

pilot/RSSCT studies. The values presented in Table 2 could provide estimates for other 

industrialized river sources, but care should be used when extrapolating it to other systems, 

because the parameters are implicitly related to the source water concentrations of all PFAS 

and non-PFAS compounds that were present during the pilot periods.

We found that the automated fitting of effluent data provided a more rigorous, consistent, 

and faster approach compared to manual fitting of the breakthrough profiles. The addition of 

a goodness-of-fit metric, SSQ, also provided a measure of how sensitive the model was to 

different parameters. This study limited the search space for values of 1/n to between 0.3 and 

1.0. Minima for some PFAS-GAC combinations were found at either extreme, suggesting 

that further improvement could be achieved. Many of the PFAS-GAC combinations were 

found to have 1/n values within the tested range, and the calculated unfouled K values were 

likely close to the best value even if the true 1/n value is slightly outside the tested range. 

The method allows for any range of 1/n to be supplied, so a user could expand the search 
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space if desired. Previous studies (reviewed in Crone et al. 2019) have reported 1/n values 

outside 0.3–1.0 and future dedicated PFAS-GAC isotherm research may shed more light into 

more appropriate ranges for values of 1/n for different PFAS. Corwin and Summers (2011) 

proposed a simplified Freundlich K (as K*) by using a linearized isotherm (1/n = 1) based 

on 50% breakthrough. This is similar to the integration method used herein to establish the 

initial fouled-K, but further refinement of K and 1/n would be needed to explore other 1/n 
values. This approach explores a range of both K and 1/n to determine best fit.

Overall, comparing parameter values presented in Table 2 with previously reported 

Freundlich isotherm parameters is challenging. Most previous studies have been conducted 

in concentration ranges far exceeding those experienced during the pilot phase—(mg or 

μg) L−1 in those experiments versus ng L−1 here. Experimentally determined parameters 

suggest considerably higher expected capacities. This is not surprising because (1) the values 

calculated here include all competitive behaviors with other constituents, which would 

be expected to lower capacities; and (2) the PFAS concentrations were much lower, and 

low concentration isotherm behavior for these compounds may be different from those 

experimentally tested. The fact that these parameters do inherently include the impact of 

the other chemicals in the source water does limit their applicability to other systems 

but highlights the potential for the approach. The alternative to using implicitly impacted 

Freundlich parameters—presented herein—is to explicitly model all chemical species 

competitively, which can quickly become a significant challenge as even just considering 

all PFAS studied here would require sixteen PFAS species to be modeled and still omit any 

other adsorbable species that were present in the source water that were not considered here. 

This would also require sampling data for any other adsorbable species in the source and 

associated isotherm parameters.

The aforementioned approach also assumed that the loss of capacity associated with NOM 

fouling was related to a reduction in Freundlich K over time (Jarvie et al. 2005; Crittenden 

et al. 2012). Freundlich K’s are determined by single-solute batch equilibrium (or as close 

to it as possible) studies. This approach, however, perhaps counter intuitively accounts for 

a time variable capacity via adjustments to the K parameter. An alternative approach was 

discussed in the Supplemental Materials, where K was determined from pilot data with 

an assumed 1/n, and ds was adjusted to account for NOM fouling. In actuality, multiple 

parameters may all be impacted by fouling, including 1/n (Knappe et al. 1999) that was not 

considered here. The capability to perform the analyses presented here is already available 

in the “Water Treatment Models” repository, but additional, more complex approaches could 

be developed. This work was intended to highlight a general approach to estimate reasonable 

parameter values to extrapolate to a full-scale analysis. Additional parameters could have 

been added to the search space, at the expense of extending the solution times. However, 

determining the best solution will become very complex if multiple parameter sets yielded 

similar results. Future work can reassess the results presented here against these more 

rigorous isotherm derived parameter values and help shed light into (1) how multicomponent 

competitive behavior impacts modeled results, (2) how accurately was fouling considered 

here and what can be improved, and (3) uncertainty associated with mass-transfer coefficient 

parameters and if improvements related to PFAS-specific parameters are needed. The 

implementation of ideal adsorbed solution theory (IAST) in AdDesignS (upon which this 
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work is based) can model competitive behavior between species (previously limited to fewer 

than six compounds) or include a fouling mechanism but not both. The Python version used 

here can include both, however, limited validation data is available, and this capability was 

therefore not used.

Interpreting Pilot-Scale Modeling

Because PFAS-specific capacity and kinetic model parameters have not yet been fully 

developed for PFAS compounds from bench-scale experimental studies, the aforementioned 

pilot-scale approach can provide a valuable estimate. Pilot data captures site-specific 

behavior, which then can be used to explore a broader range of potential scenarios during 

system design or retrofitting exercises. Extending modeling to a staged-parallel contactor 

operation provides even more information by providing more applicable operational 

estimates for GAC replacement intervals than by just relying on single-bed models. Models 

can be applied in a variety of ways to help water utilities to understand the expected 

performance of GAC for PFAS removal for their system while considering applicable 

treatment objectives or regulations. Modeled results can help predict bed replacement 

intervals, which can help establish whether GAC will be a viable technology for PFAS 

removal for that system under current or future conditions.

Pilot studies are valuable because they typically use real system water, full-size media (i.e., 

unground, unmodified), and column depth and loading rate that result in test durations more 

comparable to full-scale systems compared to RSSCTs. These advantages are not without 

some challenges. An ideal data set for the aforementioned modeling approach would capture 

a complete breakthrough profile with enough data points to clearly highlight the effluent 

concentrations from initial to complete breakthrough. For some PFAS-GAC combinations, 

the Phase I and Phase II profiles were good [example, Fig. 1(a)] such that more time 

resolution (i.e., more samples) would likely only increase the certainty in the resulting fit.

Visual inspections of the resulting model fits demonstrated that best-fit parameters led to 

modeled effluent breakthroughs that fell within the sampled effluent data [Figs. S1(a–g)]. 

Compounds with six to eight carbons tended to agree well with breakthrough curves, where 

the overall breakthrough was long enough to result in more than four nonzero effluent 

samples prior to complete breakthrough. Compounds with fewer than six carbons tended to 

breakthrough quickly, resulting in only one or two nonzero samples before breakthrough, 

while those with more than eight may have only had one or two nonzero samples near the 

end and had not resulted in complete breakthrough. More frequent sampling and a longer 

pilot period could help address the challenges mentioned here.

The influent concentrations for the majority of PFAS compounds decreased from Phase I 

to Phase II. Both pilots seem to reach a cumulative breakthrough at about the same time, 

but individual compounds tended to break through more slowly (flatter slope) suggesting a 

less favorable adsorption during Phase II (Fig. 2). Although the calculated capacities did not 

change significantly, the loading rate—mass per time—dropped resulting in delayed initial 

breakthrough. This can impact overall model fit because it changed which portions of the 

fouling algorithm could impact overall breakthrough. For the Rhine River water fouling 

parameters, the loss of effective capacity—reduction in K over time—occurs rapidly (first 
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5 weeks), but then remains essentially flat for any subsequent time, whereas the increase 

in tortuosity occurs only after 70 days (10 weeks). If the lower mass loading rate due to 

decreased influent concentrations results in a broader breakthrough profile, the modeled 

effluent profile associated with later time points will be more influenced by one or both 

fouling components because they are directly related to time and not mass loading rate. 

This also assumes that the general capacity reduction of GAC is only related to time, and 

not throughput. Considering PFHpA, for column C3 (Phase I) the complete breakthrough 

occurs at day 96, while for column C5 (Phase II) breakthrough occurs on day 154. The 

calculated capacity, q, based on column C5 was higher for PFHpA than that of column 

C3, but the additional 60 days of breakthrough for column C5 was likely more influenced 

by these time-based fouling characteristics than for column C3. Complete breakthrough 

occurred approximately 40 days later for column C5 relative to column C3 for compounds 

that were reported in both phases. This generally resulted in an increase in 1/n values to 

1.0 for many compounds with later breakthrough times, indicating a generally less favorable 

predicted adsorption and the linearization effect of NOM observed by others (Corwin and 

Summers 2011; Knappe et al. 1998, 1999). A further examination of how fouling is treated 

in the PSDM algorithm may be necessary to determine its impact on how capacity reduction 

is treated in the model. More data on adsorption of PFAS associated with unfouled or 

organic-free water would assist in establishing the impact of how fouling is modeled. The 

presented approach has focused on an aggregated behavior, specifically with “effective” 

adsorption capacities for each carbon. These effective capacities reflect the ability of that 

carbon to adsorb individual PFAS under the influent concentration conditions at the time of 

the study. An exhaustive exploration of the differences in these effective capacities (K and 

1/n combinations) was beyond the scope of this work, but these differences do highlight the 

complexity related to interpreting and using natural water in pilot studies.

Results from an alternative modeling approach are presented in the Supplemental Materials, 

in which only the surface diffusion value (ds) was varied to account for fouling and all other 

parameters are assumed or derived directly from the pilot data. Although the approach to fit 

ds yielded similar results for expected replacement intervals, it was felt to limit the ability 

to extrapolate results onto other scenarios. Since the values for K were inherently fouled, 

they were more directly linked to the initial influent composition of the water and may limit 

the ability to test drastically different influent conditions. However, this approach is faster 

to manually conduct since it only requires fitting ds value after precalculating a value for K 
from pilot results (as discussed in “Methods”).

Fig. 2 highlights the potential of the approach for evaluating a treatment goal since it 

depicts the sum of six individual PFAS. The modeled effluent lines are the summation of 

six individual model runs and the cumulative breakthrough profile generally agreed with 

the cumulative sampled effluent concentrations. This suggests that the approach applied to 

assessing full-scale behavior against a treatment objective can yield acceptable results for 

these performance models.
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General Errors and Uncertainties

Extrapolation from a single model to the large-scale system compounds uncertainty in two 

ways: the totalized PFAS value carries the uncertainty of each singular model; and the 

blended staged-parallel effluent value used to establish replacement intervals for a treatment 

objective further amplifies this uncertainty based on how many beds are considered. In the 

hypothetical system arrangement discussed herein, the oldest four beds (half the system) will 

likely have exhausted much or all their removal capacity with respect to many PFAS, with 

two beds (quarter of the system) offering partial removal, and the two freshest beds offering 

most of the system’s PFAS removal. However, the uncertainty in bed replacement interval 

will be dominated by this initial breakthrough for the compounds in a treatment objective 

that breakthrough earliest—in this system PFHpA, PFOA, and GenX.

The value of model results is related to sources of error or uncertainty in input data and 

associated model parameters. For this work, three types of uncertainty could have impacted 

results: (1) uncertainty in model parameters, (2) uncertainties with experimental results, and 

(3) unsampled periods impact on ability to model or fit results. For this work, all these 

sources of uncertainty or error were treated as nonexistent for calculating parameters from 

pilot data and extrapolating to full-scale systems.

To reduce the complexity of model fitting, it was assumed that the correlation values for 

mass-transfer coefficients had no uncertainty (i.e., produced correct values). Fig. 1(c) depicts 

the impact of uncertainty in the two model parameters used to adjust goodnessof-fit in 

this effort. Future work could include automated searches into other model parameters or 

carry uncertainty through to full-scale analysis. It is also important to restate that any error 

is compounded when calculating full-scale results based on modeled results, where error 

in individual effluent profiles may be additive when considering multiple compounds, and 

those errors are compounded when considering staged-parallel contactor design to determine 

bed replacement intervals.

Uncertainty in unsampled periods is a challenge for any data-driven approach. This work 

assumed a linear relationship between concentrations of two sampled points and was 

modeled as such. This can impact both influent and effluent concentrations; however, 

changes in influent concentrations that were not accurately captured would be expected 

to propagate an incorrect concentration profile through a column and relates to predicted 

adsorptive capacity. If enough data exist to provide a good estimate of influent average 

concentrations, these could be used to provide a secondary set of parameters to consider (not 

done here). Missing points in effluent data may have less of an impact because the fitting 

routine will compare all points to the generally smooth modeled profile.

Uncertainty in laboratory results was not directly assessed but could relate to model 

uncertainty in two ways. Values reported as nondetect or below the limit of quantification 

(LOQ) were set to zero for the analysis. If this was associated with the influent, then the 

calculated capacity would be lower than reality. For this study, PFDA, PFNA, and PFBS all 

had influent concentrations that had some nondetects reported and other samples near the 

LOQ. When this is associated with the effluent, the capacity could be lower, or the shape 

of the breakthrough curve could be different. Given that most of the modeled results were 
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able to match the measured curves, it was assumed that the use of zero for nondetects was 

acceptable in this case. Users could supply input data that treated non-detects differently 

(e.g., 50% LOQ) to assess the effect of this uncertainty, but this was outside the scope of the 

current effort. The acceptable error in analytical calibration impacts laboratory uncertainty, 

which could translate to a potential shift in input concentration values. For this reason, it 

was assumed that effluent concentrations, which were within 20% of influent concentration 

and showed similar trends near the end of the pilots, were an implied breakthrough. These 

errors impact the predicted mass loading and can result in errors in the modeled parameters; 

however, these errors may cancel each other since each set of samples may experience 

different calibration tolerances if they are not analyzed within the same batch.

Temporal Factors that Cannot Be Modeled

Utilities treating surface water, especially an industrially impacted river water as was the 

case here, may experience treatment performance changes with time due to changes in water 

quality. This could be a seasonal issue with changing temperatures or background water 

quality, or it can be a change in the influent concentrations of the contaminants of concern 

itself. This was observed in this study, as mentioned previously. The difference between the 

time to reach the treatment goal for a single bed observed in Fig. 2 suggests that a change 

in background water chemistry or temperature can have an impact. Fig. 3 shows the effect 

of using the same parameter set on different influent conditions. Fig. S3 shows the effect 

of using different parameter sets for the same influent compared to pilot results and applies 

uncertainty.

Because the time to replacement is an additive type of analysis, a minor change in fitted 

K and 1/n could have an impact. For parameters derived for F400 in columns C3 and C5, 

for the sum of the six PFAS when an uncertainty of ±10% in K and 1/n (see Table S3; 

Fig. S3) were applied, the range of predicted bed replacement intervals begin to overlap and 

were 172–327 days for column C3 and 267–524 days for column C5 at current capacity 

and concentrations. Fig. S3 shows that there is some overlap when both K and 1/n had 

10% uncertainty (lighter shaded regions), but minimal overlap when only uncertainty of 

10% in K (darker regions) is considered. Although the error evaluation starts to overlap the 

alternate breakthrough profile in some cases, suggesting that the results may not be as far 

apart as initially perceived, the change in K and 1/n for this overlapping prediction results 

in a poor fit in Fig. 1(c) for the original parameter estimation for a single PFAS and carbon. 

This suggests that seasonal or long-term changes in background water quality impacted the 

effective K and 1/n for PFAS related to a given carbon.

Modeling Scenarios Important to Design and Operation

The calculated values of K and 1/n in Table 2 were used to model a full-scale system 

containing each GAC. The projected single-bed breakthrough profiles for the six PFAS 

compounds were modeled (example Fig. 4), which were then used to calculate a blended 

effluent concentration. Fig. S4 shows the simulated staged-parallel effluent based on Calgon 

F400 (parameters from column C1) at two total system flows and at three different influent 

concentrations. The concentrations for each bed were determined by shifting the time of 

each bed by effective start dates [i.e., 0 days, 1× replacement interval (RI), 2× RI, 3× 
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RI] and averaging concentrations. Intervals between bed replacements are longer for the 

19-MGD system throughput and when influent concentrations were lower. Table 3 contains 

the projected replacement intervals, in days, for the different GACs and modeled influent 

concentrations. A replacement interval discussed herein corresponds to the time between 

replacing two beds, not the cumulative time for all beds, where an individual bed will 

be replaced every fourth cycle. For the 19-MGD treatment capacity, many of the GACs 

were predicted to require bed replacements every 180–400 days when treating water with 

the average PFAS concentrations of the pilots. When considering the 44-MGD treatment 

capacity, this was reduced to 80–180 days at the average concentrations. Reducing the 

influent concentrations by 25% increased the predicted times between bed replacements to 

over two years for 19 MGD but was closer to one year for many GACs when the flowrate 

was 44 MGD. This is in part because a 25% reduction in average influent concentrations 

only slightly exceeds the 70 ng L−1 threshold. If the influent concentration doubles, the 

expected bed replacement interval was only approximately one month for 44 MGD for most 

GACs, and approximately three months for many of the GACs at current production.

The values in Table 3 are meant to capture general trends in likely bed replacement 

intervals for a given system design and would not eliminate the need for effluent sampling. 

Actual systems would be expected to experience variable water qualities that were not 

considered during this step of the effort, which would change how breakthrough occurs. 

The values in Table 3 should also not be extended to other systems. They resulted from 

the interrelationship between the GAC, influent PFAS concentrations, source water type, 

and system design—GAC contactor size and number of contactors—system flowrate and 

the potential treatment objective. Changing any one of these characteristics will result in 

different predicted bed replacement cycles.

The approach discussed here provided estimates for model parameters based on pilot results, 

not bench studies. This approach could provide utilities that plan to conduct pilot studies 

with valuable tools to extrapolate those results to explore different scenarios of concern for 

full-scale design without the need for exhaustive pilot studies. A more rigorous approach 

to parameter determination to be used in competitive adsorption models would be to 

use isotherms developed from bottle tests. Although important to determine for future 

advancements of GAC modeling, an isotherm approach is more complicated, which also 

increases the required time, resources, and analyses. For example, to generate Table 2 with 

an isotherm approach would have required 400 bottle tests for a single set of single-solute 

tests (5 GACs, 16 compounds, and 5 concentrations, possibly more, to generate an isotherm 

curve), and for each duplication experiment (not including required controls) with an equal 

number of analytical tests. Additional studies could also be conducted with natural water, 

mixtures, or other mixtures of interest; however, modeling would still be needed to extract 

the single-solute parameters. Also, isotherm studies can provide a high level of certainty 

in the isotherm parameters, but more investigations may still be required to determine how 

that media may perform at full scale. The use of pilot (or RSSCT, or full scale) data as 

a basis for modeling provides less certainty about the true isotherm parameters but does 

capture all the other factors that impact the breakthrough for that system. Although having 

pure isotherms for PFAS on GAC will be valuable, the other adsorbable compounds, not 

discussed herein, are impacting the effective capacity of the GAC. These other chemicals 
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found in many industrialized rivers occur at much higher concentrations than PFAS and 

would need to be modeled concurrently with PFAS to get a true estimate of PFAS removal 

and may help explain why many laboratory-based capacities are higher than those reported 

here. The implicitly captured background effects related to estimating parameters from 

pilot data make transferring those parameters to other sites harder, but having to explicitly 

model all background constituents may also become intractable. Future work could include 

the development of parameters from isotherm studies and comparison with the approach 

discussed here. This could lead to improvements in the treatment of fouling in PSDM 

modeling and more certainty in the application of these models for more sites. Such an effort 

could help a utility in their evaluation of possible source mitigation efforts or the selection of 

an alternate source of their drinking water if that is possible.

Fig. S2 compares the predicted replacement intervals for columns C3 and C5 over a range 

of flowrates and influent concentrations. Based on the results in Table 3 and Fig. S2, 

GAC adsorption was deemed to be a satisfactory treatment technology. The utility’s desired 

minimum bed replacement interval was 90 days, which would be achievable for all scenarios 

except for the higher throughput (44 MGD) and the higher influent concentrations (200% of 

the average).

Another key parameter is the treatment goal. The treatment goal of 70 ng L−1 for these six 

PFAS compounds was not intended to reflect a regulatory limit, but rather a standardized 

metric for assessing designs and to demonstrate the approach of extrapolating pilot data to a 

full-scale system. This approach could be applied to other treatment goals based on different 

PFAS compounds and concentrations. This work did not consider treatment goals based 

on individual PFAS removal efficiencies; however, the general approach could be extended 

to include both individual and cumulative PFAS concentrations to assess potential designs. 

Utilities interested in treating to zero effluent PFAS could use this approach to model their 

system, but no such effort was undertaken for this work. Finally, by replacing the GAC on 

a more frequent basis than that listed in Table 3, as expected, the utility will achieve greater 

removal efficiencies both for individual and group PFAS. Based on this evaluation, the 

utility is anticipating a replacement interval of approximately one year at current production 

levels and average concentrations.

An alternative visualization (Fig. S5) was created to compare each GAC at the 19-

MGD flow rate with pilot-average influent concentrations. Differences in predicted bed 

replacement intervals among GACs for this water can be observed. Undulations in the 

lines correspond to individual PFAS breaking through. For the system design considered 

herein, PFHpA, GenX, and PFOA were the major contributors to predicted bed replacement 

intervals, with their combined concentration equal to 66.6 ng L−1 in the example (71% of the 

total influent PFAS considered for the treatment goal). In a blended effluent, as the freshest 

beds begin to break through for these compounds, the system will need to replace the oldest 

beds. Although PFOS had an average concentration of 16 ng L−1, its initial breakthrough 

from all GACs did not occur until later in simulated beds, which reduced its impact on 

the overall treatment objective. If the utility was considering a lead-lag bed operation, 

ultimately PFOS may have a greater role; however, because this utility plans on utilizing 

a staged-parallel blended system, this was not a concern. This type of analysis can help 
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utilities to understand driving forces behind bed replacement given their design objective 

and influent mixture. Compounds that occur in higher relative concentrations and have lower 

GAC capacities drive bed replacement, but overall treatment objectives, or goals, may shift 

the importance of these if some compounds have different desired effluent concentrations.

Summary and Conclusions

This work fit PFAS adsorption profiles from two separate pilot studies over two seasons at 

a water utility using a PSDM model that considered fouling due to NOM. Up to sixteen 

PFAS compounds were fit for multiple different GACs. The automated parameter-fitting 

protocol, unique to this study, provided a mathematically based repeatable analysis for all 

GACs, eliminating the potential inconsistent results associated with “eyeball” fits. The fitted 

parameters were then used to predict full-scale performance for numerous other conditions 

such as variable influent concentrations, flow rates, and treatment objectives.

All the PFAS in this study were found to have some removal capacity with GAC treatment. 

However, the individual PFAS had widely ranging adsorption characteristics that also varied 

temporally as demonstrated by the difference in treatment performance between the two 

pilot phases conducted at different times of the year. This caused concern about how the 

full-scale systems should be designed and operated, and even whether GAC should be 

considered an applicable treatment. Therefore, it was critical to extrapolate the pilot results 

into untested scenarios for a wide range of conditions. This effort highlighted the potential 

for GAC models to predict treatment based on complex treatment objectives, such as the 

six PFAS combined effluent concentration goal provided by the drinking water utility. 

As expected, the modeling effort was not able to fully describe why there were seasonal 

differences in treatment, other than to attribute it to changes in background constituents that 

could never be discerned due to lack of knowledge of cocontaminants at levels that would 

impact the breakthrough of PFAS at these low concentrations. However, the approach was 

still shown to be helpful in predicting system performance for any combination of treatment 

designs or objectives. Regarding the needs of this water utility, the results of the analysis 

reported herein showed that GAC was an effective option for treatment at this location based 

on the influent concentration and general water quality, operating requirements, and chosen 

treatment goals. Other conditions, especially those for lower treatment goals for weaker 

adsorbing PFAS, may result in different conclusions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example fit for best-fit parameters: (a) model fit with influent and effluent data; (b) 

SSQ plotted for 1/n versus K-multiplier (x indicates minimum); and (c) plot of parameter 

uncertainty plotted of best-fit model parameter set.
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Fig. 2. 
Total of summed-six-PFAS concentration comparison for F400 between Phase I and II.
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Fig. 3. 
Comparison of Calgon F400 parameters developed in (a) Phase I (C3); and (b) Phase II (C5) 

for summed-six-PFAS.
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Fig. 4. 
Example for multicomponent projection example for single-bed operation for different 

operational cases (Column 1: Calgon F400).
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