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Abstract 

Background:  Hepatocellular carcinoma  (HCC) was frequently considered as a kind of malignant tumor with a poor 
prognosis. Cyclin-dependent kinases  (CDK) 4 was considered to be cell-cycle-related CDK gene. In this study, we 
explored the clinical significance of CDK4 in HCC patients.

Methods:  Data of HCC patients were obtained from The Cancer Genome Atlas database  (TCGA) and the Gene 
Expression Omnibus  (GEO) database. Kaplan–Meier analysis and Cox regression model were performed to calculate 
median survival time  (MST) and the hazard ration  (HR), respectively. The joint-effect analysis and prognostic risk score 
model were constructed to demonstrate significance of prognosis-related genes. The differential expression of prog‑
nostic genes was further validated using reverse transcription-quantitative PCR  (RT-qPCR) of 58 pairs of HCC samples.

Results:  CDK1 and CDK4 were considered prognostic genes in TCGA and GSE14520 cohort. The result of joint-
effect model indicated patients in CDK1 and CDK4 low expression groups had a better prognosis in TCGA  (adjusted 
HR = 0.491; adjusted P = 0.003) and GSE14520 cohort  (adjusted HR = 0.431; adjusted P = 0.002). Regarding Kaplan–
Meier analysis, high expression of CDK1 and CDK4 was related to poor prognosis in both the TCGA  (P < 0.001 
and = 0.001 for CDK1 and CDK4, respectively) and the GSE14520 cohort  (P = 0.006 and = 0.033 for CDK1 and CDK4, 
respectively). However, only CDK4  (P = 0.042) was validated in RT-qPCR experiment, while CDK1  (P = 0.075) was not.

Conclusion:  HCC patients with high CDK4 expression have poor prognosis, and CDK4 could be a potential candidate 
diagnostic biomarker for HCC.
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Background
In 2020, liver cancer was known to rank sixth among 
diagnosed malignant cancers worldwide and the third 
leading cause of cancer death, ranking second in terms 
of cancer death for males [1]. 75–85% of primary liver 
cancer was HCC [1]. The main risk factors were chronic 

hepatitis B or C, aflatoxin B1 exposure, excessive alcohol 
intake and alcohol-related liver disease [1, 2]. Metabolic 
diseases such as type 2 diabetes  (T2DM) and non-alco-
holic fatty liver  (NAFLD) are high-risk factors for HCC 
[3, 4]. NAFLD can progress to nonalcoholic steatohepa-
titis and then to HCC, and T2DM increases the risk of 
HCC by a factor of 3 through the PTEN/P13K/Akt and 
MAPK kinase molecular pathway [3–5]. Although there 
were many well-established diagnoses for HCC, includ-
ing computed tomography, ultrasonography, serum 
tumor markers and magnetic resonance imaging [2], 
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HCC patients are usually in advanced liver failure when 
they develop symptoms and are usually untreatable [6]. 
Therefore, patients can be diagnosed early to obtain 
longer overall survival and it is necessary to explore 
molecular biomarkers to provide early diagnosis and 
prognostic assessment for HCC patients.

The CDKs genes family play a vital role in cell division 
and modulating transcription [7]. A total of 21 genes in 
the CDKs gene family were divided into 11 subfamilies, 
of which CDK1  (CDK1, CDK2, CDK3), CDK4  (CDK4, 
CDK6) subfamily were considered to be cell-cycle-related 
subfamilies [7, 8]. Cell cycle regulators were frequently 
mutated in the tumor, including overexpression of CDKs 
[9]. There are many studies reporting the involvement of 
CDK1 and CDK4 subfamilies in the progression of mul-
tiple cancer [10–20]. However, the relationship between 
CDK1-4, 6 expression and the risk of HCC patients was 
rarely reported. Thus, this study aims to explore the role 
of CDK1-4, 6 expressions in HCC patients based on pub-
lic cancer data.

Materials and methods
Data source
The mRNA expression and clinical information of HCC 
in the TCGA database were obtained from the Univer-
sity of California, Santa Cruz Xena  (UCSC Xena, https://​
xenab​rowser.​net/​datap​ages/) [21]. The GSE14520 data-
set from the GEO database was analyzed. The platform 
of GSE14520 was GPL3921, which collected the mRNA 
expression levels of 225 HCC tissues and 220 matched 
liver tissues. The clinical information and mRNA gene 
expression matrix of HCC were downloaded from 
GSE14520 on the GEO website  (https://​www.​ncbi.​nlm.​
nih.​gov/​geo) [22, 23]. The limma package was used to 
process and normalize the raw data of the GSE14520 
gene expression matrix in R platform. The gene expres-
sion and clinical data from Chinese HCC  (CHCC) 
patients were accessed via the National Omics Data 
Encyclopedia  (NODE) website  (https://​www.​biosi​no.​
org/​node/​proje​ct/​detail/​OEP00​0321) [24].

Tissues processing and RT‑qPCR experiments
In RT-qPCR experiment, a total of 58 pairs of tumor 
and adjacent normal liver tissues  (> 3  cm margin from 
the tumor) of patients pathologically diagnosed as 
HCC in The First Affiliated Hospital of Guangxi Medi-
cal University were collected for further analysis. Inclu-
sion criteria: Patients received no other non-surgical 
treatments before surgery and hospitalization time was 
from December 2016 to July 2018. HCC patients with 
follow-up time < 3  months were excluded. Small pieces 
of HCC and adjacent normal liver tissues were stored in 
RNAstore Reagent  (Tiangen Biotech Co., Ltd.) at -80℃. 

According to the manufacturer’s instructions, RNA was 
extracted from tissues by the Trizol method and reversed 
into cDNA via PrimeScriptTMRT reagent kit  (Takara 
Bio, Inc.). Primers GAPDH, CDK1, and CDK4 were 
purchased from TsingKe Biotech Co., Ltd. and their 
sequences  (5’-3’) were as follows: GAPDH, forward GTC​
AGC​CGC​ATC​TTC​TTT​, reverse CGC​CCA​ATA​CGA​
CCA​AAT; CDK1, forward TTT​CTT​TCG​CGC​TCT​AGC​
CA, reverse GGT​AGA​TCC​GCG​CTA​AAG​GG; CDK4, 
forward AGC​CAG​AGA​ACA​TTC​TGG​TGACA, reverse 
TCG​GCT​TCA​GAG​TTT​CCA​CAG. DEPC-treated water 
and FastStart Universal SYBR Green Master  (ROX) were 
purchased from Sangon Biotech Co., Ltd., and Roche 
Diagnostics  (Shanghai) Co., Ltd., respectively. The 
reaction cycle of PCR is as follows: hold the stage at 95 
degrees for 35 s, then 40 cycles of PRC stage at 95 degrees 
for 5  s and 55 degrees for 34  s, and finally melt curve 
stage at 95 degrees for 15 s, 60 degrees for 1 min and 95 
degrees for 15 s. The relative expression of mRNAs in tis-
sues was calculated by the 2-∆∆Ct method.

Ethical approval
This study was approved by the Ethical Review Commit-
tee of the First Affiliated Hospital of Guangxi Medical 
University and informed consent of all HCC patients par-
ticipating in this study was provided.

Bioinformatics analysis and correlation analysis
The Gene Ontology  (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes  (KEGG) pathway analysis 
were used to study the potential biological functions and 
potential metabolic pathways of CDK1-4,6 by the clus-
terProfiler package in the R software [25]. The interac-
tive gene‑gene networks and protein–protein interaction  
(PPI) networks were depicted by the GeneMANIA tool 
in the Cytoscape software v.3.6.1 [26, 27] and STRING  
(https://​string-​db.​org) [28], respectively. Pearson’s corre-
lation matrix was depicted correlations among CDK1-4, 
6 genes by the ggcorrplot package in the R software.

Diagnostic values assessment and survival analysis
Receiver operating characteristic  (ROC) curve was 
completed by GraphPad Prism v.8 to investigate the 
diagnostic value of CDK1-4, 6 genes with differential 
expression for HCC. Univariate Cox regression model 
was performed to identify the relationship between clini-
cal information and prognosis of HCC patients. Clinical 
information statistically associated with prognosis in the 
univariate Cox regression model  (P < 0.05) was selected 
as the adjusted factors for the multivariate Cox regres-
sion model. According to the median expression levels 
of CDK1-4, 6 of tumor tissues, patients were classified 
into high and low expression groups. The multivariate 
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cox regression model and Kaplan‑Meier survival analy-
sis were performed to explore the relationship between 
CDK1-4, 6 gene expression and overall survival  (OS) 
in HCC patients. Only CDK1 and CDK4 were found 
to be statistically associated with OS in the multivari-
ate cox regression model. Therefore, CDK1 and CDK4 
were selected as prognosis-related CDK genes in HCC 
patients. Joint-effect analysis was performed to evalu-
ate the combined effect of CDK1 and CDK4. In the 
TIMER2.0  (http://​timer.​comp-​genom​ics.​org/) [29]  and 
Gene Expression Profiling Interactive Analysis  (GEPIA, 
http://​gepia.​cancer-​pku.​cn/) [30] website, we queried the 
expression of CDK1 and CDK4 genes in different cancers 
and the relationship between the expression of CDK1 and 
CDK4 genes and TP53 gene mutation, a common muta-
tion site in liver cancer. The prognostic value of CDK1 
and CDK4 genes in liver cancers were obtained from 
the Kaplan–Meier Plotter website  (https://​kmplot.​com/​
analy​sis/) [31].

Prognostic signature construction
To further explore the influence of CDK1 and CDK4 
expression levels on the prognosis of HCC patients. The 
prognostic risk score model was established by including 
each the prognosis-related genes respectively weighted 
by their regression coefficients  (β) from the multivariate 
Cox regression model. To assess the predictive value of 
the model, the area under the curve  (AUC) of the time-
dependent ROC curve was completed by the survival-
ROC package to indicate the predictive accuracy of the 
model for 1-, 2-, 3- and 5-year survival.

Gene set enrichment analysis
The gene set enrichment analysis  (GSEA) was used to 
explore potential biological mechanisms that progno-
sis-related CDK genes may be involved in. [32, 33] The 
referenced gene sets derived from Molecular Signa-
tures Database  (MSigDB) of c2  (c2.all.v7.0. symbols) 
and c5  (c5.all.v7.0.symbols) [34]. C2 gene set contained 
two subsets of Chemical and genetic perturbations and 
Canonical pathways and c5 gene set derived from GO 
annotations [34]. The statistically significant results sat-
isfied the following criteria: P < 0.05 and false discovery 
rate < 0.25.

Statistical analysis
T-test was used to assess differential expression of 
CDK1-4, 6 genes between HCC and matched normal tis-
sues. Correlation among CDK1-4, 6 genes was assessed 
by Pearson’s correlation coefficients. MST was obtained 
by Kaplan–Meier survival analysis with the log-rank test. 
Association of CDK gene expression levels and clini-
cal information with OS was assessed by HR and 95% 

confidence interval  (CI) was calculated by Cox regres-
sion model. All statistical analyses were done by SPSS 
v.22.0 software  (IBM Corporation, USA). Kaplan–Meier 
survival curve, scatter plots and ROC curve was depicted 
by GraphPad Prism v.8 software. Scatter plots, heat 
maps, histograms and matrix plots were depicted by the 
R platform  (version 3.6.3). P < 0.05 was considered to be 
statistically significant in this study.

Results
The design of this study is displayed in the flow chart  
(Fig. 1).

Data source
TCGA cohort included 370 HCC tissues and 50 adja-
cent normal liver tissues and corresponding 370 patients’ 
prognostic information. In GSE14520 dataset, the major-
ity of patients were Hepatitis B virus  (HBV)-infected 
patients. To reduce confounding factors, 212 HCC tis-
sues and 204 matched normal liver tissues from 212 
HBV-infected HCC patients and the corresponding clini-
cal information were retained in the GSE14520 cohort. 
In the CHCC cohort, gene expression was acquired in 
tumor and normal liver tissues from 159 Chinese HCC 
patients who underwent radical resection.

Bioinformatics analysis and correlation analysis
The results of GO analysis suggested that biological func-
tions  (Cellular component, Biological process, Molecular 
function) of CDK1-4, 6 were involved in regulation of cell 
cycle, serine/threonine protein kinase complex and pro-
tein serine/threonine kinase activity, etc.  (Fig.  2A) The 
KEGG pathway analysis indicated pathways involved 
in CDK1-4, 6 were enriched cell cycle, p53 signaling 
pathway, cellular senescence and PI3K-Akt signaling 
pathway  (Fig. 2B and Additional files 1, 2: Figure S1-2) 
[35–37]. The PPI networks suggested that CDK1-4, 6 
proteins were associated with Cyclins  (CCN) family pro-
teins, CDC20, CDKN1A and CKS1B  (Fig. 3A). Moreo-
ver, the gene-gene interaction network showed that nine 
CCN family number genes  (CCNA1, CCNA2, CCNB1, 
CCNB2, CCND1, CCND2, CCND3, CCNE1 and CCNE2) 
and other genes  (CDKN2A, RUNX1, CDKN1A, and 
so on) also were associated with CDK1-4, 6  (Fig.  3B). 
Pearson’s correlation coefficient of CDK1-4, 6 was used 
to manifest the correlation among genes  (Fig. 3C). The 
results suggested that CDK1-4, 6 genes had a certain cor-
relation with each other in TCGA.

Diagnostic values assessment
The expression of CDK1-4, 6 genes in different tissues 
was shown in the scatter plot  (Fig.  4), and a total of 3 
CDK genes  (CDK1, CDK3 and CDK4) were found to be 
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overexpressed in HCC tissues of TCGA cohort. Simi-
larly, CDK1, CDK3, CDK4 and CDK6 were found to be 
overexpressed in HCC tissues of GSE14520 cohort. To 
evaluate the diagnostic value of CDK1-4, 6 genes expres-
sion, the ROC curve indicated that CDK1  (P < 0.001 and 

AUC = 0.965) and CDK4  (P < 0.001 and AUC = 0.834) 
had potential predictive value in TCGA cohort  (Fig. 5A–
E). Moreover, a total of 3 genes in GSE14520 cohort, 
CDK1  (P < 0.001 and AUC = 0.964), CDK3  (P < 0.001 and 
AUC = 0.836) and CDK4  (P < 0.001 and AUC = 0.926) 

Fig. 1  Schematic diagram of the study design

Fig. 2  GO enrichment and KEGG pathway analysis of CDK1-4, 6. GO analysis  (A); KEGG pathway analysis  (B)
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Fig. 3  The protein–protein interaction networks among CDK1-4, 6 proteins with other proteins  (A) and gene–gene interaction networks among 
CDK1-4, 6 genes with other genes  (B). Matrix graphs of Pearson’s correlations cofficient of CDK1-4, 6 gene expressions in the TCGA database  (C). 
Note: *P < 0.05

Fig. 4  Scatter plot of expression level of CDK1-4, 6 genes between tumor tissue and adjacent normal liver tissues in TCGA cohort  (A) and in 
GSE14520 cohort  (B). Note: CDK2 was unavailable in GSE14520 of GEO database. NS: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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suggested potential diagnostic value  (Fig.  5F–I). In 
particular, CDK1 and CDK4 showed high accuracy 
in both TCGA and GSE14520 cohort  (P < 0.001 and 
AUC > 0.800).

Survival analysis
Kaplan‑Meier survival analysis  (Fig.  6A–I) indicated 
that high expression of CDK1 and CDK4 had statisti-
cally significant worse prognosis in both TCGA cohort  
(Fig.  6A, D; P < 0.001 and = 0.001 for CDK1 and CDK4, 
respectively) and GSE14520 cohort  (Fig. 6F, H; P = 0.006 
and = 0.033 for CDK1 and CDK4, respectively).

The clinical information for the TCGA cohort of 
370 HCC was presented in Table  1. Radical resection  
(P = 0.007) and III or IV TNM stage  (P < 0.001) were sta-
tistically significant for OS. The clinical information for 
GSE14520 cohort of 212 HBV-infected HCC patients 
was presented in Table 2. Tumor size  (P = 0.002), cirrho-
sis  (P = 0.041), BCLC stage  (P = 0.050, 0.004 and < 0.001 
for A stage, B stage and C stage, respectively), serum 
AFP  (P = 0.049) and TNM stage  (P = 0.005 and < 0.001 
for II stage and III or IV stage, respectively) were statis-
tically significant for OS in HCC patients. Tumor size  
(P < 0.001), tumor thrombus  (P = 0.005), preoperative 
AFP  (P < 0.001) and BCLC stage  (P = 0.014 and < 0.001 

Fig. 5  The ROC curves of CDK gens in distinguish HCC tumor tissue and adjacent normal tissues. The ROC curves of CDK1  (A), CDK2  (B), CDK3  (C), 
CDK4  (D), CDK6  (E) in TCGA cohort; the ROC curves of CDK1  (F), CDK3  (G), CDK4  (H), CDK6  (I) in GSE14520 cohort. Note: CDK2 was unavailable in 
GSE14520 of GEO database
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for B stage and C stage, respectively) were statistically 
associated with OS in the CHCC cohort  (Additional 
file  10: Table  S1). In TCGA, GSE14520 and CHCC 
cohort, the above clinical information statistically rel-
evant to OS was considered as prognostic-related infor-
mation for adjustion in the multivariate Cox regression 
model.

After adjusting tumor stage and radical resection, the 
multivariate Cox regression model of TCGA cohort  
(Table  3) suggested that high expression of CDK1  
(adjusted HR = 1.541; adjusted P = 0.028) and CDK4  
(adjusted HR = 1.721; adjusted P = 0.005) were statis-
tically related to OS. In GSE14520 cohort  (Table  4), 
tumor size, cirrhosis, and BCLC stage were considered 
as adjusted factors in the multivariate Cox regression 
model, which suggested that high expression of CDK1  
(adjusted HR = 2.237; adjusted P < 0.001) and CDK4  
(adjusted HR = 1.579; adjusted P = 0.044) were statisti-
cally related to OS in HBV-infected HCC patients.

In particular, gene expression of CDK1 and CDK4 were 
statistically related to OS in the multivariate Cox regres-
sion model of TCGA and GSE14520 cohort. Therefore, 
CDK1 and CDK4 were considered to be the genes associ-
ated with the prognosis of HCC patients for further joint-
effect analysis. Patients in group D  (MST = 2456  days, 
low CDK1 and CDK4 expression) had statistically better 
prognosis than patients in group A  (MST = 899  days, 
high CDK1 and CDK4 expression) in TCGA cohort  
(Table  5 and Fig.  6J, adjusted HR = 0.491; adjusted 

P = 0.003). Similarly, patients in group d  (low CDK1 
and CDK4 expression) had statistically better prognosis 
than patients in group a  (high CDK1 and CDK4 expres-
sion) in GSE14520 cohort  (Table 5 and Fig. 6K, adjusted 
HR = 0.431; adjusted P = 0.002). The CHCC cohort, used 
as validation for the joint-effects analysis, showed simi-
lar results: patients in group IV  (low CDK1 and CDK4 
expression) had better survival  (Additional file  11: 
Table  S2 and Fig.  6L, adjusted HR = 0.287; adjusted 
P = 0.002).

To validate the prognostic value of CDK1 and CDK4 
genes, we searched the value of CDK1 and CDK4 in HCC 
in multiple datasets. In the CHCC cohort, HCC patients 
with high expression of CDK1  (Additional file 3: Figure 
S3A; P < 0.001) and CDK4  (Additional file 3: Figure S3B; 
P < 0.001) had statistically worse prognosis. In TIMER2.0 
results as shown in Additional files 4, 5, 6: Figure S4-6, 
CDK1 and CDK4 showed high expression in HCC and 
other cancers and were positively correlated with TP53 
gene mutation, a common mutation site in HCC. As the 
results of the GEPIA website shown in Additional file 7: 
Figure S7, CDK1 and CDK4 were highly expressed in 
HCC than normal liver tissues and they also were highly 
expressed in other cancers, and expression of CDK1 and 
CDK4 was positively correlated with the stages of HCC. 
From the Kaplan–Meier Plotter website, we obtained 
the survival curves of CDK1 and CDK4, and the results 
showed that HCC patients with high expression of CDK1 
and CDK4 had shorter OS  (Fig.  7A, B), relapse-free 

Fig. 6  The Kaplan–Meier survival curves for CDK gens in HCC. Overall survival curves were plotted for CDK1  (A), CDK2  (B), CDK3  (C), CDK4  (D) and 
CDK6  (E) in TCGA cohort; Overall survival curves were plotted for CDK1  (F), CDK3  (G), CDK4  (H) and CDK6  (I) in GSE14520 cohort. The Kaplan–Meier 
survival curves for joint-effects analysis of CDK1 and CDK4 in HCC of TCGA cohort  (J), GSE14520 cohort  (K) and CHCC cohort  (L). Note: CDK2 was 
unavailable in GSE14520 of GEO database
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Table 1  Clinical data of 370 HCC patients from TCGA database

OS, overall survival; MST, median survival time; HR, hazard ratio; CI, confidence interval; AFP, α-fetoprotein; NA, not available
a Alcohol consumption information is not available for 19 patients
b Ishak fibrosis score information is not available for 159 patients
c umor stage information is not available for 24 patients
d Histologic grade information is not available for 5 patients
e Serum AFP information is not available for 93 patients
f Radical resection information is not available for 7 patients
g Micro vascular invasion information is not available for 56 patients
h Child-Pugh score information is not available for 132 patients

Variables Patient   (n = 370) OS

No. of events MST  (days) HR  (95% CI) P

Age  (years)

 ≤ 60 177 55 2532 1

 > 60 193 75 1622 1.246  (0.879–1.766) 0.217

Gender

 Female 121 51 1490 1

 Male 249 79 2486 0.817  (0.573–1.164) 0.262

Race

 Asian 157 44 NA 1

 White + other 203 81 1386 1.309 (0.904–1.896) 0.154

Alcohol consumptiona

 No 234 84 1694 1

 Yes 117 40 1624 1.026 (0.703–1.496) 0.896

Ishak fibrosis scoreb

 0—No Fibrosis 74 30 2131 1

 1,2—Portal Fibrosis 31 9 1372 0.917 (0.429–1.962) 0.823

 3,4—Fibrous Speta 28 6 NA 0.682 (0.281–1.654) 0.397

 5—Nodular Formation and Incom‑
plete Cirrhosis

9 2 1386 0.750 (0.177–3.167) 0.695

 6—Established Cirrhosis 69 17 NA 0.766 (0.418–1.403) 0.388

TNM stagec

 I 171 42 2532 1

 II 85 26 1852 1.427 (0.874–2.330) 0.155

 III or  IV 90 48 770 2.764 (1.823–4.190)  < 0.001

Histologic Graded

 G1 55 18 2116 1

 G2 177 60 1685 1.181 (0.697–2.000) 0.537

 G3 121 43 1622 1.233 (0.711–2.140) 0.456

 G4 12 5 NA 1.693 (0.626–4.584) 0.300

Serum AFPe

 ≤ 400 ng/ml 213 62 2456 1

 > 400 ng/ml 64 22 2486 1.055 (0.645–1.724) 0.832

Radical resectionf

 R0 323 110 1852 1

 R1/R2/RX 40 17 837 2.030 (1.213–3.395) 0.007

Micro vascular invasiong

 No 206 60 2131 1

 Yes 108 36 2486 1.351 (0.892–2.047) 0.155

Child–Pugh scoreh

 A 216 59 2542 1

 B/C 22 9 1005 1.614 (0.796–3.270) 0.184



Page 9 of 17Wei et al. BMC Gastroenterology           (2022) 22:77 	

survival  (Fig. 7C, D), progression-free survival  (Fig. 7E, 
F) and disease-free survival  (Fig.  7G, H) than those 
with low expression, and these results were statistically 
significant.

Prognostic signature construction
Prognostic model was constructed to determine the 
combined predictive value of CDK1 and CDK4 expres-
sion. In TCGA cohort, the tumor stage and radical 
resection were as adjusted factors in the multivariate 
Cox regression model and regression coefficients  (β) 
of CDK1 and CDK4 were calculated. Therefore, risk 
score = expression of CDK1 × 0.251 + expression of 

CDK4 × 0.444. HCC patients were divided into high-
risk group  (above the median risk score) and low-risk 
group  (below the median risk score) for the calcula-
tion of the relationship between risk score and OS 
by cox regression model and the results were shown 
in Table  6 and Fig.  8A, B. Compared with the low-
risk group  (MST = 2456  days), the high-risk group  
(MST = 1149 days) showed statistically increased risk of 
death  (adjusted HR = 1.643; adjusted P = 0.01) in HCC 
patients. The model’s predictive value was assessed by 
time-dependent ROC curves, which had AUC of 0.700, 
0.691, 0.681 and 0.616 for the 1-year, 2-year, 3 year and 

Table 2  Clinical data of 212 HBV-related HCC patients in the GSE14520 of GEO database

HBV, hepatitis B virus; BCLC, Barcelona Clinic Liver Cancer; AFP, α-fetoprotein; MST, median survival time; OS, overall survival; HR, hazard ratio; CI, confidence interval; 
NA, not available
a Information of tumor size was unavailable in 1 patients
b Information of serum AFP was unavailable in 3 patients

Variables Patient  (n = 212) OS

No. of events MST  (months) HR  (95% CI) P

Age   (years)

 ≤ 60 175 69 NA 1

 > 60 37 13 NA 0.864 (0.478–1.564) 0.63

Gender

 Female 29 8 NA 1

 Male 183 74 NA 1.704 (0.821–3.534) 0.152

Multinodular

 Single 167 59 NA 1

 Multiple 45 23 47.9 1.607 (0.992–2.604) 0.054

Tumor sizea

 ≤ 5 cm 137 46 NA 1

 > 5 cm 74 36 53.3 1.975 (1.274–3.060) 0.002

Cirrhosis

 No 17 2 NA 1

 Yes 195 80 NA 4.335 (1.065–17.638) 0.041

BCLC stage

 0 20 2 NA 1

 A 143 48 NA 4.119 (1.001–16.951) 0.050

 B 22 12 46.1 8.992 (2.005–40.320) 0.004

 C 27 20 13.6 18.993 (4.419–81.632) < 0.001

Serum AFPb

 ≤ 300 ng/ml 115 39 NA 1

 > 300 ng/ml 94 43 NA 1.546 (1.002–2.385) 0.049

ALT

 < 50U/L 124 46 NA 1

 ≥ 50U/L 88 36 NA 1.095 (0.708–1.693) 0.684

TNM stage

 I 89 20 NA 1

 II 76 32 NA 2.214 (1.265–3.873) 0.005

 III or  IV 47 30 18 5.197 (2.930–9.218) < 0.001
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5-year ROC curves, respectively  (Fig.  8C). Similarly, 
when β was calculated when tumor size, BCLC stage 
and cirrhosis as adjusted factors, risk score = expres-
sion of CDK1 × 0.792 + expression of CDK4 × 0.024 
in GSE14520 cohort. The results suggested that the 
high-risk group suffer experience a worse progno-
sis  (adjusted HR = 2.237; adjusted P < 0.001 Table  6 
and Fig.  9A, B). The AUC was 0.533, 0.601, 0.601 and 

0.642 for 1-year, 2-year, 3 year and 5-year ROC curves, 
respectively  (Fig. 9C).

GSEA
In the GSEA analysis, GEO and TCGA datasets were 
sorted according to expression of CDK1 and CDK4, 
respectively. In the TCGA cohort, the GSEA results 
suggested that high expression of CDK1 and CDK4 
was correlated with cell cycle, liver cancer survival, 

Table 3  Relationship between CDK gene expression and HCC prognosis in TCGA cohort

OS, overall survival; MST, median survival time; HR, hazard ratio; CI, confidence interval
a Adjusted for tumor stage and radical resection

Variables Patient  
(n = 370)

OS

No. of events MST  (days) HR  (95% CI) P Adjusted HR  (95% CI) Adjusted Pa

CDK1

 LOW 185 53 2131 1 1

 HIGH 185 77 1149 1.796 (1.265–2.551) 0.001 1.541 (1.048–2.266) 0.028

CDK2

 LOW 185 61 2116 1 1

 HIGH 185 69 1490 1.450 (1.025–2.051) 0.036 1.305 (0.896–1.900) 0.165

CDK3

 LOW 185 65 13,786 1 1

 HIGH 185 65 1852 0.775 (0.534–1.067) 0.111 0.934 (0.640–1.363) 0.723

CK4

 LOW 185 54 2456 1 1

 HIGH 185 76 1229 1.779 (1.253–2.526) 0.001 1.721 (1.179–2.513) 0.005

CDK6

 LOW 185 66 1624 1 1

 HIGH 185 64 1852 1.042 (0.738–1.471) 0.815 1.068 (0.733–1.554) 0.733

Table 4  Relationship between CDK gene expression and HCC prognosis in GSE14520 cohort

HBV, hepatitis B virus; MST, median survival time; OS, overall survival; HR, hazard ratio; CI, confidence interval; NA, not available
a Adjusted for tumor size, cirrhosis, BCLC stage

Expression Patient  
(n = 212)

OS

No. of events MST  (months) HR  (95% CI) P Adjusted HR a  (95% CI) Adjusted Pa

CDK1

 Low 106 33 NA 1 1

 High 106 49 54.8 1.848 (1.187–2.876) 0.07 2.237 (1.424–3.514)  < 0.001

CDK3

 Low 106 43 NA 1 1

 High 106 39 NA 0.902 (0.585–1.392) 0.642 1.116 (0.716–1.742) 0.628

CDK4

 Low 106 35 NA 1 1

 High 106 47 NA 1.605 (1.036–2.487) 1.579 (1.013–2.461) 0.044

CDK6

 Low 106 44 NA 1 1

 High 106 38 NA 0.812 (0.526–1.254) 0.348 0.88 (0.567–1.365) 0.568
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cell cycle checkpoints, DNA replication and cell cycle 
G2 and M phase transition  (Additional file  8: Figure 
S8A–L). In GSE14520 cohort, the GSEA results sug-
gested high expression of CDK1 and CDK4 was corre-
lated with cell cycle, liver cancer survival, DNA repair, 
regulation of TP53 activity and viral gene expression  
(Additional file 9: Figure S9A–L).

RT‑qPCR experiment
CDK1 and CDK4 were differentially expressed in 
the RT-qPCR experiment  (Fig.  10A, B), respectively  
(P < 0.001), whereas only CDK4 was overexpressed in 
HCC tissues consistent with the results from TCGA 
and GEO cohort. ROC curve analysis suggested that 
CDK1  (Fig.  10C, AUC = 0.722, P < 0.001) and CDK4  

Table 5  Joint effects analysis of CDK1 and CDK4 expression in HCC patients

OS, overall survival; MST, median survival time; HR, hazard ratio; CI, confidence interval; NA, not available
a Adjusted for tumor size, cirrhosis, BCLC stage in GSE14520 cohort; and adjusted for tumor stage and radical resection in TCGA cohort

Group CDK1 CDK4 Patient OS

No. of events MST HR  (95% CI) P Adjusted HRa  (95% CI) Adjusted Pa

TCGA​  (n = 370) days

 A High High 135 56 899 1 1

 B High Low 50 21 1490 0.769 (0.465–1.271) 0.305 0.704 (0.408–1.216) 0.209

 C Low High 50 20 1622 0.760 (0.455–1.269) 0.294 0.857 (0.489–1.502) 0.591

 D Low Low 135 33 2456 0.430 (0.279–0.662)  < 0.001 0.491 (0.307–0.785) 0.003

GSE14520  (n = 212) months

 a High High 80 37 57.9 1 1

 b High Low 2 12 52.7 0.989 (0.515–1.897) 0.972 1.170 (0.606–2.258) 0.641

 c Low High 26 10 NA 0.756 (0.376–1.522) 0.434 0.566 (0.273–1.173) 0.126

 d Low Low 80 23 NA 0.480 (0.285–0.808) 0.006 0.431 (0.255–0.729) 0.002

Fig. 7  Expression of CDK1 and CDK4 in HCC in Kaplan–Meier plotter tool. Overall survival curves were plotted for CDK1  (A) and CDK4  (B); Relapse 
free survival curves were plotted for CDK1  (C) and CDK4  (D); Progression free survival curves were plotted for CDK1  (E) and CDK4  (F); Disease free 
survival curves were plotted for CDK1  (G) and CDK4   (H)
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(Fig.  10D, AUC = 0.744, P < 0.001) had statistically 
predictive value. According to median mRNA expres-
sion, patients were divided into high expression group 
and low expression group. The results of the CDK4 
Kaplan–Meier analysis suggested high expression 
group had statistically worse prognosis  (Fig.  10E, 
P = 0.042), but CDK1 was not statistically significant  
(Fig. 10F, P = 0.075).

Discussion
CDK gene families were serine/threonine kinases and 
their main function was involved in cell cycle regula-
tion, which required the specific cyclin subunits to pro-
vide domains essential [7]. The results of bioinformatics 
analysis suggested CDK1-4, 6 were involved in the regu-
lation of cell cycle and related to the CCN gene and pro-
tein family, of which CCNB1, CDC20 and CCND1 were 

Table 6  Survival analysis of risk scores model in HCC patients

MST, median survival time; HR, hazard ratio; CI, confidence interval
a Adjusted for tumor size, cirrhosis, BCLC stage in GSE14520 cohort; and adjusted for tumor stage and radical resection in TCGA cohort

Variables Patients NO.of event MST HR  (95% CI) P Adjusted HR a  (95% CI) Adjusted P a

TCGA​ n = 370 Days

 Low risk 185 55 2456 1

 High risk 185 75 1149 1.740 (1.227–2.468) 0.02 1.643 (1.124–2.402) 0.01

GSE14520 n = 212 Months

 Low risk 106 33 NA 1 1

 High risk 106 49 54.8 1.848 (1.187–2.876) 0.007 2.237 (1.424–3.514) < 0.001

Fig. 8  Prognostic risk score models of CDK1 and CDK4 genes in HCC patients of TCGA cohort. A Risk score from low to high, distribution of 
patient survival status and risk score and heat map of CDK1 and CDK4 genes; B Kaplan–Meier survival curves for low-risk and high-risk groups; C 
Time-dependent ROC analysis of the risk score predicts the HCC OS
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involved in the development of HCC in other reports 
[38–41]. In addition, KEGG pathway analysis suggested 
that CDK1-4, 6 were involved in the p53 signaling path-
way and TI3K-Akt signaling pathway.

CDK genes mutations often occur in human tumors [9, 
42]. It had been reported that CDK1 interacts with SOX2 
to promote tumor initiation in human melanoma and 
colon [10], and patients with overexpression of CDK1 
were reported to have poor prognosis in epithelial ovar-
ian cancer [43], pancreatic ductal adenocarcinoma [11], 
lung adenocarcinoma [44] and might be a relevant prog-
nostic biomarker. In addition, CDK1 was a promising 
biomarker for metastasis risk in colon cancer [45]. More-
over, lncRNA PVT1 promoted proliferation, migration 
and invasion of bladder cancer cells by increasing the 
expression of CDK1 which down-regulated miR-31 [46]. 
CDK4 had been reported to be related to a poor progno-
sis of osteosarcoma, triple-negative breast cancer, elderly 
lung cancer, and nasopharyngeal carcinoma [17, 18, 47, 
48].

Our study suggested that CDK1 and CDK4 were highly 
expressed in HCC tissues compared to normal controls, 
and patients with high CDK1 and CDK4 expression had 
poor prognosis. The results of the joint-effects analysis 

suggested patients with CDK1 and CDK4 low expression 
had better prognosis. In the prognostic model, patients 
in the high-risk group had worse prognosis. The over-
expression of CDK4 had been verified in the RT-qPCR 
experiment, but not CDK1. Although the clinical sig-
nificance of CDK1 was not validated in RT-qPCR experi-
ments, CDK1 is considered a prognostic factor for HCC 
in various cohorts and online databases, and its clinical 
significance in HCC needs to be further explored. There-
fore, in this study, HCC patients with overexpression 
of CDK4 were considered to have poor prognosis, and 
CDK4 might serve as a potential prognostic biomarker 
of HCC. Previous reports suggested that high levels of 
CDK4 can cause hepatic steatosis, fibrosis, and hepato-
cellular carcinoma in non-alcoholic fatty liver mouse 
models and patients with fatty liver [49]. CDK1 had been 
found highly expressed in HCC tissues, and CDK1 medi-
ated nuclear accumulation of apoptin and participated 
apoptosis in cancer [50]. Overexpression of CDK1 and 
CCNB1 can promote HCC cell proliferation and migra-
tion through the mitogen-activated protein/extracellular 
signal-regulated kinase  (MEK/ERK) signaling pathway, 
and trials of MEK1/2 inhibitors for the treatment of 
HCC are currently underway [51, 52]. JIN et  al.’s study 

Fig. 9  Prognostic risk score models of CDK1 and CDK4 genes in HCC patients of GSE14520 cohort. A Risk score from low to high, distribution of 
patient survival status and risk score and heat map of CDK1 and CDK4 genes. B Kaplan–Meier survival curves for low-risk and high-risk groups. C 
Time-dependent ROC analysis of the risk score predicts the HBV-related HCC OS
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suggested that LINC00346 affected p53 signaling path-
way by regulating the expression of CDK1/CCNB1 and 
ultimately regulated apoptosis, invasion and cell cycle of 
HCC cells [53]. Wu et al. demonstrated that CDK1 inhibi-
tor RO3306 can increase the antitumor effect of sorafenib 
in a PDX tumor model, and can provide a basis for per-
sonalized treatment for patients with CDK1-aberrant 
HCC [54]. Furthermore, Bollard et  al.’s preclinical trials 
found that Palbociclib, a selective CDK4/6 inhibitor, can 
promote reversible cell cycle arrest to suppress growth 
of human liver cancer cell lines [55]. CDK4 expression 
had been reported to be associated with histopathologic 
grade and progression of HCC and can be used as a prog-
nostic marker for HCC [56, 57].

GSEA results of the current study suggested that 
CDK1 and CDK4 are significantly related to liver cancer 
survival and some mechanisms that might be involved 
in cancer development: DNA repair, cell cycle, regula-
tion of TP53 activity and viral gene expression. It is well 
known that the major functions of the CDK gene family 
are involved in cell cycle regulation, and mutations often 
occur in human tumor cells, of which the most common 
is CDK4 [9]. According to previous reports, CDK4/Cyclin 
D1 can phosphorylate the Ser249 of p53-RS, enhancing 

the binding of p53-RS and c-Myc, it can thereby activat-
ing the c-Myc transcription pathway, and promoting the 
growth of HCC cells [58]. Studies by Gan et  al. showed 
that CDK1 protein interacts with iASPP protein to affect 
proliferation and apoptosis of colorectal cancer through 
p53 pathway [59]. The mechanisms of the CDK1 and p53 
pathway in HCC needed further studies.

In our current study, ROC curves suggested that CDK1 
and CDK4 were sensitive to diagnosis of HCC. At pre-
sent, α-fetoprotein  (AFP) is the serum tumor marker 
most commonly used for surveillance and early diagno-
sis of HCC [2]. However, in the retrospective case–con-
trol study, even with the most effective cutoff  (10–20 ng/
mL), the sensitivity was about 60% and the specificity 
was 80% [2]. Serum AFP > 400  ng/ml was considered to 
be of diagnostic efficiency, however, the possibility of 
false-negative results of AFP were high with early-stage 
HCC [60]. Other serum tumor markers of HCC included 
des-γ carboxyprothrombin, Golgi protein 73, glypican-3, 
Neprilysin and AFP-L3, which did not provide better 
accuracy [2, 60–62]. In recent years, some novel bio-
markers of HCC had been discovered, including serum 
metabolite biomarker panel [63], gut microbiota [64] and 
serum miRNA  (miR-193a-3p, miR-369-5p, miR-672.ect) 

Fig. 10  Scatter plot of expression level of CDK1 (A) CDK4 (B) genes between tumor tissue and adjacent normal liver tissues in validation cohort. The 
ROC curves of CDK1 (C) and CDK4 (D) genes in distinguish HCC tumor tissue and adjacent normal tissues of validation cohort. Kaplan–Meier survival 
curves of CDK4 (E) and CDK1 (F) in HCC of validation cohort. Note: NS: p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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[65]. In this study, the expression of CDK1 and CDK4 in 
HCC was statistically related to poor prognosis. There-
fore, we believe that CDK1 and CDK4 might be biomark-
ers of HCC’s early diagnosis and prognosis prediction.

However, there were some limitations in this study. 
First, in the RT-qPCR experiment, not all results were 
consistent with the previous analysis, which resulted 
from low sample size and other potentially influencing 
factors. Second, lack of other factors may be involved 
in the progress of HCC, including smoking status, eat-
ing habits, region, drinking status and family history of 
liver cancer which could be used to further evaluate the 
relationship between CDK1-4,6 expression and HCC. 
Third, this study only explored the relationship between 
the mRNA expression level of the CDK family genes and 
HCC. Multi-omics analyses of other CDK genes such as 
protein and methylation need to be further explored.

In summary, our study showed that high mRNA 
expression of CDK4 was associated with a poor prog-
nosis in HCC patients. CDK4 may showed as a potential 
prognostic biomarker of HCC.
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