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Abstract 

Background:  Acute promyelocytic leukemia (APL) is considered a hematologic emergency due to high risk of 
bleeding and fatal hemorrhages being a major cause of death. Despite lower death rates reported from clinical trials, 
patient registry data suggest an early death rate of 20%, especially for elderly and frail patients. Therefore, reliable 
diagnosis is required as treatment with differentiation-inducing agents leads to cure in the majority of patients. How‑
ever, diagnosis commonly relies on cytomorphology and genetic confirmation of the pathognomonic t(15;17). Yet, 
the latter is more time consuming and in some regions unavailable.

Methods:  In recent years, deep learning (DL) has been evaluated for medical image recognition showing outstand‑
ing capabilities in analyzing large amounts of image data and provides reliable classification results. We developed a 
multi-stage DL platform that automatically reads images of bone marrow smears, accurately segments cells, and sub‑
sequently predicts APL using image data only. We retrospectively identified 51 APL patients from previous multicenter 
trials and compared them to 1048 non-APL acute myeloid leukemia (AML) patients and 236 healthy bone marrow 
donor samples, respectively.

Results:  Our DL platform segments bone marrow cells with a mean average precision and a mean average recall of 
both 0.97. Further, it achieves high accuracy in detecting APL by distinguishing between APL and non-APL AML as 
well as APL and healthy donors with an area under the receiver operating characteristic of 0.8575 and 0.9585, respec‑
tively, using visual image data only.

Conclusions:  Our study underlines not only the feasibility of DL to detect distinct morphologies that accompany a 
cytogenetic aberration like t(15;17) in APL, but also shows the capability of DL to abstract information from a small 
medical data set, i. e. 51 APL patients, and infer correct predictions. This demonstrates the suitability of DL to assist 
in the diagnosis of rare cancer entities. As our DL platform predicts APL from bone marrow smear images alone, this 
may be used to diagnose APL in regions were molecular or cytogenetic subtyping is not routinely available and raise 
attention to suspected cases of APL for expert evaluation.
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Background
Acute promyelocytic leukemia (APL) is a distinct sub-
class of acute myeloid leukemia (AML) which is char-
acterized by a reciprocal and balanced translocation 
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between the promyelocytic leukemia protein (PML) 
gene on chromosome 15 and the retinoic acid receptor 
α (RARα) gene on chromosome 17 [1, 2]. The t(15;17) 
results in an oncogenic fusion protein PML-RARα which 
functions as a transcriptional repressor of RARα tar-
get genes and impairs the homeostatic function of PML 
thereby promoting a proliferation of myeloid progenitor 
cells and provoking a maturation arrest at the promye-
locytic stage [3–5]. APL was first described by the Nor-
wegian hematologist Leif Hillestad in 1957 [6] and for a 
long time it was considered one of the most lethal leu-
kemias [7] with population-based incidence rates varying 
between different ethnicities [8–10]. The introduction of 
all-trans retinoic acid (ATRA) [11] and arsenic trioxide 
(ATO) [12] has revolutionized APL therapy and outcome 
nowadays showing remarkable cure rates [13, 14]. Never-
theless, APL is considered a hematologic emergency and 
requires immediate treatment upon suspected diagnosis, 
both causally and supportive, due to possible early death 
from bleeding [13]. Early death rates in APL – com-
monly defined as death within 30  days of presentation 
[15] – appear to be underestimated in the medical lit-
erature: While clinical trials frequently show early death 
rates below 10% it has to be considered that a substan-
tial number of patients even dies before APL is diagnosed 
and patients with significant comorbidities or higher age 
are often excluded from trials leading to bias [15, 16]. In 
patients ineligible for clinical trials, registry data as well 
as population-based analyses show an early death rate 
of approximately 20% with even higher rates for elderly 
patients [15–19]. When diagnosed and treated promptly, 
APL is curable in the majority of patients. Therefore, fast 
and accurate diagnosis as well as immediate treatment 
upon suspicion is crucial [13]. Classical APL can be rec-
ognized by a distinct morphology of abnormal promyelo-
cytes with a heavy granulation pattern and characteristic 
cells containing single Auer rods or bundles of Auer rods 
in the cytoplasm (‘faggot cells’) [20]. Therefore, cytomor-
phologic assessment by experienced hemtopathologists 
is essential for APL diagnosis since it is fast, feasible and 
can often reinforce clinically suspected diagnosis. Still, 
diagnosis of APL routinely encompasses cytomorphol-
ogy [21, 22] as well as cytogenetics for confirmation of 
suspected diagnosis [13], however genetic analyses take 
more time and resources until results are available. Fur-
ther, high-quality genetic testing might not be ubiqui-
tously available.

Machine Learning (ML), especially Artificial Neural 
Nets (ANN), can handle large-scale data sets and are 
implemented as image recognition and computer vision 
technologies, especially Convolutional Neural Nets 
(CNN) [23, 24] as a form of Deep Learning (DL). DL 
models consist of massive parallel computing systems 

consisting of large numbers of interconnected process-
ing units called artificial neurons, [25, 26] which can be 
run efficiently on high performance computing systems. 
CNNs contain multiple neural layers to provide func-
tionality for image recognition [24] Thus, these capabili-
ties can be utilized for cell segmentation, cell recognition 
and disease classification in hematological malignan-
cies [27–29]. We here present a CNN-based scalable 
approach that can detect APL among healthy bone mar-
row donor and non-APL AML samples from bone mar-
row smear (BMS) images. The resulting models provide a 
reliable method for APL diagnosis when genetic data are 
still pending or an experienced hematopathologist is not 
immediately available, thereby reducing treatment delay. 
Further, our DL model can be implemented remotely in 
areas where no immediate access to high-quality genetic 
testing is available, thereby enabling the diagnosis of APL 
in non-industrialized countries, where APL is often more 
common [8, 9].

Methods
In this study, we trained a multi-stage DL platform to 
segment cells in BMS and distinguish between APL and 
non-APL AML as well as APL and healthy bone marrow 
donor samples using visual image data only.

Data set and molecular analysis
We retrospectively identified 58 APL patients that 
have been diagnosed and treated in the multicentric 
AIDA2000 (NCT00180128) [30] and NAPOLEON stud-
ies (national APL observational study, NCT02192619) 
[31] or from the German Study Alliance Leukemia (SAL) 
registry (NCT03188874). Eligibility criteria for the APL 
cohort were newly diagnosed APL according to WHO 
criteria [32] (FAB M3) as defined by the presence of 
t(15;17) or fusion transcript PML-RARA​, age ≥ 18  years 
and available biomaterial at diagnosis. Diagnosis of APL 
was confirmed using standard techniques for chromo-
some banding and fluorescence in  situ hybridization 
(FISH). Seven samples were excluded because BMS were 
inconclusive due to dry tap and diagnosis was performed 
using peripheral blood. 51 APL BMS were analyzed for 
the purpose of this study. The first control cohort was 
comprised of 236 bone marrow samples from healthy 
bone marrow donors who underwent bone marrow 
donation at our center. The second control cohort con-
sisted of 1048 BMS from patients with non-APL AML 
that were identified from the multicentric German SAL 
registry. Written informed consent was obtained from 
all patients and donors according to the Declaration of 
Helsinki. The studies were previously approved by the 
Institutional Review Board of the Technical Univer-
sity Dresden (EK 98032010). High-resolution pictures 
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of representative areas of the BMS were taken using the 
Nikon ECLIPSE E600 microscope (50-fold magnification) 
with the Nikon DSFi2 mounted camera and Nikon Imag-
ing Software Elements D4 for image processing. For each 
sample, one image of a representative area was taken for 
evaluation by the deep learning model. To account for 
imbalances in the data sets, image augmentation tech-
niques were employed as described below.

Deep learning model
Pre‑processing and cell segmentation
We developed a multi-step ML workflow with individual 
DL models for different tasks as shown in Fig.  1. After 
digitization, BMS images were uploaded to an online seg-
mentation and labeling platform that we developed for 
the purpose of this work. The platforms architecture was 
designed to receive BMS images sized 2560 * 1920 pixels 
as input at the top level for BMS images while receiving 
299*299 pixels input size on the level of individual cells 
in subsequent cell-level classification tasks (see below). 
Picture input at the top level corresponded to an area 
of 171*128 µm. In the first step, initial cell segmentation 
was performed with a human-in-the-loop approach by 
hematologists with the VGG Image Annotator [33] tool 
to train a Faster Region-based Convolutional Neural 
Net [34] (FRCNN). Cell borders were initially drawn by 
hematologists, then, the FRCNN learned by example and 
subsequently provided cell border proposals on unseg-
mented cells that were manually corrected in an itera-
tive way. Thereby, the FRCNN substantially improved 
its accuracy over iterations enabling the final model to 
automatically segment BMS images without the need 
for human manual correction. The trained FRCNN was 
used to subsequently segment cells on all available BMS 
images. Hyperparameter optimization was performed 
automatically using the Optuna [35] framework with a 
predefined hyperparameter space.

Cell labeling and cell‑level classification
In the second step and analogous to training the model 
by example to detect cell borders, feature extraction was 
initially performed manually by hematologists, i.e., labels 
of cell type, lineage and distinct characteristics like Auer 
rods were attributed to 8500 individual cells by hematol-
ogists (Tab. S1 shows the numbers of individual labels). 
Cell size, volume and contrast were automatically cal-
culated by computer vision algorithms. Given the rar-
ity of the disease and therefore limited number of cases 
included in our study, image augmentation techniques 
like linear transformations, color shift and brightness 
adjustment were applied to increase sample size and bal-
ance samples for binary classifications as imbalances may 
otherwise have introduced bias towards the predominant 

class. For image classification, model architecture was 
based on the Xception CNN [36]. In order to deal with 
the limited sample size, we used transfer learning and 
modified the fully connected exit flow layers for the 
2048-dimensional output vectors of the core Xception 
architecture between one and three fully connected lay-
ers with dropout. The final architectures were found via 
hyperparameter optimization and differed between indi-
vidual models. We used a top-down approach of three 
different inter-connected CNNs that zoomed in on indi-
vidual cells for different binary classification purposes. 
The hierarchical modeling was designed as follows: 
Cell-level CNNs were employed to classify myeloblasts, 
promyelocytes and Auer rods. For example, the myelo-
blast-detection-CNN was trained to fit the labels “mye-
loblast” and “non-myeloblast” to each cell that had been 
segmented by the FRCNN previously (in the first step). 
Simultaneously, the same cells were evaluated by the 
promyelocyte-detection-CNN and Auer-rod-detection-
CNN. For instance, a promyelocyte with one single Auer 
rod would receive the following encoding: myeloblast 0; 
promyelocyte 1; Auer rod 1. This way, ratios of myelo-
blasts, promyelocytes and cells bearing Auer rods per 
BMS became available.

Image‑level classification via ensemble learning
Subsequent results of the cell-level classification CNNs 
were put out as ratios (e. g. ratio of myeloblasts per 
BMS, ratio of promyelocytes per BMS). The output of 
the aforementioned CNNs was then combined via a 
fully connected layer without dropout to form binary 
ensemble neural nets (ENNs) producing the final labels 
according to the individual diagnosis, i. e. APL, non-APL 
AML or healthy donor. The final models again under-
went hyperparameter optimization and were trained 
on the augmented training set with optimized hyper-
parameters. Then, cross-validation was performed on 
patient data that were withheld from model building and 
training using a 2:1 split to prevent patients from cross-
ing between training and test set. In previous iterations, 
we tried to train a single CNN end-to-end on the BMS 
images for binary classification purposes, however, we 
found results to be unsatisfactory likely due to the small 
sample size of APL (n = 51). Yet, the implementation of 
hierarchical CNNs to first classify cells as a proxy and 
then implement their output for ensemble learning was 
efficient in dealing with the small sample size and yielded 
improved performance in comparison to a single-CNN 
approach. To implement the model to achieve satisfac-
tory results, image augmentation, balancing of data 
sets for binary decisions (e. g. APL vs. healthy controls) 
and hierarchical learning were crucial. In summary, an 
image is first segmented by the FRCNN to discriminate 
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Fig. 1  Workflow of the multi-step deep learning model for APL recognition. We identified patients with APL, non-APL AML and healthy bone 
marrow donors by retrospective chart review. Representative images of bone marrow smears (BMS) were labeled according to diagnosis. After 
image preprocessing, transformation and augmentation, initial cell border proposals were given by the Faster Region-based Convolutional 
Neural Net (FRCNN) that were manually corrected on an online segmentation and annotation platform based on the VGG image annotator tool. 
The FRCNN was trained iteratively to improve cell border proposals. Segmented cells were manually labeled according to cell type (myeloblasts, 
promyelocytes) and Auer rods. Convolutional neural nets were then implemented on the automatically segmented cells for binary classification 
of individual cell types and features. Their output was used to train an ensemble neural net for the binary classification between APL and non-APL 
AML or APL and healthy bone marrow donor samples
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between viable cells and background/smudge, then clas-
sified by the CNNs on the cell-level and lastly (based on 
the proportions per BMS) classified by the ENNs on the 
image-level for the respective diagnosis.

Performance evaluation
Classification performance was assessed by precision, 
recall and F1-score with threefold cross-validation. 
Precision (positive predictive value) is defined as the 
fraction of true positives among all positive predic-
tions while recall (sensitivity) is defined as the fraction 
of all positive predictions among all relevant events. 
The true positive rate (TPR) corresponds to sensitiv-
ity/recall while the false positive rate (FPR) corre-
sponds to 1-specificity. The F1-score is a combined 
metric of both precision and recall. As both precision 
and positive predictive value as well as recall and sen-
sitivity can be used interchangeably depending on the 
contextual domain, we will from now on use the terms 
precision and recall for the remainder of this manu-
script. Area under the curve (AUC) was calculated for 
the receiver operating characteristic (ROC) and pre-
cision-recall-curves. Calculations and visualizations 
were performed in Python version 3.7.9.

Data and code availability
The data supporting the conclusions of this article is 
available under https://​www.​kaggle.​com/​datas​et/​a49eb​
5eb21​9384a​df928​56e43​dcfc7​9b9cf​1eaea​5ec13​bd57e​
f304d​173eb​e42c All models were built in Python version 
3.7.9 with Keras version 2.3.0 and TensorFlow version 
2.1.2. Computations were performed using a high-per-
formance computing system. The code supporting the 
conclusions of this article is available under https://​
github.​com/​Sebas​tianR​ieche​rt/​autof​rcnn and https://​
github.​com/​TimSc​hmitt​mann/​Fast-​and-​Accur​ate-​Diagn​
osis-​of-​APL-​from-​BMS

Results
Median age for the non-APL AML and APL cohort were 
57 (IQR: 49–67) and 50.5 (42.3–58) years, respectively. 
The majority of cases were de novo AML/APL. Median 
bone marrow blast counts were 63.5% (IQR: 41.5–80) 
and 63 (53.5–76) for non-APL AML and APL, respec-
tively. Table  1 provides detailed information on patient 
characteristics.

94.162 individual cells were manually segmented 
to train the FRCNN. Segmentation achieved a mean 
average precision (mAP) and a mean average recall 
(mAR) of both 0.97 at an intersection-over-union-
ratio of 0.5 and a mAP of 0.88 and mAR of 0.90 at an 

Table 1  Patient characteristics

Patient characteristics of non-APL AML, APL and control (bone marrow donors) groups. AML type was defined according to the WHO 2016 classification

sAML Secondary AML, tAML Therapy-associated AML, WBC white blood cell count, Hb Hemoglobin, Plt Platelet count, PB Peripheral blood, BM Bone marrow, N 
Number, IQR interquartile range

parameter non-APL AML APL Bone marrow donors

N 1 048 58 236

Age, median (IQR) 57 (49–67) 50.5 (42.25–58) 31 (25–39)

Sex, %
  Male 45.5 45.7 70

  Female 54.5 54.3 30

AML type, %
  de novo 77.5 90.5 /

  sAML 13.6 0 /

  tAML 8.9 9.5 /

ELN2017 risk, %
  Favorable 34.1 / /

  intermediate 44.7 / /

  adverse 21.2 / /

  WBC in GPt/l, median (IQR) 14 (2.7–45.2) 1.3 (0.7–6.4) /

  Hb in mmol/l, median (IQR) 5.8 (5.0–6.8) 6.3 (5.3–6.9) /

  Hb in g/dl, median (IQR) 9.3 (8.1–11.0) 10.1 (8.5–11.1) /

  Plt in GPt/l, median (IQR) 56 (31–103) 27 (18–57) /

  PB blasts, median (IQR) 27 (6–62) 14.75 (1.3–63) /

  BM blasts, median (IQR) 63.5 (41.5–80) 63 (53.5–76) /

https://www.kaggle.com/dataset/a49eb5eb219384adf92856e43dcfc79b9cf1eaea5ec13bd57ef304d173ebe42c
https://www.kaggle.com/dataset/a49eb5eb219384adf92856e43dcfc79b9cf1eaea5ec13bd57ef304d173ebe42c
https://www.kaggle.com/dataset/a49eb5eb219384adf92856e43dcfc79b9cf1eaea5ec13bd57ef304d173ebe42c
https://github.com/SebastianRiechert/autofrcnn
https://github.com/SebastianRiechert/autofrcnn
https://github.com/TimSchmittmann/Fast-and-Accurate-Diagnosis-of-APL-from-BMS
https://github.com/TimSchmittmann/Fast-and-Accurate-Diagnosis-of-APL-from-BMS
https://github.com/TimSchmittmann/Fast-and-Accurate-Diagnosis-of-APL-from-BMS
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intersection-over-union-ratio of 0.5 to 0.95 (for increas-
ingly strict overlaps between predicted cell boundaries 
and the ground truth). An example of automatically seg-
mented bone marrow cells in an APL BMS can be seen 
in Fig.  2A. Rarely, inaccuracies were observable due to 
overlapping cells. Subsequently, automatically segmented 
cells were used for feature selection and classification. 
Using image augmentation, we obtained balanced data 
sets of 969 APL images and 944 healthy controls for the 
binary classification between APL and healthy bone mar-
row donor samples and 2550 APL images and 2500 non-
APL AML images for the binary classification between 
APL and non-APL AML. To prevent overfitting, we used 
pooling dropout of 0.32 and 0.46, respectively, as sug-
gested by automated hyperparameter optimization. The 
median number of cells per image was 169. Regarding 
time from image upload to final output, i. e. suspected 
diagnosis, it took the high-performance computing sys-
tem 5  s to load an individual image. The subsequent 
segmentation via the FRCNN took on average 4.4 s and 
the consecutive classification of each individual cell via 
the CNNs took on average 0.2  s per cell. The integra-
tion of the CNNs results, i. e. the proportions of myelo-
blasts, promyelocytes and Auer rods per image via the 
ENN took 2.1 s on average. Given a median of 169 cells 
per image, the entire process from uploading the image 
to final output, i. e. suspected diagnosis per image, took 
45.3  s on average. We used three different CNNs that 
were trained to detect cell types (myeloblasts, promyelo-
cytes) and Auer rods based on individual binary classifi-
cations on the cell-level. Subsequently, this information 

was integrated by our ENN for sample classification. In 
terms of explainable AI, we created occlusion sensitivity 
maps of BMS image-level classification tasks to retrace 
the CNNs’ image evaluation. On the BMS image-level, 
we found the neural nets to be cell-specific in a proof-
of-concept fashion, i. e. evaluating cells rather than back-
ground, smudge, or noise (Fig. 2B).

Previous efforts were conducted with a single CNN 
for upfront whole image classification, but showed only 
moderate results. The stepwise approach of distribut-
ing different classification tasks over different CNNs and 
integrating output information into an ENN showed sub-
stantially improved accuracy for APL prediction. Hence, 
we used proportions of myeloblasts, promyelocytes, and 
Auer rods as a proxy to achieve image-level classification. 
To train the CNNs, 2992 myeloblasts, 1378 promyelo-
cytes, and 130 cells with Auer rods were labeled manually 
(a full list of manually labeled cells is provided in Tab. S1). 
For the individual binary classifications (e. g. myeloblast 
vs. non-myeloblast, promyelocyte vs. non-promyelocyte 
etc.), the CNNs’ accuracy differed (Fig. 3). The individual 
CNNs for the detection of myeloblasts, promyelocytes, 
and Auer rods showed an AUROC of 0.8741, 0.9199, and 
0.8363, respectively.

For final classifications, our ENN model achieved a 
mean AUC of the precision-recall-curve of 0.9671 (95%-
CI: 0.9441 – 0.9901; Fig. 4A) and a mean AUC of the ROC 
of 0.9585 (95%-CI: 0.9327 – 0.9843; Fig. 4B) for the detec-
tion of APL samples among healthy bone marrow donor 
samples using threefold internal cross-validation. For the 
binary classification between APL and non-APL AML 

Fig. 2  Examples of automated segmentation and occlusion sensitivity mapping. A Faster Recurrent Neural Network (FRCNN) was used for cell 
segmentation. First, it was trained by human example and after iterative learning, automated cell detection was performed (A). Segmented 
cells show a yellow elliptic border. With respect to explainable artificial intelligence, we used occlusion sensitivity mapping to retrace the 
decision-making process of the convolutional neural nets in image-level recognition (B). In occlusion sensitivity mapping, parts of the image are 
iteratively blocked from evaluation by the neural network and performance is measured. If the blocked part of the image is highly important for 
correct classifications, performance will drop accordingly. This process is iteratively repeated for the entire image. The result can be visualized in the 
sense that highly important image areas are highlighted (yellow/green) while less important or negligible areas are shaded (blue/purple)
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our ENN model reached a mean AUC of the precision-
recall-curve of 0.8599 (95%-CI: 0.7741 – 0.9457; Fig. 4C) 
and a mean AUC of the ROC of 0.8575 (95%-CI: 0.7831 – 
0.9319; Fig. 4D) with threefold internal cross-validation.

Discussion
We here present a DL-based system for the diagnosis 
of APL from BMS. The resulting DL model automati-
cally segments nucleated cells in images of BMS with 
high accuracy. Accurate cell segmentation is a key ini-
tial step in CNN-based evaluation of leukemic cell mor-
phology that is considerably harder in the bone marrow 
as cells are often clumped in narrow spaces and arti-
facts are more frequent than in peripheral blood [37]. 
We tested APL recognition with our ENN model both 
against healthy bone marrow donor and non-APL AML 
samples and obtained an AUROC of 0.9585 and 0.8575, 
respectively. The time it takes from the upload of a BMS 
image to the model and subsequent output of a suggested 
diagnosis was 45.3 s. To the best of our knowledge, our 
model represents one of the first and the most accurate 
DL approach to recognize APL from bone marrow cyto-
morphology. The few recent studies have either focused 
on peripheral blood smears [38] or report a lower accu-
racy [39]. Given considerable early death rates especially 
in elderly patients [19], reliable methods for diagnosis are 
crucial to provide highly effective treatment. Since APL 
is a very rare disease, patients suspected of having APL 
must be referred to specialized centers as soon as possi-
ble and only experienced trained laboratory technicians 
and hematologists are typically able to raise the suspicion 
of APL, specifically in areas with low incidence rates. ML 
has been reported to be able to flag possible cases from 
peripheral blood cell counts [40] and peripheral blood 
smear morphology [38]. Our DL model may serve as a 
proof-of-concept that DL can also be implemented as a 
robust tool for bone marrow evaluation in rare hema-
tologic diseases such as APL. This can be advantageous 
when confirmation of t(15;17) by cytogenetics or PML-
RARα by FISH is still pending or when such advanced 
tests are not available, e. g. in peripheral centers or in 
developing countries without ubiquitous access to high-
quality laboratory procedures and genetic testing. In 
such cases, our DL model may enable diagnosis of APL 
even in smaller centers in developing countries as long as 

digitization of BMS and internet access is available. For 
specialized centers, our system may provide a mecha-
nism of rapidly pre-scanning samples for APL and flag 
them for immediate evaluation by hematopathologists.

Nevertheless, given the rarity of APL our cohort con-
sists of only 51 cases as available training data. To account 
for the small sample size, we used image augmentation 
techniques. Indeed, to improve accuracy and further vali-
date the model in terms of generalizability, future stud-
ies will have to include larger data sets. Especially for rare 
entities such as APL, international collaboration is cru-
cial since ML models thrive on data. A larger APL data 
set may therefore improve the model’s accuracy and allow 
it to be implemented as a diagnostic screening test in 
clinical routine of specialized centers to pre-scan larger 
numbers of samples for possible cases of APL. From a 
technological perspective, we used cell-level detection 
of myeloblasts, promyelocytes and Auer rods as a proxy 
for subsequent BMS image-level classification by the 
ENNs. In preliminary experiments, we also tested direct 
end-to-end BMS image-level classification, although with 
unsatisfactory results. Conceivably, a larger data set may 
provide the possibility to train CNNs directly end-to-end 
for APL detection. Further, we tried to include a fourth 
CNN for the detection of faggot cells into the model, 
however, the scarcity of faggot cells in the sample did not 
allow for accurate faggot cell detection by the respective 
CNN. Again, a larger sample size may increase the accu-
racy of this individual classifier and whether a subsequent 
incorporation into the model could potentially boost its 
performance remains to be tested. While we manually 
selected representative BMS areas for evaluation by the 
DL model, future applications of the model with whole 
slide imaging seem warranted. Novel techniques like DL-
based automated focusing on whole slide images [41] can 
be used to further automatize the process. However, the 
majority of studies of ML in hematology, including our 
DL approach, are developed and tested on retrospective 
data. Prospective validation of our DL model is planned 
to confirm its accuracy and transferability to daily clinical 
practice. We believe prospective evaluation of the model 
is necessary to evaluate its implications for routine diag-
nostics and improved accuracies given a larger training 
sample is needed therefore. Hence, in future iterations 
the model can either serve as diagnostic tool to raise 

Fig. 3  Performance of convolutional neural nets for binary cell type classifications. Since end-to-end image-level classification did not show 
satisfactory results in preliminary testing, we used cell-level recognition with convolutional neural nets as a proxy. Relevant cell types and features 
for the distinction between non-APL AML, APL and healthy bone marrow, i. e. myeloblasts, promyelocytes, and Auer rods, were labeled manually 
and CNNs were trained. The performance of individual CNNs for the detection of myeloblasts (A), promyelocytes (B), and Auer rods (C) on the 
respective testing sets (that were rigorously withheld from training) is displayed as area under the receiver operating curve (AUROC) using 
three-fold cross-validation (cv 0, 1, 2 illustrated in light blue, orange, and green). std. dev. – standard deviation of the mean; TPR – true positive rate; 
FPR – false positive rate

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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awareness of suspected cases of APL for expert evalua-
tion, provide expertise on morphologic assessment where 
no such expertise or access to other means of diagnostic 
evaluation is available and serve as a proof-of-concept 
that deep learning can function even with sparse data in 
the medical domain. We consider this to be groundwork 
to build upon in future iterations of the model. Further-
more, it needs to be noted that our model only consid-
ers cytomorphology and is agnostic of clinical, genetic 
or laboratory data. An integration of these modalities is 
needed to improve diagnostic accuracy and provide an 
even stronger decision support system for clinicians.

Conclusion
We present a DL model for assistance in the diagnosis 
of APL from bone marrow cytomorphology using con-
trol cohorts of both healthy bone marrow donors and 

non-APL AML samples. Our ENN model achieved high 
values for AUROC despite the limited sample size and 
serves as a proof-of-concept for the viability of DL in 
the diagnosis of rare cancer entities from image data. 
Since our DL platform uses visual image data only, it 
may potentially be used to support diagnosis of APL in 
areas where molecular and cytogenetic profiling is not 
routinely available. Future work will therefore focus on 
increasing sample size, prospective validation and the 
implementation of an online tool for easily accessible 
remote use of the model’s APL prediction capabilities.

Abbreviations
AML: Acute myeloid leukemia; APL: Acute promyelocytic leukemia; BMS: Bone 
marrow smear(s); CNN: Convolutional neural net; DL: Deep learning; ENN: 
Ensemble neural net; FISH: Fluorescence in situ hybridization.

Fig. 4  Performance of the ensemble neural net for APL image-level recognition. Performance metrics for the binary classification of APL vs. 
healthy bone marrow donor samples (top row) and APL vs. non-APL AML samples (bottom row) were calculated as areas under the curve for 
precision-recall curves (A, C) and the receiver operating characteristic (B, D) using threefold cross-validation (cv 0, 1, 2 illustrated in light blue, 
orange, and green) and averaging results (Macro avg, dark blue). Calculations were performed in Python. std. dev. – standard deviation of the mean; 
TPR – true positive rate; FPR – false positive rate
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