TABLE IV. Performance Comparison of Different Approaches on COVIDx Dataset With Noisy Samples.
Noise | Method | ACC (%) | SEN (%) | SPE (%) |
---|---|---|---|---|
10% | PbCNN [15] | 83.22 | 81.98 | 89.01 |
COVID-Net [14] | 91.03 | 87.94 | 90.62 | |
DenseNet-121 [48] | 91.97 | 87.94 | 92.17 | |
CoroNet [49] | 89.45 | 88.74 | 90.06 | |
ReCoNet [47] | 91.63 | 90.82 | 91.16 | |
RCoNet | 92.78 | 92.21 | 93.51 | |
RCoNet | 92.98 | 93.39 | 93.12 | |
RCoNet | 92.01 | 91.41 | 92.76 | |
20% | PbCNN [15] | 78.42 | 75.90 | 80.29 |
COVID-Net [14] | 82.51 | 82.77 | 81.95 | |
DenseNet-121 [48] | 82.16 | 81.01 | 82.21 | |
CoroNet [49] | 82.33 | 81.10 | 81.89 | |
ReCoNet [47] | 83.26 | 82.72 | 83.17 | |
RCoNet | 84.18 | 84.56 | 85.79 | |
RCoNet | 84.30 | 84.01 | 85.99 | |
RCoNet | 84.34 | 83.96 | 85.21 | |
30% | PbCNN [15] | 67.76 | 66.47 | 70.61 |
COVID-Net [14] | 71.98 | 70.13 | 71.55 | |
DenseNet-121 [48] | 72.74 | 72.36 | 72.96 | |
CoroNet [49] | 71.87 | 72.02 | 71.54 | |
ReCoNet [47] | 73.26 | 72.53 | 73.11 | |
RCoNet | 74.56 | 74.20 | 75.54 | |
RCoNet | 74.69 | 74.51 | 76.94 | |
RCoNet | 74.88 | 74.37 | 75.21 |